

Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold

Kai Schneider

L3M-CNRS & CMI, Université de Provence, Marseille, France

Joint work with :

Alexandre Azzalini, LMD-CNRS, Ecole Normale Supérieure, Paris

Marie Farge, LMD-CNRS, Ecole Normale Supérieure, Paris

Outline

- Motivation
- Denoising by nonlinear wavelet thresholding
- Recursive algorithm
 - Properties of the iteration function
 - Convergence of the algorithm
 - Application to Gaussian white noise
- Numerical application
- Conclusions and perspectives

Denoising by nonlinear wavelet thresholding (I)

Discrete signal $\underline{f} = \{f[k]\}_{k \in [0,...,N-1]}, N = 2^J$ with vanishing mean

Gaussian white noise $\underline{W} = \{W[k]\}_{k \in [0,...,N-1]}$, mean zero, variance σ_W^2

Noisy signal $X[k] = f[k] + W[k], 0 \le k \le N$.

Orthogonal wavelet decomposition: $\underline{X} = \sum_{\lambda \in \Lambda^J} \tilde{X}_{\lambda} \underline{\psi}_{\lambda}$

Index set
$$\Lambda^{J} = \left\{ \lambda = (j, i), j = 0...J - 1, i = 0...2^{j} - 1 \right\}$$

Define nonlinear operator $F_T : \underline{X} \mapsto F_T(\underline{X}) = \sum_{\lambda} \rho_T(\tilde{X}_{\lambda}) \underline{\psi}_{\lambda}$

with the thresholding function

$$\rho_T(a) = \begin{cases} a & \text{for} & |a| > T, \\ 0 & \text{for} & |a| \le T \end{cases}$$
(1)

where T denotes the threshold.

Denoising by nonlinear wavelet thresholding (II)

Index subset
$$\Lambda_T = \left\{ \lambda \in \Lambda^J, |\tilde{X}_{\lambda}| > T \right\} \subset \Lambda^J$$

Relative quadratic error:

$$\mathcal{E}(T) = \frac{\|\underline{f} - F_T(\underline{X})\|^2}{\|\underline{f}\|^2}$$
(2)

Donoho and Johnstone ('94):

 $\mathcal{E}(T_D)$ with $T_D = \sigma_W (2 \ln N)^{1/2}$ is close to the minimum of $\mathcal{E}(T)$.

 T_D depends on the variance of the noise which is unknown in many applications \longrightarrow estimation.

Denoising by nonlinear wavelet thresholding (III)

Dual point of view :

$$F_T^c(\underline{X}) = (Id - F_T)(\underline{X}) = \underline{X} - F_T(\underline{X}) = \sum_{\lambda \in \Lambda^J} \rho_T^c(\tilde{X}_\lambda) \underline{\psi}_\lambda = \sum_{\lambda \in \Lambda^c_T} \tilde{X}_\lambda \underline{\psi}_\lambda$$
(3)

where Id denotes the identity

and with the complementary thresholding function $\rho_T^c = Id - \rho_T$ and the complementary index set $\Lambda_T^c = \Lambda^J \setminus \Lambda_T$.

Residual $F_{T_D}^c(\underline{X})$ a quasi optimal estimator of \underline{W} , whose relative error is

$$\mathcal{E}'(T) = \frac{\|\underline{X} - F_T(\underline{X}) - \underline{W}\|^2}{\|\underline{W}\|^2} = \frac{\|\underline{f} + \underline{W} - F_T(\underline{X}) - \underline{W}\|^2}{\|\underline{W}\|^2} = \frac{\|\underline{f}\|^2}{\|\underline{W}\|^2} \mathcal{E}(T)$$
(4)

Recursive algorithm (I)

Initialization

- given $\underline{X} = \{X[k]\}_{k \in [0,...,N-1]}$, set n=0 and compute the Fast Wavelet Transform of \underline{X} to obtain \tilde{X}_{λ} ,
- compute the variance σ_0^2 of \underline{X} as rough estimate of the variance of \underline{W} and compute the corresponding threshold $\sigma_0^2 = \frac{1}{N} \sum_{\lambda \in \Lambda^J} |\tilde{X}_{\lambda}|^2$, $T_0^2 = 2 \ln(N) \sigma_0^2$
- set the number of coefficients considered as noise $N_w = Card(\Lambda^J) = N$

