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Wavelet analysis and compression tools are reviewed and different applications
∧
for the 8

study of MHD and plasma turbulence are presented. We introduce the continuous and 9

the orthogonal wavelet transform and detail several statistical diagnostics based on 10

the wavelet coefficients. We then show how to extract coherent structures out of fully 11

developed turbulent flows using wavelet-based denoising. Finally some multiscale 12

numerical simulation schemes using wavelets are described. Several examples for 13

∧
analysing, compressing and computing

∧
one-, two- and three-dimensional turbulent 14

MHD or plasma flows are presented. 1516

1. Introduction 17

Turbulence is ubiquitous and plays a critical role for the plasma stability and 18

confinement properties of fusion devices, e.g. in the tokamak edge region. Turbulence 19

is a regime of fluid, gas and plasma flows characterized by
∧
highly nonlinear 20

dynamics (Biskamp 1997). It exhibits a chaotic, i.e. unpredictible
∧
behaviour and 21

rotational motion
∧
over a wide range of dynamically active scales. In contrast to 22

classical dynamical systems, which are low dimensional and conservative, a turbulent 23

flow is a dissipative dynamical system, whose
∧
behaviour is governed by a very 24

large,
∧
possibly infinite, number of degrees of freedom. Each field, e.g. velocity, 25

vorticity, magnetic field
∧
and current density, strongly fluctuates around a mean 26

value and one observes that these fluctuations tend to self-organize into so-called 27

coherent structures, i.e. vortex tubes in hydrodynamics and
∧
vorticity sheets and 28

current sheets in
∧
magnetohydrodynamics (MHD). The presence of coherent structures 29

results in
∧
strong spatial and temporal flow intermittency, which is a key feature 30

of turbulence. Intermittency is understood here such that the fluctuations become 31

stronger for decreasing scale and are hence more localized. The appropriate tool to 32

study intermittency is the wavelet representation due to its intrinsic multiscale nature. 33

Indeed,Q3 it yields a sparse multiscale representation of intermittent fields since wavelets 34

are well localized functions in both physical and Fourier space. 35

The classical theory of homogeneous turbulence (Batchelor 1982) assumes that 36

turbulent flows are statistically stationary and homogeneous. This allows
∧
the use 37

of a Fourier space representation to
∧
analyse them (e.g. the energy spectrum is the 38

† Email address for correspondence: kschneid@cmi.univ-mrs.fr
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modulus of the Fourier transform of the velocity auto-correlation), to model
∧
them39

(e.g. using large eddy simulation) and to compute
∧
them (e.g. using spectral methods).40

Hence, since the Fourier representation spreads information among the phases of all41

Fourier coefficients, the structural information (i.e. locality in time and in space) is42

lost when one considers only the modulus of the Fourier coefficients, as is usually43

done. This is a major drawback of the classical theory of turbulence and the reason44

why we proposed in Farge & Rabreau (1988) to replace the Fourier representation45

by the wavelet representation, to define new
∧
analyses and computational tools able to46

preserve information locally in time and space
∧
. If the Fourier representation is well47

suited to study linear dynamical systems (whose behaviour either persists at the initial48

scale or spreads over larger ones),
∧
this is not the case for nonlinear dynamical systems49

for which the superposition principle no more holds (i.e. they cannot be decomposed50

into a sum of independent subsystems to be separately studied). Moreover, the51

evolution of nonlinear dynamical systems develop over a wide range of scales, since52

energy is spread from the initially excited scale towards smaller and smaller
∧
scales53

(the so-called energy cascade) until finite-time singularities develop (e.g. shocks),54

unless some dissipative mechanisms damp energy and thus avoid its ultra-violet55

divergence. The art of predicting the evolution of nonlinear dynamical systems56

consists of disentangling their active components from their passive components, the57

former being deterministically computed while the latter
∧
are discarded or statistically58

∧
modelled. One thus performs a distillation process to only retain the components59

essential to predict the nonlinear behaviour. The wavelet representation is particularly60

appropriate for this since it allows one to track the evolution in both space and scale61

and to only retain the degrees of freedom
∧
which determine the nonlinear dynamics.62

Turbulent flows are archetypes of nonlinear dynamical systems and therefore good63

candidates to be
∧
analysed, modelled and computed using the wavelet representation.64

If we now focus on plasma turbulence, we are uneasy about the fact that we have65

two different descriptions, depending on which side of the Fourier transform we look66

from.67

(i)
∧
We have a theory (Batchelor 1982) that assumes a nonlinear cascade in Fourier68

space for a range of scales, the so-called ‘inertial range’, where the flow kinetic69

energy is statistically (i.e. for ensemble
∧
of time or space averages) transferred70

towards smaller scales until reaching Kolmogorov’s scale, where molecular71

dissipation transforms kinetic energy into heat. Under these hypotheses, the72

theory predicts a power-law behaviour for the modulus of the energy spectrum73

in the inertial range.74

(ii)
∧
If we study the flow in physical space however, we do not have yet a75

predictive theory but only empirical observations (from laboratory and numerical76

experiments) showing the emergence and persistence of coherent structures, e.g.77

blobs and current sheets that concentrate most of the kinetic and magnetic energy,78

even for very high Reynolds number flows.79

The classical methods for
∧
modelling turbulent flows, e.g. large eddy simulation80

(LES), suppose a scale separation (i.e. a spectral gap) and neglect the
∧
small-scale81

motions, although their effect
∧
on the large-scale motions is statistically modelled82

(supposing their dynamics to be linear or slaved to them). Unfortunately, for those83

methods we have strong evidence, from both laboratory and numerical experiments,84

that there is no spectral gap since all scales of the inertial range are coupled85

and
∧
interact nonlinearly. Moreover, one observes that coherent structures play a86

major dynamical role and are responsible for the transport and mixing properties87
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of turbulent flows.
∧
As a consequence, one might ask the following questions: are 88

coherent structures the dynamical building blocks of turbulent flows and can we 89

extract them? If we succeed to do so, would it be possible to represent them with a 90

reduced number of degrees of freedom and would those be sufficient to compute the 91

flow nonlinear dynamics? 92

The aim of this review is to offer a primer on wavelets for both continuous 93

and orthogonal transforms. We then detail different diagnostics based on wavelet 94

coefficients to
∧
analyse and to compress turbulent flows by extracting coherent 95

structures. Examples for experimental data come from the tokamak Tore Supra 96

(Cadarache, France) and numerical simulation data of resistive drift-wave and MHD 97

turbulence
∧
illustrate the wavelet tools. Wavelet-based density estimation (WBDE) 98

techniques to improve particle-in-cell (PIC) numerical schemes are presented, 99

together with a particle-in-wavelet (PIW) scheme that we developed for solving the 100

Vlasov–Poisson equations directly in wavelet space. Coherent vorticity and current 101

sheet simulation (CVCS), that applies wavelet filtering to the resistive non-ideal 102

MHD equations, is proposed as a new model for turbulent MHD flows. It allows 103

one to reduce the number of degrees of freedom necessary to compute them, while 104

capturing the nonlinear dynamics of the flow. This review is based on the work and 105

publications we have performed within the last 15 years, in collaboration with the 106

CEA-Cadarache and other teams in France, Japan and the United States. Almost 107

all material presented here has already been published in
∧
our papers (cited in the 108

references), and parts have been adapted for this review. Let us only mention a few 109

references of wavelet techniques that have been used to
∧
analyse and quantify plasma 110

turbulence: e.g. transients (Dose, Venus & Zohm 1997), bicoherence (Dudok De Wit 111

& KrasnoselSkikh 1995; Van Milligen, Hidalgo & Sanchez 1995b; Van Milligen 112

et al. 1995a; Dudok De Wit et al. 2014), intermittency (Carbone et al. 2000) and 113

anisotropy (Alexandrova, Lacombe & Mangeney 2008). An exhaustive review is 114

beyond the scope of our paper and we focus here exclusively on our contributions. 115

The outline of this review is the following: first, in § 2 we present wavelet analysis 116

tools, including a short primer on continuous and orthogonal wavelets. Statistical 117

tools in wavelet coefficient space are also introduced. Section 3
∧
focuses on coherent 118

structure extraction using wavelet-based denoising. Wavelet-based simulation schemes 119

are reviewed in §§ 4 and 5 draws
∧
our conclusions. 120

2. Wavelet analysis 121

2.1. Wavelets: a short primer 122

2.1.1. Continuous wavelet transform 123

The wavelet transform (Grossmann & Morlet 1984) unfolds any signal (e.g. in time) 124

or any field (e.g. in three-dimensional space) into both space (or time) and scale (or 125

time scale), and possibly directions (for dimensions higher than one). The building 126

block of the wavelet transform is the ‘mother wavelet’, ψ(x) ∈ L2(R) with x ∈ R, 127

that is a well-localized function with fast decay at infinity and at least one vanishing 128

moment (i.e. zero mean)
∧
. It is also smooth enough in order that its Fourier transform, 129

ψ̂(k), exhibits fast decay for |k| tending to infinity. From the mother wavelet one then 130

generates a family of wavelets, translated by b ∈ R, the position parameter, dilated 131

(or contracted) by a ∈ R+, the scale parameter, and normalized in L2-norm (i.e.
∧

132

‖ψa,b‖2 = 1) to obtain the set 133

ψa,b(x)= 1√
a
ψ

(
x− b

a

)
. (2.1) 134
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The wavelet transform of f ∈ L2(R) is the inner product of f with the
∧
analysing135

wavelets ψa,b, and the wavelet coefficients
∧
that measure the fluctuations of f at scale136

a and position b
∧
given by137

f̃ (a, b)= 〈 f , ψa,b〉 =
∫
R

f (x)ψ?
a,b(x) dx, (2.2)138

with ? denoting the complex conjugate. The function f is reconstructed from its139

wavelet coefficients, as the inner product of f̃ with the set of
∧
analysing wavelets ψa,b140

141

f (x)= 1
Cψ

∫
R+

∫
R

f̃ (a, b)ψa,b(x)
da db

a2
, (2.3)142

where Cψ =
∫
R+ |ψ̂(k)|2k−1 dk is a constant that depends on the wavelet ψ . Similarly143

to the Fourier transform, the wavelet transform corresponds to a change of basis144

(from physical space to wavelet space) and, since it is an isometry, it preserves the145

inner product (〈 f , g〉= 〈̃f , g̃〉) (Plancherel’s theorem) and conserves energy (Parseval’s146

identity), therefore147 ∫
R
| f (x)|2 dx= 1

Cψ

∫
R+

∫
R
|̃f (a, b)|2 da db

a2
. (2.4)148

Note that the wavelet coefficients of the continuous wavelet transform are redundant149

and therefore correlated. This could be illustrated by the patterns one observes150

within the continuous wavelet coefficients of
∧
white noise, which correspond to the151

correlation between the dilated and translated wavelets (
∧
white noise being decorrelated152

by construction) and
∧
visualized by the ‘reproducing kernel’ of the continuous wavelet153

transform Q4. Due to the fact that wavelets are well localized in physical space, the154

behaviour of the signal at infinity does not play any role. Therefore both wavelet155

analysis and wavelet synthesis can be performed locally, in contrast to the Fourier156

transform which is intrinsically
∧
non-local (Fourier modes are spread all over space).157

