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Denoising by nonlinear wavelet thresholding (I)

Discrete signal f = {f [k]}k∈[0,...,N−1],N = 2J with vanishing mean

Gaussian white noise W = {W [k]}k∈[0,...,N−1],mean zero, variance σ2
W

Noisy signal X[k] = f [k] +W [k], 0 ≤ k ≤ N .

Orthogonal wavelet decomposition: X =
∑

λ∈ΛJ X̃λψλ

Index set ΛJ =
{

λ = (j, i), j = 0...J − 1, i = 0...2j − 1
}

Define nonlinear operator FT : X 7→ FT (X) =
∑

λ ρT (X̃λ)ψλ

with the thresholding function

ρT (a) =

{

a for |a| > T,
0 for |a| ≤ T

(1)

where T denotes the threshold.



Denoising by nonlinear wavelet thresholding (II)

Index subset ΛT =
{

λ ∈ ΛJ , |X̃λ| > T
}

⊂ ΛJ

Relative quadratic error:

E(T ) =
‖f − FT (X)‖2

‖f‖2
(2)

Donoho and Johnstone (’94):

E(TD) with TD = σW (2 lnN)1/2 is close to the minimum of E(T ).

TD depends on the variance of the noise which is unknown in many

applications −→ estimation.



Denoising by nonlinear wavelet thresholding (III)

Dual point of view :

F cT (X) = (Id− FT )(X) = X − FT (X) =
∑

λ∈ΛJ

ρcT (X̃λ)ψλ =
∑

λ∈ΛcT

X̃λψλ

(3)

where Id denotes the identity

and with the complementary thresholding function ρcT = Id− ρT
and the complementary index set ΛcT = ΛJ\ΛT .

Residual F cTD
(X) a quasi optimal estimator of W , whose relative error

is

E ′(T ) =
‖X − FT (X)−W‖2

‖W‖2
=
‖f +W − FT (X)−W‖2

‖W‖2
=

‖f‖2

‖W‖2
E(T )

(4)



Recursive algorithm (I)

Initialization

• given X = {X[k]}k∈[0,...,N−1], set n=0 and compute the Fast

Wavelet Transform of X to obtain X̃λ,

• compute the variance σ2
0 of X as rough estimate of the variance of

W and compute the corresponding threshold σ2
0 = 1

N

∑

λ∈ΛJ |X̃λ|
2,

T2
0 = 2 ln(N)σ2

0

• set the number of coefficients considered as noise Nw = Card(ΛJ) =

N



Recursive algorithm (II)

Main loop

Do

• setN ′
w = Nw and count the wavelet coefficients smaller than Tn:

Nw = Card(ΛcTn)

• compute the new variance σ2
n+1 = 1

N

∑

λ∈ΛJ |ρ
c
Tn

(X̃λ)|
2, and the

new threshold Tn+1 = (2 ln(N)σ2
n)

1/2

• Set n=n+1

until (N ′
w==Nw)



Recursive algorithm (III)

Final step

• compute FTn(X) from the wavelet coefficients {X̃λ}λ∈ΛTn
using in-

verse Fast Wavelet Transform and compute F cTn(X) = X−FTn(X)

Remark: Sequence of estimated thresholds (Tn)n∈IN and variances

(σn)n∈IN .

Iteration function IX,N : IR+ 7→ IR+ such that Tn+1 = IX,N(Tn),

defined as:

IX,N(T ) =







2 ln(N)

N

∑

λ∈ΛJ

|ρcT (X̃λ)|
2







1/2

=







2 ln(N)

N

∑

λ∈ΛcT

|X̃λ|
2







1/2

(5)



Properties of the iteration function

Rewrite the sum as a continuous integral using delta functions:

(IX,N(T ))2 = 2 ln(N)
1

N

∫ T

x=0
x2

∑

λ∈ΛJ

δ(|X̃λ| − x)dx (6)

Properties:

• (IX,N(T )) is piece-wise constant with a number of discontinuities

being bounded from above by N ,

• it is monotonously increasing, i.e.

IX,N(T ) ≤ IX,N(T + ∆T ) ∀ T,∆T ∈ IR+



Convergence of the algorithm

Theorem 1 We consider the interval [Ta, Tb] ⊂ IR+ such that IX,N(Ta) ≥

Ta and IX,N(Tb) ≤ Tb. If there exists a step n0 such that Tn0 ∈ [Ta, Tb],

then Tn = IX,N(Tn−1) converges to a limit T` within [Ta, Tb], such that

T` = IX,N(T`). The number of iterations n` is smaller than N .

Corollary 1 One has supT∈IR+ IX,N(T ) = T0 = (2 ln(N))1/2 σ0 and

IX,N(0) = 0. Therefore theorem 1 implies that the sequence {Tn}n∈IN
converges to a limit T` ∈ [0, T0].

Corollary 2 Let A : X 7→ FT`(X) be the operator corresponding to

the recursive algorithm described above, then A(A(X)) = A(X) ∀ X ∈

H. This means that A is a non linear projector.



Application to Gaussian white noise W

Orthonormality of {ψλ}λ∈ΛJ implies that {W̃λ}λ∈ΛJ is also a Gaussian

white noise.

Analytic expression of the PDF of its wavelet coefficients is known.

Berman (1989): probability that the maximum of the modulus of N

values of a Gaussian white noise W̃ is inside the interval

[

TD −
σW ln(lnN)

lnN , TD

]

,

i.e.

P (N) = p

(

max
λ

(|W̃λ|) ∈

[

TD −
σW ln(lnN)

lnN
,TD

])

(7)

tends to 1 for large N .

Hence for N large enough, TD is a good estimator of the expected

maximum modulus of the noise.



First iteration of the algorithm, we have TD = (2 lnN)1/2 σW =

(2 lnN)1/2 σ0 = T0, which yields

IW,N(T0) = IW,N(TD) =







2 lnN

N

∑

λ∈ΛJ

|ρTD(W̃λ)|
2







1/2

'







2 lnN

N

∑

λ∈ΛJ

|W̃λ|
2







1/2

= T0 = TD

(8)

Threshold T0 (first iteration of the algorithm) is almost a fixed point

of the iteration function IW,N .

Using the analytical expression of the Gaussian PDF of the noise, one

can show that the derivative of the iteration function is almost zero

around TD. This forces the threshold T` to be close to TD and the

algorithm to converge in one iteration.



Numerical application
f W
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Iteration functions IW,N ,If,N ,IX,N for W , f and X, respectively. The

points A and B correspond to the intersections between the graphs

of IW,N and IX,N with the line y = x, respectively. The point C

corresponds to the first iteration of the algorithm applied to the

noisy signal X and its abscissa is T0.



0.001

0.01

0.1

1

10

−25 −20 −15 −10 −5 0 5 10 15 20 25

Wavelet coefficients of X
Wavelet coefficients of f
Wavelet coefficients of W

Histograms of the wavelet coefficients X̃λ, f̃λ, and W̃λ

for the 1D signal.



Signal n` T` Tm TD E(T`) E(Tm) E(TD)

X 4 4.34 4.19 4.25 7.2810−3 7.0610−3 7.3210−3

f 21 1.710−6 9.910−7 0 4.710−14 8.910−16 0

W 1 4.24 4.19 4.24 +∞ +∞ +∞

Thresholds T`, Tm and TD and the corresponding mean square esti-

mation errors.



Conclusions and perspectives

• Recursive algorithm for nonlinear wavelet thresholding

• Mathematical convergence of the algorithm

• Numerical application

• Extension to correlated noise and non Gaussian distributions

http://wavelets.ens.fr
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