Recursive algorithm (II)

Main loop

Do

- set $N'_w = N_w$ and count the wavelet coefficients smaller than T_n : $N_w = Card(\Lambda^c_{T_n})$
- compute the new variance $\sigma_{n+1}^2 = \frac{1}{N} \sum_{\lambda \in \Lambda^J} |\rho_{T_n}^c(\tilde{X}_{\lambda})|^2$, and the new threshold $T_{n+1} = (2 \ln(N) \sigma_n^2)^{1/2}$

• Set n=n+1

until $(N'_w = = N_w)$

Recursive algorithm (III)

Final step

• compute $F_{T_n}(\underline{X})$ from the wavelet coefficients $\{\tilde{X}_{\lambda}\}_{\lambda \in \Lambda_{T_n}}$ using inverse Fast Wavelet Transform and compute $F_{T_n}^c(\underline{X}) = \underline{X} - F_{T_n}(\underline{X})$

Remark: Sequence of estimated thresholds $(T_n)_{n \in \mathbb{N}}$ and variances $(\sigma_n)_{n \in \mathbb{N}}$.

Iteration function $I_{\underline{X},N}$: $\mathbb{R}^+ \mapsto \mathbb{R}^+$ such that $T_{n+1} = I_{\underline{X},N}(T_n)$, defined as:

$$I_{\underline{X},N}(T) = \left(\frac{2\ln(N)}{N}\sum_{\lambda\in\Lambda^J}|\rho_T^c(\tilde{X}_\lambda)|^2\right)^{1/2} = \left(\frac{2\ln(N)}{N}\sum_{\lambda\in\Lambda_T^c}|\tilde{X}_\lambda|^2\right)^{1/2}$$
(5)

Properties of the iteration function

Rewrite the sum as a continuous integral using delta functions:

$$(I_{\underline{X},N}(T))^2 = 2\ln(N)\frac{1}{N}\int_{x=0}^T x^2 \sum_{\lambda \in \Lambda^J} \delta(|\tilde{X}_{\lambda}| - x)dx$$
(6)

Properties:

- $(I_{\underline{X},N}(T))$ is piece-wise constant with a number of discontinuities being bounded from above by N,
- it is monotonously increasing, i.e.

 $I_{\underline{X},N}(T) \leq I_{\underline{X},N}(T + \Delta T) \quad \forall T, \Delta T \in \mathbb{R}^+$

Convergence of the algorithm

Theorem 1 We consider the interval $[T_a, T_b] \subset \mathbb{R}^+$ such that $I_{\underline{X},N}(T_a) \geq T_a$ and $I_{\underline{X},N}(T_b) \leq T_b$. If there exists a step n_0 such that $T_{n_0} \in [T_a, T_b]$, then $T_n = I_{\underline{X},N}(T_{n-1})$ converges to a limit T_ℓ within $[T_a, T_b]$, such that $T_\ell = I_{X,N}(T_\ell)$. The number of iterations n_ℓ is smaller than N.

Corollary 1 One has $\sup_{T \in \mathbb{R}^+} I_{\underline{X},N}(T) = T_0 = (2\ln(N))^{1/2} \sigma_0$ and $I_{\underline{X},N}(0) = 0$. Therefore theorem 1 implies that the sequence $\{T_n\}_{n \in \mathbb{N}}$ converges to a limit $T_{\ell} \in [0, T_0]$.

Corollary 2 Let $\mathcal{A} : \underline{X} \mapsto F_{T_{\ell}}(\underline{X})$ be the operator corresponding to the recursive algorithm described above, then $\mathcal{A}(\mathcal{A}(\underline{X})) = \mathcal{A}(\underline{X}) \quad \forall \quad \underline{X} \in \mathcal{H}$. This means that \mathcal{A} is a non linear projector.

Application to Gaussian white noise W

Orthonormality of $\{\psi_{\lambda}\}_{\lambda \in \Lambda^{J}}$ implies that $\{\tilde{W}_{\lambda}\}_{\lambda \in \Lambda^{J}}$ is also a Gaussian white noise.