One can also construct peculiar wavelets on a dyadic grid λ = (j, i) (i.e. scale is158

sampled by octaves j and space by positions 2−ji) that are orthogonal to each other159

and are used to construct wavelet orthonormal bases. In contrast to the continuous160

wavelet coefficients equation (2.2) that are redundant and correlated, the orthogonal161

wavelet coefficients are decorrelated and
∧
non-redundant (i.e. a signal sampled on N162

points is perfectly represented by N orthogonal wavelet coefficients only). As for the163

Fourier transform, there exists a fast wavelet transform (FWT) that is even faster than164

the fast Fourier transform (FFT) whose operation count for a
∧
one-dimensional signal165

sampled at N points is proportional to N, instead of N log2 N for the FFT.166

2.1.2. Orthogonal wavelet transform167

A discrete wavelet representation is obtained by sampling dyadically the scale a and168

the position b introducing aj = 2−j and bji = iaj with i, j ∈ Z. The resulting discrete169

wavelets170

ψji(x)= a−1/2
j ψ

(
x− bji

aj

)
= 2j/2ψ(2jx− i), (2.5)171

generate orthogonal bases for peculiar wavelets. Figure 1 shows five discrete wavelets172

ψji for j= 3, . . . ,7 and their corresponding Fourier transforms, the modulus |ψ̂ji|. Note173

that the scale 2−j is related to the wavenumber kj as174

kj = kψ2j, (2.6)175
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(a) (b)

FIGURE 1. Wavelet representation. Physical space (a) and spectral space (b). Note that
1x1k>C is due to the Fourier uncertainty principle.

where kψ =
∫∞

0 k|ψ̂(k)| dk/
∫∞

0 |ψ̂(k)| dk is the centroid wavenumber of the chosen 176

wavelet. In figure 1 we observe the duality between physical and spectral space, 177

namely
∧
small-scale wavelets are well localized in physical space and badly localized 178

in spectral space, and vice versa. Denoting the support of a wavelet in physical space 179

by 1x and the one in spectral space by 1k the Fourier uncertainty principle requires 180

that the product 1x1k is bounded from below. In this case, the orthogonal wavelet 181

coefficients of a function f ∈ L2(R) are given by 182

f̃ji = 〈 f , ψji〉, (2.7) 183

and the corresponding orthogonal wavelet series reads 184

f (x)=
∑
j,i∈Z

f̃jiψji(x). (2.8) 185

The integral in the continuous reconstruction forumla, (2.3), can thus be replaced by a 186

discrete sum. In practical applications, the infinite sums of the wavelet series have to 187

be truncated in both scale and position. Limiting the analysis to the largest accessible 188

scale of the domain, 20 = L, the scaling function associated to the wavelet has to be 189

introduced and the wavelet series becomes 190

f (x)=
∑
i∈Z

fφ0i(x)+
∑

j>0,i∈Z
f̃jiψji(x), (2.9) 191

where φ is the scaling function and f = 〈 f , φ0i〉 the corresponding scaling coefficients. 192

The smallest scale 2−J is given by the sampling rate of the function f , which 193

determines the number of grid points N = 2J . The finite domain size implies that the 194

number of positions
∧
also becomes finite and, choosing L = 1, we obtain the range 195

i = 0, . . . , 2j − 1 for j = 0, . . . , J − 1. Figure 2 illustrates for an orthogonal spline 196

wavelet the discrete scale-space representation for three different scales (j = 6, 7, 8) 197

and positions. There exists a fast wavelet transform algorithm which computes the 198

orthogonal wavelet coefficients in O(N) operations, therefore it is even faster than 199

the fast Fourier transform whose operation count is O(N log2 N) (Mallat 1998). 200
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FIGURE 2. Space-scale representation of an orthogonal spline wavelet at three different
scales and positions, i.e. ψ6,6, ψ7,32, ψ8,108. The modulus of the Fourier transform of three
corresponding wavelets is shown in the inset (top, left).

(a)

(b)

FIGURE 3. Academic example: function with two discontinuities and one in its derivative
(a), corresponding modulus of orthogonal wavelet coefficients (b) in logarithmic scale
using periodic spline wavelets of degree five.

As an example we show in figure 3 the orthogonal wavelet coefficients of an201

academic function presenting discontinuities. We observe that wavelet coefficients at202

small scales only have significant values in the vicinity of the discontinuities. Hence203

only a few coefficients are needed to represent the function after discarding the small204

wavelet coefficients.205
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(a) (b)

(c) (d )

FIGURE 4. Two-dimensional orthogonal wavelets. Scaling function (a) and the three
associated directional wavelets in the horizontal (b), vertical (c) and diagonal (d) direction.

Extension to higher dimensions. The orthogonal wavelet representation can be 206

extended to represent functions in higher space dimensions using tensor product 207

constructions, see e.g.
∧
Daubechies (1992

∧
), Mallat (1998

∧
), Schneider & Farge (2006). 208

Figure 4 shows two-dimensional orthogonal wavelets constructed by tensor products. 209

The wavelet transform can also be generalized to treat vector-valued functions 210

(e.g. velocity or magnetic fields) in d space dimensions by decomposing each vector 211

component into an orthogonal wavelet series. In the following we consider a vector 212

field v = (v(1), v(2), v(3)) for d = 3 sampled at resolution N = 23J with periodic 213

boundary conditions. Its orthogonal wavelet series reads 214

v(x)=
J−1∑
j=0

7∑
µ=1

2j−1∑
i1,i2,i3=0

ṽj,µ,iψj,µ,i(x), (2.10) 215

using
∧
three-dimensional orthogonal wavelets ψj,µ,i(x). The basis functions are 216

constructed by tensor products of a set of one-dimensional wavelets and scaling 217

functions (Daubechies 1992; Mallat 1998) which have been periodized since the 218

boundary conditions considered here are periodic. The scale index j varies from 0 to 219

J− 1, the spatial index i= (i1, i2, i3) has 23j values for each scale 2−j and each angle 220

indexed by µ= 1, . . . , 7. The three Cartesian directions x= x(1), x(2), x(3) correspond 221

to µ = 1, 2, 3, while µ = 4, 5, 6, 7 denote the remaining diagonal directions. The 222

wavelet coefficients measure the fluctuations of v at scale 2−j and around position 223

2−ji for each of the seven possible directions µ. The contribution of the vector field 224

v at scale 2−j and direction µ can be reconstructed by summation of ṽj,µ,iψj,µ,i(x) 225

over all positions i: 226

vj,µ(x)=
2j−1∑

i1,i2,i3=0

ṽj,µ,iψj,µ,i(x). (2.11) 227

The contribution of v at scale 2−j is obtained by 228

vj(x)=
7∑

µ=1

vj,µ(x). (2.12) 229
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For more details on wavelets, we refer the reader to several review articles, e.g.230

∧
Farge (1992

∧
), Farge & Schneider (2006

∧
), Schneider & Farge (2006) and textbooks,231

e.g.
∧
Daubechies (1992

∧
), Mallat (1998).232

2.2. Wavelet-based statistical diagnostics233

The physical representation gives access to both position and direction, the latter234

when the space dimension is larger than one. The spectral representation gives access235

to both wavenumber and direction, when the space dimension is larger than one, but236

the information on position is spread among the phases of all Fourier coefficients. The237

wavelet representation combines the advantages of both representations, while also238

giving access to scale. For instance, if we consider a three-dimensional vector-valued239

field, its orthogonal wavelet coefficients
∧
for each of its three components are240

indexed by three positions, seven directions and one scale. Thus using the wavelet241

representation, new statistical diagnostics can be designed by computing moments242

of coefficients using summation, either over position, direction or scale, or any243

combination of
∧
these. Second-order moments correspond to energy distributions (e.g.244

the energy spectrum), while
∧
higher-order moments allow for the computation of245

skewness and flatness. In the following, we will present
∧
scale-dependent moments,246

scale-dependent directional statistics and
∧
scale-dependent topological statistics. By247

topological statistics we mean the statistics of bilinear quantities,
∧
such as the scalar248

product of a vector field and its curl, e.g. helicity.249

In the following, we give a summary of statistical diagnostics based on orthogonal250

wavelet analysis, here applied to a generic vector field following the lines of Okamoto251

et al. (2014). Decomposing a vector field into orthogonal wavelets, scale-dependent252

distributions of turbulent flows can be measured, including
∧
different directions and253

also
∧
different flow components. For example, the energy and its spatial fluctuations254

can be quantified at different length scales and in different directions and hence255

longitudinal or transverse contributions can be determined. In the case of an imposed256

magnetic field, the contributions in the directions perpendicular or parallel to it can be257

distinguished. To this end, statistical quantities based on the wavelet representation can258

be introduced, and the scale-dependent anisotropy and the corresponding intermittency259

of MHD turbulence can be examined. Here we define intermittency as a departure260

from Gaussianity, which is reflected by increasing flatness when scale decreases.261

Sandborn (1959) introduced this definition in the context of boundary layer flows and262

for a historical overview on intermittency we refer to Schneider, Farge & Kevlahan263

(2004). Alternative definitions of intermittency can be found, e.g. in Frisch (1995),264

for example a steepening of the energy spectrum proposed by Kolmogorov (1962). In265

Kurien & Sreenivasan (
∧
2000, 2001) and Sorriso-Valvo et al. (2006) related techniques266

to quantify the anisotropy of the flow and its intermittency have been proposed.267

They used structure functions of either tensorial components or applied the SO3268

decomposition, which is based on spherical harmonics. Structure functions which269

correspond to moments of increments can be directly linked to wavelet decompositions270

(see, e.g.
∧
Schneider et al. 2004)

∧
. The increments are wavelet coefficients using the271

poor man’s wavelet, i.e. the difference of two delta distributions, which has only one272

vanishing moment, its mean value. This implies that the exponent of the detectable273

scaling laws is limited by the order of the structure function, and the scale selectivity274

is reduced as the frequency localization of the poor man’s wavelet is rather bad.275

These drawbacks can be overcome using
∧
higher-order wavelets.276
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2.2.1.
∧
Scale-dependent moments 277

To study the scale-dependent directional statistics we consider the component v` 278

with ` = 1, 2, 3 of a generic vector field v. First we define the q
∧
th-order moment 279

of the scale-dependent vector vj(x)= (v(1)j , v
(2)
j , v

(3)
j ), which is here either the vector 280

field at scale 2−j and direction µ, v(`)j,µ, or the vector field at scale 2−j, v(`)j , 281