Analytic expression of the PDF of its wavelet coefficients is known.

Berman (1989): probability that the maximum of the modulus of N values of a Gaussian white noise \tilde{W} is inside the interval $\left[T_D - \frac{\sigma_W \ln(\ln N)}{\ln N}, T_D\right]$, i.e.

$$P(N) = p\left(\max_{\lambda}(|\tilde{W}_{\lambda}|) \in \left[T_D - \frac{\sigma_W \ln(\ln N)}{\ln N}, T_D\right]\right)$$
(7)

tends to 1 for large N.

Hence for N large enough, T_D is a good estimator of the expected maximum modulus of the noise.

First iteration of the algorithm, we have $T_D = (2 \ln N)^{1/2} \sigma_W = (2 \ln N)^{1/2} \sigma_0 = T_0$, which yields

$$I_{\underline{W},N}(T_0) = I_{\underline{W},N}(T_D) = \left(\frac{2\ln N}{N} \sum_{\lambda \in \Lambda^J} |\rho_{T_D}(\tilde{W}_{\lambda})|^2\right)^{1/2}$$
(8)
$$\simeq \left(\frac{2\ln N}{N} \sum_{\lambda \in \Lambda^J} |\tilde{W}_{\lambda}|^2\right)^{1/2} = T_0 = T_D$$

Threshold T_0 (first iteration of the algorithm) is almost a fixed point of the iteration function $I_{W,N}$.

Using the analytical expression of the Gaussian PDF of the noise, one can show that the derivative of the iteration function is almost zero around T_D . This forces the threshold T_ℓ to be close to T_D and the algorithm to converge in one iteration.

Iteration functions $I_{\underline{W},N}, I_{\underline{f},N}, I_{\underline{X},N}$ for $\underline{W}, \underline{f}$ and \underline{X} , respectively. The points **A** and **B** correspond to the intersections between the graphs of $I_{\underline{W},N}$ and $I_{\underline{X},N}$ with the line y = x, respectively. The point **C** corresponds to the first iteration of the algorithm applied to the noisy signal \underline{X} and its abscissa is T_0 .

Histograms of the wavelet coefficients \tilde{X}_{λ} , \tilde{f}_{λ} , and \tilde{W}_{λ} for the 1D signal.

Signal	n_ℓ	T_{ℓ}	T_m	T_D	$\mathcal{E}(T_{\ell})$	$\mathcal{E}(T_m)$	$\mathcal{E}(T_D)$
X	4	4.34	4.19	4.25	7.2810^{-3}	7.0610^{-3}	7.3210^{-3}
f	21	1.710^{-6}	9.910^{-7}	0	4.710^{-14}	8.910^{-16}	0
W	1	4.24	4.19	4.24	$+\infty$	$+\infty$	$+\infty$

Thresholds T_{ℓ} , T_m and T_D and the corresponding mean square estimation errors.

Conclusions and perspectives

- Recursive algorithm for nonlinear wavelet thresholding
- Mathematical convergence of the algorithm
- Numerical application
- Extension to correlated noise and non Gaussian distributions

http://wavelets.ens.fr

References

- D. Donoho and I. Johnstone.
 Ideal spatial adaptation via wavelet shrinkage.
 Biometrika, 81, 425-455, 1994.
- A. Azzalini, M. Farge and K. Schneider.

A recursive algorithm for nonlinear wavelet thresholding : Applications to signal and image processing. Preprint LMD, August 2003

- A. Azzalini, M. Farge and K. Schneider. Nonlinear wavelet thresholding : A recursive method to determine the optimal denoising threshold. *Appl. Comput. Harm. Anal.* submitted, August 2003
- S. M. Berman. *Sojournes and Extremes of Stochastic Processes.* Wadsworth, Reading, MA, 1989.

R. von Sachs and J. Neumann. Wavelet Thresholding: Beyond the Gaussian I.I.D. Situation. In: A. Antoniadis, G. Oppenheim (eds.) "Wavelets and Statistics", Springer Lecture Notes in Statistics 103, 301-329, 1995

 R. von Sachs and K. Schneider. Wavelet smoothing of evolutionary spectra by non-linear thresholding. *Appl. Comput. Harm. Anal.*, 3, 268–282, 1996.