Mq[v(`)j ] = 〈(v(`)j )
q〉. (2.13) 282

By construction the mean value satisfies 〈v(`)j 〉 = 0 and hence the moments are 283

automatically
∧
centred. These scale-dependent moments are related to the q

∧
th-order 284

structure functions, as shown, e.g. in Schneider et al. (2004). In the following, we 285

consider the
∧
second-order moment M2[v(`)j ], which is a scale-dependent quadratic 286

mean intensity of v(`)j , and the
∧
fourth-order moment M4[v(`)j ], which contains the 287

scale-dependent spatial fluctuations. Both moments are related via the flatness factor. 288

In anisotropic turbulence, typically a preferred direction can be defined, e.g. for 289

low magnetic Reynolds number turbulence, or rotating turbulence. These flows have 290

statistical symmetries, which we supposeQ5 here with respect to the x3-axis. For the 291

remaining perpendicular components, ` = 1, 2, the average of these two components 292

is taken as, Mq[v⊥j ] = {Mq[v(1)j ] + Mq[v(2)j ]}/2, and the superscript ⊥ represents the 293

perpendicular contribution. The parallel contribution v(3)j is denoted by v‖j . 294

The wavelet energy spectrum for v(`)j is obtained using M2[v(`)j ] and (2.6), 295

E[v(`)j ] =
1

21kj
M2[v(`)j ], (2.14) 296

where 1kj= (kj+1− kj) ln 2 (Meneveau 1991; Addison 2002). It is thus directly related 297

to the Fourier energy spectrum and yields a smoothed version (Meneveau 1991; Farge 298

1992). The orthogonality of the wavelets with respect to scale and direction guarantees 299

that the total energy is obtained by direct summation, E=∑`,j E[v(`)j ] =
∑

`,j,µ E[v(`)j,µ]. 300

The standard deviation of the energy spectrum at a given wavenumber kj quantifies 301

the spatial variability 302

σ [v(`)j ] =
1

21kj

√
M4[v(`)j ] − (M2[v(`)j ])2. (2.15) 303

The ratio of the
∧
fourth- and second-order moments defines the scale-dependent 304

flatness factor, 305

F[v(`)j ] =
M4[v(`)j ]
(M2[v(`)j ])2

, (2.16) 306

which quantifies the flow intermittency at scale 2−j. 307

The scale-dependent flatness is related to the energy spectrum (2.14) and the 308

standard deviation (2.15), 309

F[v(`)j ] =
(
σ [v(`)j ]
E[v(`)j ]

)2

+ 1, (2.17) 310

as shown in Bos, Liechtenstein & Schneider (2007). This relation illustrates that the 311

spatial variability of the energy spectrum is directly reflected by the scale-dependent 312

flatness. 313
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2.2.2. Scale-dependent directional statistics314

To quantify scale-dependent spatial flow anisotropy and anisotropic flow
∧
intermitt-315

ency we introduce wavelet-based measures. Both component-wise anisotropy316

and directional anisotropy of the flow are considered in the following. For the317

scale-dependent mean energy, E[v(`)j ], the anisotropy measure can be defined similarly318

to the classical Fourier representation.
∧
Analogously, this can be extended for its319

spatial fluctuations, σ [v(`)j ]. Using the relation between the scale-dependent flatness320

with the energy spectrum and its spatial fluctuations, (2.17), various measures of321

anisotropic flow intermittency can be defined.322

Component-wise anisotropy. The scale-dependent component-wise
∧
anisotropy is323

defined by the ratio of perpendicular to parallel energy, and its fluctuation, at a324

given scale
∧
2−j, respectively,325

cE(kj)=
E[v⊥j ]
E[v‖j ]

, cσ (kj)=
σ [v⊥j ]
σ [v‖j ]

. (2.18a,b)326

The scale-dependent mean energy, cE(kj) is a smoothed version of the Fourier327

counterpart c(k). The component-wise anisotropy of the spatial fluctuations is328

quantified by cσ (kj). These measures are directly related to the component-wise329

flatness factors of v(`)j , i.e. F[v⊥j ] and F[v‖j ], as shown in Okamoto et al. (2014).330

Combining (2.17) and (2.18) results in331

ΛC
j ≡

{
cσ (kj)

cE(kj)

}2

= F[v⊥j ] − 1

F[v‖j ] − 1
, (2.19)332

which yields a scale-dependent measure of component-wise anisotropic intermittency.333

Directional anisotropy. Scale-dependent measures for directional anisotropy can be334

defined using ratios of perpendicular to parallel energy and fluctuations in longitudinal335

or transverse directions,336

dL
E(kj)=

E[v⊥j,L]
E[v‖j,L]

, dL
σ (kj)=

σ [v⊥j,L]
σ [v‖j,L]

, (2.20a,b)337

338

dT
E(kj)=

E[v⊥j,3]
E[v⊥j,T]

, dT
σ (kj)=

σ [v⊥j,3]
σ [v⊥j,T]

. (2.21a,b)339

The longitudinal direction is denoted by the index L, i.e. L = µ = `. The subscript340

µ = 3 corresponds to a transverse direction of the perpendicular components, while341

T represents the other transverse direction of the perpendicular components, i.e. T =342

µ= 1 for v(2)j,µ or T =µ= 2 for v(1)j,µ.343

Three principal directions, i.e. µ= 1, 2 and 3, out of the seven possible directions344

have been selected for the directional statistics.345

The measures dL
E(kj) and dT

E(kj) are smoothed versions of the Fourier representation346

2e(3)(k3)/{e(1)(k1) + e(2)(k2)} and {e(1)(k3) + e(2)(k3)}/{e(1)(k2) + e(2)(k1)}, respectively,347

following the interpretation of the directional statistics proposed in Bos et al. (2007).348

Furthermore, these quantities can be related to
∧
second-order structure functions defined349

in physical space, and
∧
we have:350

2D(3)(rl̂3)

{D(1)(rl̂1)+D(2)(rl̂2)}
and

{D(1)(rl̂3)+D(2)(rl̂3)}
{D(1)(rl̂2)+D(2)(rl̂1)}

. (2.22a,b)351
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Structure functions are defined as the spatial average of velocity increments, D(`)(r)= 352

〈{v(`)(x + r) − v(`)(x)}2〉. Here v(`) consists of contributions of v(`) to scales larger 353

than 2−j. which are obtained by low pass filtering using the three-dimensional scaling 354

function at scale 2−j. The unit vector of the Cartesian direction x` is denoted by l̂`. 355

Combining (2.17) and (2.20)–(2.21), yields directional anisotropy measures 356

(Okamoto et al. 2014): 357

ΛL
j ≡
{

dL
σ (kj)

dL
E(kj)

}2

= F[v⊥j,L] − 1

F[v‖j,L] − 1
, (2.23) 358

ΛT
j ≡

{
dT
σ (kj)

dT
E(kj)

}2

= F[v⊥j,3] − 1
F[v⊥j,T] − 1

, (2.24) 359

which quantify the scale-dependent anisotropic intermittency in the transverse 360

and longitudinal directions. They measure intermittency, not only in the plane 361

perpendicular or in the direction parallel to for example a magnetic field B0, but 362

also in the longitudinal or transverse directions. These measures are equal to one for 363

isotropic fields, and their departure from the value one indicates the degree of flow 364

anisotropy. 365

2.2.3. Scale-dependent topological statistics 366

Considering the velocity field u and the corresponding vorticity ω = ∇ × u, the 367

kinetic helicity, H(x) = u · ω, can be defined. The helicity yields a measure of the 368

geometrical statistics of turbulence. Integrating the helicity over space one obtains 369

the mean helicity H = 〈u · ω〉. The scale-dependent helicity Hj was introduced in 370

Yoshimatsu et al. (2009a) and is defined by 371

Hj(x)= uj ·ωj. (2.25) 372

It preserves Galilean invariance, though the kinetic helicity itself does not. The 373

corresponding mean helicity is obtained by summing Hj over scale, H =∑j〈Hj〉 due 374

to the orthogonality of the wavelet decomposition. 375

The relative helicity 376

h(x)= H
|u| |ω| (2.26) 377

defines the cosine of the angle between the velocity and the vorticity at each spatial 378

position. The range of h lies between −1 and +1. The
∧
scale-dependent relative helicity 379

can be defined correspondingly 380

hj(x)= Hj

|uj| |ωj| . (2.27) 381

The Euler equations of hydrodynamics conserve the mean kinetic helicity, while 382

in ideal MHD turbulence
∧
, the mean cross-helicity HC = 〈u · b〉 and the mean 383

magnetic helicity HM = 〈a · b〉 are conserved quantities. Here a is the vector potential 384

of the magnetic field b. The
∧
scale-dependent versions of the relative cross and 385

magnetic helicities have been introduced in Yoshimatsu et al. (2011) and are defined 386

respectively by 387

hC
j (x)=

HC
j

|uj||bj| , (2.28) 388
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(a) (b)

FIGURE 5. QS-three-dimensional-MHD: modulus of vorticity for quasi-static three-
dimensional MHD at Rλ = 235, with N = 0, (a) and N = 2 (b) computed by DNS (from
Okamoto et al. 2014).

with HC(x)= u · b and389

hM
j (x)=

HM
j

|aj||bj| , (2.29)390

with HM(x)= a · b. These quantities define the cosine of the angle between the two391

vector fields. Q6392

2.3. Application to
∧
three-dimensional MHD turbulence393

In the following, we show applications of the above scale-dependent wavelet-based394

measures to three-dimensional incompressible
∧
MHD turbulence. To study the395

anisotropy we
∧
analyse flows with a uniformly imposed magnetic field

∧
and consider396

the quasi-static approximation at moderate Reynolds numbers for different interaction397

parameters (Okamoto et al. 2014). For the geometrical statistics, full MHD turbulence398

without an imposed mean field is
∧
analysed (Yoshimatsu et al. 2011). The flows are399

computed by direct numerical simulation (DNS) with a Fourier pseudo-spectral400

method at resolution 5123 and for further details we refer the reader to the respective401

publications Q7. The flow structure of the
∧
quasi-static MHD turbulence is illustrated402

in figure 5. Shown are isosurfaces of the modulus of vorticity for two different403

interaction parameters N. The interaction parameter characterizes the intensity of404

the imposed magnetic field B0 (here chosen in the z direction) relative to the flow405

nonlinearity. It is defined by N = σB2
0L/ρu′, where σ is the electrical conductivity, L406

the integral length scale, ρ the density and u′ the r.m.s. velocity. In the case without407

imposed magnetic field, i.e. N = 0, the flow is equivalent to isotropic hydrodynamic408

turbulence and entangled vortex turbes can be observed in figure 5(a). For N = 2,409

the structures are aligned parallel to the z direction, i.e. the direction of the imposed410

magnetic field, and the flow is thus strongly anisotropic.411

The wavelet energy spectra (figure 6a) yield information on the kinetic energy at412

scale 2−j and the spatial fluctuations are quantified by the standard deviation spectra413

(figure 6b). All spectra have been multiplied by k5/3 to enhance their differences414

at small scale. We observe that the spectra decay with increasing normalized415

wavenumber kjη where η is the Kolmogorov length scale. Furthermore, the wavelet416

spectra (dotted lines)
∧
agree well with the corresponding Fourier spectra (solid lines).417
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(a) (b)

FIGURE 6. QS-three-dimensional-MHD: wavelet mean energy spectra (a) k5/3
j E⊥(kj)

together with the Fourier energy spectra (solid lines). Wavelet standard deviation spectra
(b) k5/3

j σ⊥(kj). All quantities are shown for the perpendicular velocity components. The
inset (left) shows the corresponding forcing Fourier spectra k5/3Ef (k) (from Okamoto et al.
2014).

(a) (b)

FIGURE 7. QS-three-dimensional-MHD: component-wise anisotropy measure cE(kj) (a)
and directional anisotropy measure in the longitudinal direction dL

E(kj) (from Okamoto
et al. 2014).

For larger values of N, the spectra E[u⊥j ] decay faster for increasing kjη. The standard 418

deviation spectra of u⊥j also decay more rapidly when N becomes larger. 419

The scale-dependent anisotropy measures allow
∧
us to analyse the anisotropy at 420

different scales. The scale-dependent component-wise anisotropy cE(kj) shown in 421

figure 7(a), quantifies the anisotropy of the wavelet mean energy spectrum. As 422

expected, we find for N = 0 that cE(kj) ≈ 1 as the flow is isotropic. The departure 423

from the value one corresponds to flow anisotropy, i.e. for values smaller than one 424

the energy of the parallel component is predominant
∧
over that of the perpendicular 425

component, an
∧
observation which holds for both cases, N= 1 and N= 2. Furthermore, 426

the anisotropy is persistent at the
∧
smaller scales and yields smaller values for N = 2. 427

Now we examine the anisotropy in different directions. Figure 7(b), shows dL
E, the 428

flow anisotropy of the mean wavelet spectrum in the longitudinal direction. We find 429

that this measure yields values larger than one for N = 1 and 2, and values close 430

to one for N = 0. For N 6= 0, the correlation of the velocity component parallel to 431

the imposed magnetic field in its longitudinal direction is supposed to be stronger 432
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(a) (b)

FIGURE 8. QS-three-dimensional-MHD: scale-dependent flatness of the perpendicular
velocity F⊥j with in the inset the corresponding flatness for the parallel velocity (a).
Anisotropic measure of intermittency Λ(kj) (b) (from Okamoto et al. 2014).

than the correlation of the perpendicular components. We also see that the scale433

dependence
∧
becomes weak for kjη > 0.1.434

The scale-dependent flatness of the perpendicular velocity F[u⊥j ] and of the parallel435

velocity F[u‖j ], shown in figure 8(a), quantify the intermittency of the different flow436

components. In all cases we find that the flatness does indeed increase for decreasing437

scale. At small scales, kjη > 1, we also see that the flatness is larger for larger values438

of N. The inset shows that F[u‖j ] behaves
∧
similarly.439

The component-wise anisotropy of the intermittency at each scale can be quantified440

with ΛC(kj), see figure 8(b). Again we find that for N = 0 values close to one441

are found, as expected due to the isotropy of the flow. For N = 1 and 2 the442

component-wise anisotropic intermittency ΛC(kj) has values larger than one for443

kjη> 0.1, which means that the perpendicular velocity becomes more intermittent than444

the parallel velocity at small scales. For N = 2 this becomes even more pronounced.445

To illustrate the scale-dependent geometric statistics we consider homogeneous446

∧
MHD turbulence at unit Prandtl number without mean magnetic field. The flow447

has been computed by direct numerical simulation at resolution 5123 with random448

forcing and for further details we refer to Yoshimatsu et al. (2011). Figure 9 shows449

the
∧
probability distribution functions (PDFs) of the relative scale-dependent cross450

and magnetic helicity, hC
j and hM

j . Figure 9(a) exhibits two peaks at hC
j = ±1451

which corresponds to a pronounced scale-dependent dynamic alignment. The peaks452

even become larger for smaller scales and thus the probability of
∧
alignment (or453

anti-alignment) of the velocity and the magnetic field increases. Figure 9(b) illustrates454

that the distribution of the scale-dependent magnetic helicity becomes more symmetric455

at small scales. The inset shows that the total relative magnetic helicity is strongly456

skewed with a peak at +1, which is due to the presence of
∧
substantial mean magnetic457

helicity.458

3. Extraction of coherent structures using wavelets459

In this section we illustrate the extraction of coherent structures using an algorithm460

which is based on wavelet denoising. We first describe it for one-dimensional461

scalar-valued signals and illustrate its performance on an academic test signal. We462

then generalize the algorithm to higher dimensions and to vector-valued fields. Finally,463

different applications to experimental and numerical data are shown:464
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(a) (b)

FIGURE 9. Three-dimensional-MHD: scale-dependent PDFs of the relative helicities.
Cross-helicity hC

j (a) and magnetic helicity hM
j (b). The insets show the PDFs of the

corresponding total relative helicities (from Yoshimatsu et al. 2011).

(i) a scalar-valued signal varying in time measured by a Langmuir probe in the 465

scrape-off layer of the tokamak Tore Supra (Cadarache, France); 466

(ii) a two-dimensional academic example of the synthetic emissivity of a radiating 467

toric shell with additive noise; 468

(iii) experimental movies obtained by a fast camera implemented in Tore Supra; 469

(iv) two-dimensional vorticity fields computed for resistive drift-wave turbulence 470

(Hasegawa–Wakatani model) using a pseudo-spectral method; 471

(v) three-dimensional vorticity and current density fields computed for resistive MHD 472

turbulence (incompressible MHD equations) using a pseudo-spectral method. 473

3.1. Extraction algorithm 474

3.1.1. Principle 475

We propose a wavelet-based method to extract coherent structures that emerge out 476

of turbulent flows, both in fluids (e.g. vortices, shock waves in compressible fluids, . . .) 477

and in plasmas (e.g. bursts, blobs, . . .). The goal is to study their role regarding the 478

transport and mixing properties of flows in the turbulent regime. 479

For this, we use the wavelet representation that keeps track of both time and scale, 480

instead of the Fourier representation that keeps track of frequency only. Since there 481

is not yet an universal definition of the coherent structures encountered in turbulent 482

flows, we use an apophatic method (introduced in Hinduist theology several thousands 483

years ago) where one does not try to define what an entity (e.g. a phenomenon, a 484

noumenon, . . .) is but rather what it is not. We thus agree on the minimal and 485

hopefully consensual statement: ‘coherent structures are not noise’, and propose to 486

define them as: ‘coherent structures are what remains after denoising’. 487

The mathematical definition of noise states that a signal is
∧
noise if it cannot be 488

compressed in any functional basis. As a result, the shortest description of a noise 489

is itself. Note that in most of the cases, the experimental noise generated by a 490

∧
measurement device does not fit the definition of mathematical noise since it

∧
can be 491

compressed in at least one functional basis (e.g. parasite frequencies can be removed 492

in the Fourier basis). 493

This new way of defining coherent structures allows us to process signals and 494

fields
∧
and also their cuts or projections (e.g. a probe located at one point provides a 495

∧
one-dimensional cut of a

∧
four-dimensional space-time field). Indeed, the algorithms 496
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commonly used to extract coherent structures cannot work for cuts or projections497

∧
because they require a template of the structures to extract (one would need to498

take into account of how the probe sees all possible translations and distortions of499

the coherent structures). The strength of our algorithm is that it treats fields and500

projections in the same way.501

Since we assume that coherent structures are what remains after denoising, we need502

a model, not for the structures themselves, but for the noise. Applying ‘Ockham’s503

Razor principle’ (or the ‘law of parsimony’), we choose as a first guess the simplest504

possible model: we suppose the noise to be additive, Gaussian and white (i.e.505

uncorrelated). We then project the turbulent signal (in
∧
one-dimension), or turbulent506

field (in higher dimensions), into wavelet space and retain only the coefficients having507

∧
a modulus larger than a given threshold. As a threshold value we follow Donoho508

and Johnstone’s proposition of a threshold value that depends on the variance of509

the Gaussian noise we want to remove and on the chosen sampling rate (Donoho &510

Johnstone 1994). Since the noise variance is not known a priori for turbulent signals511

(the noise being produced by their intrinsic nonlinear dynamics), we designed a512

recursive method Azzalini, Farge & Schneider (2005) to estimate it from the variance513

of the weakest wavelet coefficients, i.e. those whose modulus is below the threshold514

value. After applying our algorithm, we obtain two orthogonal fields: the coherent515

field retaining all coherent structures and the incoherent field corresponding to the516

noise. We then check a posteriori that the latter is indeed noise-like (i.e. spread all517

over physical space), Gaussian and uncorrelated (i.e. also spread all over Fourier518

space), and thus confirm the hypotheses we have a priori chosen for the noise.519

3.1.2. Wavelet denoising520

We consider a signal s(t) sampled on N = 2J points that we want to denoise,521

assuming the noise to be additive, Gaussian and white. We first project s(t) onto an522

orthogonal wavelet basis and then filter out some of the wavelet coefficients thus523

obtained, s̃ij. We retain only the wavelet coefficients whose modulus is larger than a524

threshold value. The main difficulty is to estimate it a priori and we encounter two525

possible cases:526

(i) If we a priori know the noise’s variance σ 2, the optimal threshold value is given527

by Donoho and Johnstone’s formula (Donoho & Johnstone 1994)528

ε = (2σ 2 ln N)1/2. (3.1)529

In 1994 they proved (Donoho & Johnstone 1994) that such a wavelet thresholding530

method is optimal to denoise signals in the presence of additive Gaussian white531

noise
∧
because it minimizes the maximal L2-error (between the denoised signal532

and the noise-free signal) for functions whose regularity is inhomogeneous, such533

as bursty or intermittent turbulent signals.534

(ii) If we do not a priori know the variance of the noise,
∧
which is the most usual535

case, one should use the wavelet-based recursive algorithm we proposed in536

Farge, Schneider & Kevlahan (1999), Azzalini et al. (2005). This algorithm first537

estimates the variance of the noise by considering the variance of the noisy538

signal σ 2
0 and computes the corresponding threshold539

ε0 = (2σ 2
0 ln N)1/2. (3.2)540

The algorithm splits the wavelet coefficients into two classes: the weak541

coefficients whose
∧
moduli are smaller than the threshold, and the remaining542
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strong coefficients. It then computes the variance of the weak coefficients σn 543

to obtain a better estimation of the variance of the noise (estimated from the 544

wavelet coefficients using Parseval’s theorem) 545

σ 2
n =

1
N

∑
(j,i)∈IJ ,|̃sji|<εn

|̃sji|2, (3.3) 546

where IJ = {0 6 j < J, i = 0, . . . , 2j − 1} is the index set of the wavelet 547

coefficients. The algorithm then replaces ε0 by εn = (2σ 2
n ln N)1/2,

∧
which yields 548

a better estimate of the threshold. This procedure is iterated until it reaches the 549

optimal threshold value, when εn+1 ≈ εn. 550

In Azzalini et al. (2005) we proved that this algorithm converges for signals 551

having a sufficiently sparse representation in wavelet space, such as the 552

intermittent signals encountered in turbulence. We also showed that the larger the 553

signal to noise ratio (SNR) is, the faster the convergence. Hence, if the signal 554

s(t) is only
∧
noise, it converges in one iteration and retains ε0 as the optimal 555

threshold. 556

Using the optimal threshold, we then separate the wavelet coefficients s̃ij into 557

two contributions: the coherent coefficients s̃C
ij whose

∧
moduli are larger than ε 558

and the remaining incoherent coefficients s̃I
ij. Finally, the coherent component sC(t) 559

is reconstructed in physical space using the inverse wavelet transform, while the 560

incoherent component is obtained as sI(t)= s(t)− sC(t). 561

3.1.3. Extraction algorithm for one-dimensional signals 562

We detail the iterative extraction algorithm for the one-dimensional case and quote 563

it from Azzalini et al. (2005): 564

Initialization 565

(i) given the signal s(t) of duration T , sampled on an equidistant grid ti= iT/N for 566

i= 0,N − 1, with N = 2J; 567

(ii) set n= 0 and perform a wavelet decomposition, i.e. apply the
∧
FWT (Mallat 1998) 568

to s to obtain the wavelet coefficients s̃ji for (j, i) ∈ IJ; 569

(iii) compute the variance σ 2
0 of s as a rough estimate of the variance of the 570

incoherent signal sI and compute the corresponding threshold ε0 = (2 ln Nσ 2
0 )

1/2, 571

where σ 2
0 = (1/N)

∑
(j,i)∈IJ |̃sji|2; 572

(iv) set the number of coefficients considered as noise to NI = N, i.e. to the total 573

number of wavelet coefficients. 574

Main loop 575

Repeat 576

(i) set Nold
I =NI and count the number of wavelet coefficients smaller than εn, which 577

yields a new value for NI; 578

(ii) compute the new variance σ 2
n+1 from the wavelet coefficiens smaller than εn, i.e. 579

σ 2
n+1 = (1/N)

∑
(j,i)∈IJ |̃sI

ji|2, where 580

s̃I
ji =
{

s̃ji for |̃sji|6 εn
0 else (3.4) 581

and the new threshold εn+1 = (2 ln Nσ 2
n+1)

1/2; 582
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(iii) set n= n+ 1583

until (NI =Nold
I ).584

Final step585

(i) reconstruct the coherent signal sC from the coefficients s̃C
ji using the inverse

∧
FWT,586

where587

s̃C
ji =

{
s̃ji for |̃sji|> εn
0 else (3.5)588

(ii) finally, compute pointwise the incoherent signal sI(ti) = s(ti) − sC(ti) for589

i= 0, . . . ,N − 1.590

End591

Note that the signal is split into s(t)= sC(t)+ sI(t) and its energy into σ 2= σ 2
C+ σ 2

I ,592

since the coherent and incoherent components are orthogonal, i.e. 〈sC, sI〉 = 0.593

We use the
∧
FWT (Mallat 1998) that is computed with (2MN) multiplications, M594

being the length of the discrete filter defining the orthogonal wavelet used. Remark:595

for all applications presented in this paper, we use Coiflet 12 wavelets (Daubechies596

1992), unless otherwise stated. As long as the filter length M < (log2 N)/2, the FWT597

is faster than the FFT
∧
computed with N log2 N operations. Consequently, the extraction598

algorithm requires (2nMN) operations, n being the number of iterations,
∧
which is599

small, typically less than log2 N.600

This algorithm defines a sequence of estimated thresholds (εn)n∈N and the601

corresponding sequence of estimated variances (σ 2
n )n∈N. In Azzalini et al. (2005)602

we proved that this sequence converges after a finite number of iterations by applying603

a fixed point type argument to the iteration function604

Fs,N(εn+1)=
2 ln N

N

∑
(j,i)∈IJ

|̃sI
ji(εn)|2

1/2

. (3.6)605

The algorithm stops after n iterations, when Fs,N(εn) = εn+1, since the number of606

samples N is finite. In Azzalini et al. (2005) we
∧
also proved that the convergence rate607

depends on the
∧
SNR (SNR = 10 log10(σ

2/σ 2
I )), since the smaller the SNR, i.e. the608

stronger the noise, the faster the convergence
∧
, moreover, if the algorithm is applied609

to a Gaussian white noise, it converges in one iteration only. If it is applied to a610

signal without noise, the signal is fully preserved. In Azzalini et al. (2005) we have611

also proven the algorithm’s idempotence, i.e. if it is applied several times the noise is612

eliminated the first time and the coherent signal will remain the same if the algorithm613

is reapplied several times. This would be the case for a Gaussian filter which, in614

contrast, is not idempotent.615

3.1.4. Application to an academic test signal616

To illustrate the performance of the iterative algorithm we consider a one-617

dimensional noisy test signal s(t) sampled on N = 213 = 8192 points (figure 10b). It618

is made by adding a Gaussian white noise w(t), of mean zero and variance σ 2
w = 25,619

to a piecewise regular academic signal a(t) presenting several discontinuities, in the620

function or in its derivatives (figure 10a). The
∧
SNR is SNR= 10 log10(σ

2
a /σ

2
w)= 11 dB.621
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(a)

(b)

(c)

FIGURE 10. Denoising of a piecewise regular signal using iterative wavelet thresholding.
(a) Original academic signal a(t). (b) Noisy signal s(t) with a SNR= 11 dB. (c) Denoised
signal sC(t) with a SNR= 28 dB.

After applying the extraction algorithm we estimate the noise variance to be 25.6 622

and we obtain a coherent signal sC(t) very close to the original academic signal a(t) 623

(figure 10c). The incoherent part sI(t) is homogeneous and
∧
noise-like with flatness 624

3.03, which corresponds to
∧
quasi-Gaussianity. In figure 10(c) we observe that the 625

coherent signal retains all discontinuities and peaks present in the academic signal 626

a(t), which is an advantage with respect to standard denoising techniques, e.g. low 627

pass Fourier filtering, which
∧
smooth them. In the vicinity of the discontinuities we 628

observe slight overshoots, which are more local than the classical Gibbs phenomena 629

and could for example be removed using the translation invariant wavelet transform 630

(Mallat 1998). 631

3.1.5. Extension of the algorithm to higher dimensional
∧
scalar- and vector-valued 632

fields 633

The extraction algorithm was described in § 3.1.3 for one-dimensional scalar-valued 634

signals s(t) varying in time. First, it can be extended to
∧
higher dimensional scalar 635
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fields s(x) varying in space x ∈ Rd where d is the space dimension. To this end the636

extraction algorithm only requires that the one-dimensional wavelets are replaced by637

their equivalent d-dimensional wavelets using tensor product constructions, see, e.g.638

(Daubechies 1992; Mallat 1998; Schneider & Farge 2006).639

Second, the extraction algorithm can also be extended to vector-valued fields640

v = (v(1), . . . , v(d)) where each component v`, ` = 1, . . . , d is a scalar valued field.641

The extraction algorithm is then applied to each component of the vector field. For642

thresholding the wavelet coefficients we consider the vector ṽj,µ,i in (2.10). Assuming643

statistical isotropy of the noise, the modulus of the wavelet coefficient vector is644

computed. The coherent contribution is then reconstructed from those coefficients645

whose modulus is larger than the threshold defined as ε = (2/d σ 2 ln N)1/2 where d646

is the dimensionality of the vector field, σ the variance of the noise and N the total647

number of grid points. The iterative algorithm in § 3.1.3 can then be applied in a648

straightforward way.649

To extract coherent structures out of turbulent flows we consider the vorticity field,650

which is decomposed in wavelet space. Applying the extraction algorithm then yields651

two orthogonal components, the coherent and incoherent vorticity fields. Subsequently652

the corresponding induced velocity fields can be reconstructed by applying the Biot–653

Savart kernel, which is the inverse curl operator. For MHD turbulence, we consider in654

addition the current density and we likewise split it into two components, the coherent655

and incoherent current density fields. Using Biot–Savart’s kernel we reconstruct the656

coherent and incoherent magnetic fields.657

Note that the employed wavelet bases do not
∧
a priori constitute divergence-free658

bases. Thus the resulting coherent and incoherent vector fields are not necessarily659

divergence free. However, we checked that the departure from incompressibility only660

occurs in the dissipative range and remains negligible (Yoshimatsu et al. 2009b).661

Another solution would be to use directly div-free wavelets,
∧
however these are much662

more cumbersome to implement (Deriaz, Farge & Schneider 2010).663

3.2. Application to
∧
one-dimensional experimental signals from tokamaks664

In Farge, Schneider & Devynck (2006) we presented a new method to extract665

coherent bursts from turbulent signals. Ion density plasma fluctuations were measured666

by a fast reciprocating Langmuir probe in the scrape-off layer of the tokamak Tore667

Supra (Cadarache, France)
∧
. For a schematic view we refer to figure 11. The resulting668

turbulent signal is shown in figure 12(a). To extract the coherent burst, the wavelet669

representation is used which keeps track of both time and scale and thus preserves670

the temporal structure of the
∧
analysed signal, in contrast to the Fourier representation671

which scrambles it among the phases of all Fourier coefficients. Applying the672

extraction algorithm described in § 3.1.3, the turbulent signal in figure 12(a) is673

decomposed into coherent and incoherent components (figure 12b,c). Both signals are674

orthogonal to each other and their properties can thus be studied independently. This675

procedure disentangles the coherent bursts, which contain most of the density variance,676

are intermittent and correlated with non-Gaussian statistics, from the incoherent677

background fluctuations, which are much weaker, non-intermittent, noise-like and678

almost decorrelated with quasi-Gaussian statistics.679

The corresponding PDFs are shown in figure 13 which confirm that the incoherent680

part is indeed Gaussian like, while the total and coherent signal have similar skewed681

PDFs with algebraic heavy tails for positive signal values. Diagnostics based on the682

wavelet representation were also introduced in Farge et al. (2006) which allow us683
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(a)

(b)

FIGURE 11. (a) Position of the reciprocating Langmuir probe in the scrape-off layer of
the tokamak Tore Supra in Cadarache. (b) Schematic top view of the probe.

to compare the statistical properties of the original signals with their coherent and 684

incoherent components. The wavelet spectra, in comparison with classical Fourier 685

spectra (obtained via modified periodograms) in figure 14(a), confirm that the total 686

and coherent signals have almost the same scale energy distribution with a power 687

law
∧
behaviour close to −5/3. Furthermore, the wavelet spectra agree well with the 688

Fourier spectra. The incoherent signal yields an energy equipartition for more than 689

two magnitudes, which corresponds to decorelation in physical space. To quantify 690

the intermittency we plot in figure 14(b) the
∧
scale-dependent flatness of the different 691

signals, which shows that the coherent contribution extracted from the total signal has 692

the largest values at small scale (i.e. high frequency) and is thus the most intermittent. 693

In Farge et al. (2006) we conjectured that the coherent bursts are responsible for 694

turbulent transport, whereas the remaining incoherent fluctuations only contribute 695

to turbulent diffusion. This is confirmed by the resulting energy flux of the total, 696

coherent and incoherent parts given in figure 15. Note that
∧
cross-correlation between 697

coherent and incoherent contributions of the electric potential and the saturation 698

current are not shown. 699

3.3. Application to
∧
two-dimensional experimental movies from tokamaks 700

3.3.1. Tomographic reconstruction using wavelet-vaguelette decomposition 701

Cameras installed in tokamaks
∧
acquire images which are difficult to interpret, since 702

the three-dimensional structure of the plasma is mapped onto two
∧
spatial dimensions 703

and thus flattened in a non-trivial way. This implies that the received flux cannot be 704

directly related to the volumic emissivity of the plasma, which is a major limitation of 705

such optical diagnostics. The reason is that the photons collected by each pixel on the 706
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(a)

(b) (c)

FIGURE 12. Signal s(t) of duration 8.192 ms, corresponding to the saturation current
fluctuations measured at 1 MHz in the scrape-off layer of the tokamak Tore Supra
(Cadarache, France). (a) Total signal s, (b) coherent part sC, and (c) incoherent part sI
(from Farge et al. 2006).

FIGURE 13. Probability density function p(s) estimated using histograms with 50 bins.
PDF of the total signal s (green dashed line), of the coherent component sC (red solid
line) and of the incoherent component sI (blue dotted line), together with a Gaussian fit
with variance σ 2

I (black dotted line) (from Farge et al. 2006).

camera sensor have been emitted along a corresponding ray, rather than out of a single707

point in space. Nevertheless the three-dimensional radiation can be related to the two-708

dimensional image using tomographic reconstruction, because the dominant structures709
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(a) (b)

FIGURE 14. (a) Wavelet spectra Ẽ(ωj) (lines with symbols) and modified periodograms
E(ω) (lines) of the total signal s (green and +), coherent signal sC (red and ♦) and
incoherent signal sI (blue and E). (b) Corresponding scale-dependent flatness F̃ versus
frequency ωj. The horizontal dotted line F̃(ωj) = 3 corresponds to the flatness of a
Gaussian process (from Farge et al. 2006).

FIGURE 15. Energy flux: total (green), coherent (red) and incoherent (blue). The split is
made using complex valued wavelets.

in tokamak edge turbulence happen to be field-aligned filaments, commonly known as 710

blobs. They have a higher density than their surroundings, and their structure varies 711

more slowly along magnetic field lines than in their orthogonal directions. 712

Mathematically, the tomographic reconstruction corresponds to an inverse problem 713

which has a formal solution under the assumed symmetry, but is ill-posed in the 714

presence of noise. Taking advantage of the slow variation of the fluctuations along 715

magnetic field lines in tokamaks, this inverse problem can be modelled by a helical 716

Abel transform, which is a Volterra integral operator of the first kind. In Nguyen 717
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(a) (b) (c)

FIGURE 16. Denoising WVD academic test case with a uniform radiating shell.
(a) Source emission intensity S in the poloidal plane. (b) Corresponding noiseless image
I=KS in the image plane. (c) Noisy image obtained by adding Gaussian white noise with
variance 0.5 (from Nguyen van yen et al. 2012).

van yen et al. (2012) we proposed a tomographic inversion technique, based on a718

wavelet-vaguelette decomposition
∧
coupled with wavelet denoising, to extract coherent719

structures
∧
which allows us to detect individual blobs on the projected movie and to720

analyse their behaviour. The wavelet-vaguelette decomposition (WVD) was introduced721

by Tchamitchian (1987) and used by Donoho (1995) to solve inverse problems in the722

presence of localized structures. Tomographic inversion using the wavelet-vaguelette723

decomposition is as an alternative to SVD (singular value decomposition). SVD and724

WVD regularize the problem by damping the modes of the inverse transform to725

prevent amplification of the noise, i.e. modes below a given threshold are eliminated.726

For WVD, the nonlinear iterative thresholding procedure (see § 3.1.3) is applied727

to the vaguelette coefficients. Here Coiflets with two vanishing moments are used728

(Daubechies 1992). However, in contrast to SVD, WVD takes in addition advantage729

of the spatial localization of coherent structures present in the plasma.730

The technicalities of WVD are described in detail in Nguyen van yen et al. (2012),731

in the following we
∧
explain only the principle. The helical Abel transform related732

the plasma light emissivity S (a scalar-valued field) to the integral of the volume733

emissivity received by the camera I =KS, where K is a compact continuous operator.734

The reconstruction of the plasma light emissivity S from I is an inverse problem735

which becomes very difficult when S is corrupted by noise, since computing K−1 is736

an ill-posed problem which amplifies the noise. The vaguelettes are operator adapted737

wavelets and a biorthogonal set of basis functions is obtained from the wavelet bases738

ψλ by computing Kψλ and K?−1ψλ, where K?−1 denotes the adjoint inverse operator739

(Tchamitchian 1987). Note that vaguelettes inherit the localization features of wavelets740

but may
∧
lose the translation and scale invariance, and thus the

∧
FWT cannot be applied741

anymore.742

3.3.2. Application to an academic example743

To illustrate the method, we first consider an academic test case with an given744

emissivity map S, having a uniform radiating shell at constant value one and zero745

elsewhere. A two-dimensional cut in the poloidal plane is shown in figure 16(a).746

Applying the helical Abel transform we generate the corresponding synthetic image747

I=KS (figure 16b). Then we add a Gaussian white noise with standard deviation 0.5,748

which yields the synthetic noisy image (figure 16c).749
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(a) (b)

FIGURE 17. Denoising WVD academic test case. WVD inversion results.
(a) Reconstructed poloidal emissivity map Sd. (b) Denoised image Id = KSd (from
Nguyen van yen et al. 2012).

Applying the WVD
∧
reconstruction to the synthetic noisy image (figure 16c) gives 750

a denoised emissivity map, a poloidal cut is shown in figure 17(a). We observe that 751

the main features are preserved, i.e. the constant emissivity shell is well recovered, 752

besides some spurious oscillations close to discontinuities. The corresponding denoised 753

image Id = KSd (figure 17b) illustrates that the noise has been successfully removed. 754

A comparison with the standard SVD technique in Nguyen van yen et al. (2012) (not 755

shown here) illustrates the superiority of the wavelet-vaguelette technique. 756

3.3.3. Application to fast camera data from tokamaks 757

Now we present an application to an experimental movie acquired during the Tore 758

Supra discharge TS42967, where the plasma was fully detached and stabilized over 759

several seconds using a feedback control. The movie has been obtained using a fast 760

camera recording at 40 kHz. Moreover, the time average of the whole movie was 761

subtracted from each frame, which helps us to decrease the effect of reflection on 762

the chamber wall. The algorithm is then applied directly to the fluctuations in the 763

signal instead of the full signal. The experimental conditions can be found in Nguyen 764

van yen et al. (2012). One frame of the movie is shown in figure 18(a) and used 765

as input for the WVD reconstruction algorithm. The resulting emissivity map in the 766

poloidal plane, in figure 18(b), shows the presence of localized blobs, which propagate 767

∧
counter clockwise, as observed in the movies, not shown here. Thus their propagation 768

velocity can be determined. The corresponding denoised movie frame Id (figure 18c) 769

is obtained by applying the operator K to the inverted emissivity map Sd. We observe 770

that the noise has been removed and the local features such as blobs and fronts have 771

been extracted. 772

3.4. Application to
∧
two-dimensional simulations of resistive drift-wave turbulence 773

At the edge of the plasma in tokamaks drift-waves play an important role in
∧
dynamics 774

and transport. In Bos et al. (2008) we considered a two-dimensional slab geometry 775

and performed
∧
DNS using a two-field model, the Hasegawa–Wakatani system, which 776

describes the main features of resistive drift-waves. The evolution equations for the 777

plasma density fluctuations and the electrostatic potential fluctuations are coupled via 778

the adiabaticity parameter which models the intensity of the parallel electron resistivity. 779

A Poisson equation relates the vorticity with the electrostatic potential. The wavelet- 780

based coherent vortex extraction method (see § 3.1.3) is then applied in Bos et al. 781
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(a) (b) (c)

FIGURE 18. WVD-inversion of a snapshot from a movie obtained from Tore
Supra, discharge TS42967. (a) Noisy frame used as input for the WVD algorithm.
(b) Reconstructed emissivity map obtained as a result of WVD. (c) Denoised frame
obtained by applying the operator K to the reconstructed emissivity map (from Nguyen
van yen et al. 2012).

(a) (b)

FIGURE 19. Snapshots of the vorticity field for the quasi-hydrodynamic case (a) and for
the quasi-adiabatic case (b). Abscissa and ordinate correspond to the radial and poloidal
position, respectively. The white rectangles indicate the selected dipoles (from Bos et al.
2008).

(2008) to assess the role of coherent vorticity for radial transport and to identify only782

the active degrees of freedom which are responsible for the transport.783

Visualizations of the vorticity field for two regimes, the quasi-hydrodynamic case784

and the quasi-adiabatic case, corresponding
∧
, respectively, to low and high collisionality785

of the plasma, are given in figure 19. In both cases, coherent vortices can be786

observed and a dipolar structure is framed by the white rectangles. Applying the CVE787

algorithm Q8, we split the vorticity fields into coherent and incoherent contributions.788
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(a) (b)

(c) (d )

FIGURE 20. (a,b) PDFs of the vorticity. (c,d) Fourier spectrum of the enstrophy versus
wavenumber. (a,c) Quasi-hydrodynamic case. (b,d) Quasi-adiabatic case. Dashed line:
total field, solid line: coherent part, dotted line: incoherent part. Note that the coherent
contribution (solid) superposes the total field (dashed), which is thus hidden under the
solid line in all four figures. The straight lines indicating power laws are plotted for
reference (from Bos et al. 2008).

In the quasi-hydrodynamics case we find that 1.3 % of the wavelet coefficients are 789

sufficient to retain 99.9 % of the energy, while in the quasi-adiabatic case 1.8 % of 790

the modes retain
∧
99 % of the energy. The statistical properties of the total, coherent 791

and incoherent vorticity fields are assessed in figure 20 by plotting the vorticity PDFs 792

and the Fourier enstrophy spectra for the two cases. For the quasi-hydrodynamic 793

vorticity the PDFs of the total and the coherent field are slightly skewed and exhibit 794

a
∧
non-Gaussian distribution, while for the quasi-adiabatic case, a symmetric almost 795

Gaussian like distribution can be observed. The variances of the incoherent parts are 796

strongly reduced in both cases with respect to the total fields and the PDFs have 797

a Gaussian-like shape. The enstrophy spectra illustrate that coherent and incoherent 798

contributions exhibit a multiscale
∧
behaviour. The spectra of total and coherent vorticity 799

agree well all over the inertial range. The spectra of the incoherent contributions have 800

a powerlaw
∧
behaviour close to k3 which corresponds to an equipartition of kinetic 801

energy. In Bos et al. (2008) it is furthermore shown that the radial density flux, i.e. 802

more than 98 %, is indeed carried by these coherent modes. In the quasi-hydrodynamic 803

regime, coherent vortices exhibit depletion of the polarization-drift nonlinearity as 804

shown in the scatter plot of vorticity against the electrostatic potential in figure 21. 805

Moreover, vorticity strongly dominates over strain, in contrast to the
∧
quasi-adiabatic 806

regime. Details can be found in Bos et al. (2008). 807
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(a) (b)

(c) (d)

FIGURE 21. Scatter plot of vorticity against electrostatic potential for the coherent part
(a,b) and incoherent part (c,d). (a,c) Quasi-hydrodynamic case; (b,d) quasi-adiabatic case.
The red dots correspond to the total field, the blue dots correspond to a selected vortex
dipole in figure 19 (from Bos et al. 2008).

3.5. Application to
∧
three-dimensional simulations of resistive MHD turbulence808

In Yoshimatsu et al. (2009b) we proposed a method for extracting coherent vorticity809

sheets and current sheets out of three-dimensional homogeneous
∧
MHD turbulence.810

To this end the wavelet-based coherent vortex extraction method (see § 3.1.3) has811

been applied to vorticity and current density fields computed by direct numerical812

simulation (DNS) of forced incompressible MHD turbulence without mean magnetic813

field at resolution of 5123. Coherent vorticity sheets and current sheets are extracted814

from the DNS data at a given time instant. A visualization of isosurfaces of vorticity815

and current density of the total, coherent and incoherent fields is shown in figure 22.816

The coherent vorticity and current density are found to preserve both the vorticity817

sheets and the current sheets present in the total fields while retaining only a few818

percent of the degrees of freedom. The incoherent vorticity and current density are819

shown to be structureless and of mainly dissipative nature. The spectral distributions820

in figure 23 of kinetic and magnetic energies of the coherent fields only differ in the821

dissipative range, while the corresponding incoherent fields exhibit quasi-equipartition822

of energy, corresponding to a k2 slope. The
∧
PDFs of total and coherent fields, for823

both vorticity and current density
∧
in figure 24 coincide almost perfectly, while the824

incoherent vorticity and current density fields have strongly reduced variances. The825

energy flux shown in figure 25 confirms that the nonlinear dynamics is indeed fully826

captured by the coherent fields only. The scale-dependent flatness of the velocity and827

the magnetic field in figure 26 illustrate that the total and coherent fields have similar828

∧
scale-dependent high-order moments and reflect strong intermittency characterized829

by the strong increase of the flatness for decreasing scale. The flatness values of830
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(a)

(c)

(e)

(b)

(d )

( f )

FIGURE 22. Isosurfaces of vorticity (a,c,e) and current density (b,d,f ) of the total (a,b),
coherent (c,d) and incoherent contributions (e,f ) (from Yoshimatsu et al. 2009b).

the incoherent contributions, of both the velocity and the magnetic field are are 831

much smaller and do not increase
∧
significantly for decreasing scale, i.e. they are not 832

intermittent. 833

4. Wavelet-based simulation schemes 834

In the following, two wavelet-based methods for solving kinetic plasma equations 835

are presented: an application of nonlinear wavelet denoising to improve the 836

convergence of
∧
PIC schemes and a PIW scheme for solving the Vlasov–Poisson 837

equation directly in wavelet space. We also present the coherent vorticity and
∧
CVCS 838

method which extends the coherent vorticity simulation (CVS) (Farge et al. 1999; 839

Farge & Schneider 2001) developed for the Navier–Stokes equations to the resistive 840

non-ideal MHD equations. Numerical examples illustrate the properties and the 841

efficiency of the different methods. 842
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(a) (b)

FIGURE 23. Kinetic (a) and magnetic (b) energy spectra of the total, coherent and
incoherent fields. The wavenumber is normalized with the Iroshnikov–Kraichnan scale
(from Yoshimatsu et al. 2009b).

(a) (b)

(c) (d)

FIGURE 24. PDFs of the `th component of the velocity (a), vorticity (b), magnetic field
(c) and current density (d) for the total, coherent and incoherent contributions (from
Yoshimatsu et al. 2009b).

4.1. Improving
∧
PIC

∧
schemes by wavelet denoising843

Plasma simulations using particles are characterized by the presence of noise, a typical844

feature of
∧
Monte-Carlo type simulations. The number of particles, which is restricted845

by
∧
computational resources, limits the statistical sampling and thus the accuracy of846

the reconstructed particle distribution function.847

The discretization error, generically known as particle noise
∧
, due to the random-like848

character of the method quantifies the difference between the distribution function849
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FIGURE 25. Contributions to the energy flux normalized by the energy dissipation rate
versus the wavenumber, which is normalized with the Iroshnikov–Kraichnan scale (from
Yoshimatsu et al. 2009b).

(a) (b)

FIGURE 26. Scale-dependent flatness of velocity (a) and magnetic field (b) versus the
wavenumber, which is normalized with the Iroshnikov–Kraichnan scale (from Yoshimatsu
et al. 2009b).

reconstructed from a simulation using Np particles, and the exact distribution function. 850

The weak scaling of the error with the number of particles,
∧
∝1/

√
Np, however, limits 851

the reduction of particle noise by increasing the number of computational particles in 852

practical applications. This has motivated the development of various noise reduction 853

techniques, see, e.g.
∧
Nguyen van yen et al. (2010), which is of importance in the 854

validation and verification of particle codes. 855

In Nguyen van yen et al. (2010) we proposed a wavelet-based method for 856

noise reduction in the reconstruction of particle distribution functions from particle 857

simulation data, called
∧
WBDE. The method was originally introduced in Donoho 858

et al. (1996) in the context of statistics to estimate probability densities given a 859

finite number of independent measurements. WBDE, as used in Nguyen van yen 860

et al. (2010), is based on a truncation of the wavelet representation of the Dirac 861

delta function associated with each particle. The method yields almost optimal results 862

for functions with unknown local smoothness without compromising computational 863

efficiency, assuming that the particles coordinates are statistically independent. It can 864

be viewed as a natural extension of the finite size particles (FSP) approach, with 865

the advantage of estimating more accurately distribution functions that have localized 866
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sharp features. The proposed method preserves the moments of the particle distribution867

function to a good level of accuracy, has no constraints on the dimensionality of the868

system, does not require an
∧
a priori selection of a global smoothing scale, and is able869

to adapt locally to the smoothness of the density based on the given discrete particle870

data. Indeed, the projection space is determined from the data itself, which allows871

for a refined representation around sharp features, and could make the method more872

precise than PIC for a given computational cost. Moreover, the computational cost of873

the denoising stage is of the same order as one time step of a FSP simulation.874

The underlying idea of WBDE is to expand the sampled particle distribution875

function, represented by a histogram, into an orthogonal wavelet basis using the876

∧
FWT. We define the empirical density associated to the particles positions xn for877

n= 1, . . . ,Np where Np is the number of particles,878

ρδ(x)= 1
Np

Np∑
n=1

δ(x− xn) (4.1)879

and where δ is the Dirac measure. We then project ρδ(x) onto an orthogonal wavelet880

basis retaining only scales j such that L 6 j 6 J where the scales L and J denote the881

largest and smallest retained scales, respectively (Donoho et al. 1996). The remaining882

wavelet coefficients are then thresholded retaining only those whose modulus is larger883

than the scale-dependent threshold K
√

j/Np, where K is a constant which depends884

on the regularity of the solution (Donoho et al. 1996). Finally the denoised particle885

density is obtained by applying an inverse
∧
FWT. In Nguyen van yen et al. (2010)886

Daubechies wavelets with
∧
six vanishing moments were used.887

In Nguyen van yen et al. (2010) we treated three cases in order to test how888

the efficiency of the denoising algorithm depends on the level of collisionality889

of the plasma.
∧
Strongly collisional, weakly collisional and collisionless regimes890

were considered. For the strongly collisional regime, we computed particle data of891

force-free collisional relaxation involving energy and pinch-angle scattering. The892

collisionless regime
∧
was studied using PIC-data corresponding to bump-on-tail893

and
∧
two stream instabilities in the Vlasov–Poisson system. The third case of a894

weakly collisional regime
∧
was illustrated here using

∧
guiding-centre particle data of895

a magnetically confined plasma in toroidal geometry. The data was generated with896

the code DELTA5D. Figure 27 shows contour plots of the histogram (a–c) and the897

reconstructed densities using WBDE for increasing number of particles. It can be seen898

that the WBDE results in efficiently denoised densities and that the error has been899

reduced by a factor two with respect to the raw histograms as shown in figure 28.900

4.2.
∧
The PIW

∧
scheme901

In Nguyen van yen et al. (2011) we proposed a new numerical scheme, called
∧
PIW,902

for the Vlasov–Poisson equations describing the evolution of the particle distribution903

function f in collisionless plasma, and assessed its efficiency in the simplest case of904

one spatial dimension. In non-dimensional form, the equations read905

∂tf + v∂xf + ∂xφ∂vf = 0 (4.2)906

∂xxφ + 1− 2π

∫
R

f (x, v, t) dv = 0, (4.3)907

where φ is electric potential. The particle distribution function f is discretized using908

tracer particles, and the charge distribution is reconstructed using
∧
WBDE, discussed909
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(a) (b) (c)

(d) (e) ( f )

FIGURE 27. Contour plots of estimates of δf for the collisional guiding centre transport
particle data: histogram method (a–c) and WBDE method (d–f ). The (a–f ) correspond to
Np = 32 × 103 (a,d), Np = 128 × 103 (b,e) and Np = 1024 × 103 (c,f ), respectively. The
plots show 17 isolines equally spaced within the interval [0.5, 0.5] (from Nguyen van yen
et al. 2010).

FIGURE 28. R.m.s. error estimate for collisional guiding-centre transport particle data
according to the histogram, the POD, and the wavelet methods. The reference density is
computed with Np = 1024× 103 (from Nguyen van yen et al. 2010).

in the previous section. The latter consists in projecting the Delta distributions 910

corresponding to the particles onto a finite dimensional linear space spanned by a 911

family of wavelets, which
∧
are chosen adaptively. A wavelet-Galerkin Poisson solver 912

is used to compute the electric potential once the wavelet coefficients of the electron 913

density ρ(x, t) = ∫R f (x, v, t) dv have been obtained by WBDE. The properties of 914
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(a) (b)

FIGURE 29. Comparisons between PIW and PIC for the two stream instability test case.
Relative L2 error of the electric field at t= 30, as a function of the number of particles (a)
and the corresponding computing time (b). Note that L-PIW is a variant of PIW where
only linear filtering has been applied (from Nguyen van yen et al. 2011).

wavelets are exploited for diagonal preconditioning of the linear system in wavelet915

space, which is solved by an iterative method, here conjugated gradients. Similar916

to classical PIC codes, the interpolation method is compatible with the charge917

assignment scheme. Once the electric field E(x, t)=−∂xφ(x, t) has been interpolated918

at the particle positions, the characteristic trajectories, defined by x′(t) = v(t) and919

v′(t)=−E(x(t), v(t), t) can be advanced in time using the Verlet integrator. Q9920

To demonstrate the validity of the PIW scheme, numerical computations of Landau921

damping and of the
∧
two stream instability have been performed in Nguyen van yen922

et al. (2011). The stability and accuracy have been assessed with respect to reference923

computations obtained with a precise semi-Lagrangian scheme (Sonnendrücker et al.924

1999). We showed that the precision is improved roughly by a factor three compared925

to a classical PIC scheme, for a given number of particles (Nguyen van yen et al.926

2011), as illustrated in figure 29 for the
∧
two stream instability. We observe that PIW927

remains
∧
consistently more precise for any number of particles thanks to its adaptive928

properties (figure 29a). The total CPU time measured in seconds scaled for the PIW929

code inversely proportional to the number of particles, while for PIC and L-PIW the930

scaling changes when the number of particles is too low for a given spatial resolution.931

However, note that the actual CPU time may depend on the implementation, since the932

PIC code is written in Fortran
∧
while the PIW code is written in C++, although the933

same computer was used for both codes.934

4.3. Coherent
∧
vorticity and

∧
CVCS

∧
935

∧
DNS of turbulent flow has a large computational cost due to the huge number of936

degrees of freedom to be taken into account. The required spatial resolution thus937

becomes prohibitive, e.g. scaling as Re9/4 for hydrodynamics using Kolmogorov like938

arguments (Pope 2000). The CVS method, introduced in Farge et al. (1999) and Farge939

& Schneider (2001), proposes to reduce the computational cost by taking only into940

account the degrees of freedom that are nonlinearly active. To this end, the coherent941

structure extraction method (presented in § 3) is combined with a deterministic942

integration of the Navier–Stokes equations. At each time step the CVE is applied to943

retain only the coherent degrees of freedom, typically a few percent of the coefficients.944
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FIGURE 30. Illustration of the safety zone in wavelet coefficient space used in CVS. The
degrees of freedom retained by CVE are drawn in red, the adjacent coefficients of the
safety zone are drawn in green, while the coefficients in blue correspond to the inactive
degrees of freedom which are not computed. The interface η, defined in space and scale,
separates the region dominated by nonlinear interaction (red) from the region dominated
by linear dissipation (blue). The horizontal green line corresponds to the Kolmogorov
dissipation scale 〈η〉 is defined by the statistical mean (either ensemble or space average).

Then, a set of
∧
neighbour coefficients in space and scale, called ‘safety zone’, is added 945

to account for the advection of coherent vortices and the generation of small scales 946

due to their interaction. Afterwards, the Navier–Stokes equations are advanced in time 947

using this reduced set of a degrees of freedom. Subsequently, the CVE is applied 948

to reduce the number of degrees of freedom and the procedure is repeated for the 949

next time step. A graphical illustration, in wavelet coefficient space
∧
of the degrees of 950

freedom retained at a given time step
∧
is given in figure 30. This procedure allows us 951

to track the flow evolution in space and scale selecting a reduced number of degrees 952

of freedom in a dynamically adaptive way. With respect to simulations on a regular 953

grid, much less grid points are used in CVS. 954

In Yoshimatsu et al. (2013) we extended CVS to compute
∧
three-dimensional 955

incompressible MHD turbulent flow and developed a simulation method called 956

coherent vorticity and current sheet simulation (CVCS). The idea is to track the 957

time evolution of both coherent vorticity and coherent current density, i.e. current 958

sheets. Both the vorticity and current density fields are, respectively, decomposed 959

at each time step into two orthogonal components, corresponding to the coherent 960

and incoherent contribution, using an orthogonal wavelet representation. Each of 961

the coherent fields is reconstructed from the wavelet coefficients whose modulus is 962

larger than a threshold, while their incoherent counterparts are obtained from the 963

remaining coefficients. The two threshold values depend on the instantaneous kinetic 964

and magnetic enstrophies. The induced coherent velocity and magnetic fields are 965

computed from the coherent vorticity and current density, respectively, using the 966

Biot–Savart kernel. In order to compute the flow evolution, one should retain not 967

only the coherent wavelet coefficients but also their
∧
neighbours in wavelet space, the 968

safety zone. A flowchart summarizing the principle of CVCS is shown in figure 31 969

and the adaption strategy in orthogonal wavelet coefficient space in figure 32. 970

In Yoshimatsu et al. (2013) CVCS was performed for
∧
three-dimensional forced 971

incompressible homogeneous MHD turbulence without a mean magnetic field, for 972
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FIGURE 31. Flowchart describing the principle of CVCS. The superscripts n and n + 1
denote time steps. FWT and FWT−1 denote the fast wavelet transform and its inverse.
Operators performed in wavelet coefficient space are framed by the dashed rectangle (from
Yoshimatsu et al. 2013).

(a)

(b)

(c)

FIGURE 32. Adaption strategy in wavelet coefficient space used in CVCS: (a) retained
wavelet coefficients (blue), (b) added wavelet coefficients to ensure a graded tree (red) and
(c) added wavelet coefficients corresponding to the safety zone (green).

a magnetic Prandtl number equal to unity. The Navier–Stokes equations coupled973

with the induction equation were solved with a pseudospectral method using 2563
974

grid points and integrated in time with a Runge–Kutta scheme. Different adaption975

strategies to select the optimal saftey zone for CVCS have been studied. We tested the976

influence of the safety zone and of the threshold, as defined in § 3.1.3, by considering977

three cases:978
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FIGURE 33. Evolution of the percentage C of retained wavelet coefficients for CVCS with
three different adaption strategies in comparison with Fourier filtering (FT0) with a fixed
cutoff wavenumber (from Yoshimatsu et al. 2013).

(i) CVCS0 with safety zone but without iterating the threshold ε0; 979

(ii) CVCS1 with safety zone but with iterating the threshold once ε1; 980

(iii) CVCS2 without safety zone but without iterating the threshold ε0; 981

details can be found in Yoshimatsu et al. (2013). The quality of CVCS was then 982

assessed by comparing the results with a
∧
DNS. It is found that CVCS with the safety 983

zone well preserves the statistical predictability of the turbulent flow with a reduced 984

number of degrees of freedom. CVCS was also compared with a Fourier truncated 985

simulation using a spectral cutoff filter, where the number of retained Fourier modes is 986

similar to the number of the wavelet coefficients retained by CVCS0. Figure 33 shows 987

the percentage of retained wavelet coefficients for CVCS (with three different adaption 988

strategies) in comparison to Fourier filtering (FT0) with a fixed
∧
cutoff wavenumber. 989

The percentage of retained kinetic energy, magnetic energy, kinetic enstrophy and 990

magnetic enstrophy for the three different CVCS strategies in comparison with Fourier 991

filtering (FT0) is plotted in figure 34. 992

Probability density functions of vorticity and current density, normalized by the 993

corresponding standard deviation, in figure 35 show that CVCS0 and CVCS1 capture 994

well the
∧
high-order statistics of the flow, while in FT0 and in CVCS2 the tails of the 995

PDFs are reduced with respect to the DNS results. The energy spectra of kinetic and 996

magnetic energy in figure 36 confirm that CVCS0 and CVCS1 reproduce perfectly the 997

DNS results in the inertial range, where all nonlinear acticity takes place, and only 998

differs in the dissipative range. 999

The results thus show that the wavelet representation is more suitable than the 1000

Fourier representation, especially concerning the probability density functions of 1001

vorticity and current density and that only about 13 % of the degrees of freedom 1002

(CVCS0) compared to DNS are sufficient to represent the nonlinear dynamics of the 1003

flow. A visualization comparing both the vorticity and current density field for DNS 1004

and CVCS0 is presented in figure 37. 1005

5.
∧
Conclusions 1006

This paper reviewed different wavelet techniques and showed several of their 1007

applications to MHD and plasma turbulence. Continuous and orthogonal wavelet 1008
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(a) (b)

(c) (d)

FIGURE 34. Percentage of retained kinetic energy (a), magnetic energy (b), kinetic
enstrophy (c) and magnetic enstrophy (d) for the three different CVCS strategies in
comparison with Fourier filtering (FT0) (from Yoshimatsu et al. 2013).

(a) (b)

FIGURE 35. PDFs of the `th component of vorticity (a) and current density (b)
normalized by the corresponding standard deviation (from Yoshimatsu et al. 2013).

transforms were presented and some wavelet-based statistical tools described, after1009

selecting those most appropriate to study turbulence, such as scale-dependent
∧
second-1010

and higher-order moments, intermittency measure, together with scale-dependent1011

directional statistical measures. Examples of applications to three-dimensional1012

incompressible MHD turbulence, computed by DNS, illustrated how the flow1013

intermittency can be quantified and how its anisotropy and helicity might vary1014

with scale. The wavelet-based coherent structure extraction algorithm was detailed1015
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(a) (b)

FIGURE 36. Kinetic (a) and magnetic energy spectra (b). The wavenumber is normalized
with the Iroshnikov–Kraichnan scale (from Yoshimatsu et al. 2013).

(a) (b)

(c) (d)

FIGURE 37. Visualization of isosurfaces of modulus of vorticity (a,b) and modulus of
current density (c,d) for DNS (a,c) and CVCS0 (b,d) (from Yoshimatsu et al. 2013).

and validated for a test signal. Different applications to experimental and numerical 1016

turbulent plasma data, in one, two and three dimensions, were shown. The underlying 1017

methodology of a wavelet-based tomographic reconstruction algorithm for denoising 1018
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images and movies obtained with fast cameras in tokamaks were explained and1019

results were presented. Applications to an academic example and to fast camera data1020

from Tore Supra proved the efficiency of the algorithm to extract blobs and fronts1021

while denoising the data. Wavelet-based simulation schemes developed in the context1022

of kinetic plasma equations were also described. Results computed with them showed1023

how wavelet denoising accelerates the convergence of classical PIC schemes and how1024

a
∧
PIW scheme solves the Vlasov–Poisson equation directly and efficiently in wavelet1025

space. Concerning the fluid equations, in particular the resistive non-ideal MHD1026

equations, the coherent vorticity and
∧
CVCS methods were explained and examples1027

illustrated the properties and insights the wavelet-based approach offers in the context1028

of MHD and plasma turbulence.1029
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