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Denoising by nonlinear wavelet thresholding (I)

Discrete signal f = {f[k]}re[o... n_1].N = 27 with vanishing mean
Gaussian white noise W = {W k] },¢c[o.... n—1],mean zero, variance o3
Noisy signal X[k] = f[k] + W[k], 0 <k < N.

Orthogonal wavelet decomposition: X = ZAE/\J XAQA

Index set A = {A = (4,4),j=0..J —1,5=0..27 — 1}

Define nonlinear operator Fr: X — Fp(X) =, pT(X',\)QA

with the thresholding function

] oa for la| > T,
pria) = { 0 for la] < T (1)

where T denotes the threshold.



Denoising by nonlinear wavelet thresholding (II)

Index subset Ap = {A e N1 X, > T} c N/

Relative quadratic error:

If = Fr(X)|?
HE (2)

£(T) =

Donoho and Johnstone ('94):
E(Tp) with Tp = oy (2In N)1/2 is close to the minimum of £(T).

Tp depends on the variance of the noise which is unknown in many
applications — estimation.



Denoising by nonlinear wavelet thresholding (III)

Dual point of view :

PHX)=Ud-FPr)(X)=X-Fr(X) = > p5(X)vx= Y X\,
AEN] AENT,

(3)
where Id denotes the identity

and with the complementary thresholding function p% = Id — pr
and the complementary index set A% = A/\Ar.

Residual F%D(X) a quasi optimal estimator of W, whose relative error
IS

ey = |1X = FrQ0) — W2 _ If+W — Fr(X) - W7 _ If]1°
Al w2 uals

£(T)
(4)



Recursive algorithm (I)

e given X = {X[kl}recpo,. n—1] Set n=0 and compute the Fast
Wavelet Transform of X to obtain X,,

e compute the variance 08 of X as rough estimate of the variance of
W and compute the corresponding threshold of = %ZAE/\J |X>\|2,
Té = 2In(N)o3

e set the number of coefficients considered as noise Ny = Card(/\J) —
N



Recursive algorithm (II)

Do

e setN/, = Ny, and count the wavelet coefficients smaller than Tj:
Ny = C’afrd(/\%n)

e compute the new variance o2, = 3,7 105, (X))]% and the
new threshold T}, 11 = (2In(N)o2)1/?

e Set n=n+1

until (N,,==Ny)



Recursive algorithm (III)

e compute Fp (X) from the wavelet coefficients {XA}AE/\Tn using in-
verse Fast Wavelet Transform and compute an(i) = X-Fr, (X)

Remark: Sequence of estimated thresholds (7Ty),cn and variances

(O'n)neﬁ\[-

Iteration function Iin ) R—I_ —> R—I_ such that Tn—|—1 = IX,N(Tn)v
defined as:

1/2 1/2

2In(N) - 2In(N)
3 (P > K
AENT AENS,

Ix N(T) =

(5)



Properties of the iteration function

Rewrite the sum as a continuous integral using delta functions:

(IxnTP =20 [ 0?3 5% -nde (6)
AEN

Properties:

o (Ix n(T)) is piece-wise constant with a number of discontinuities
being bounded from above by N,

e it is monotonously increasing, i.e.

IxN(T) < Ix N(T+ AT) VT,ATc RY



Convergence of the algorithm

Theorem 1 We consider the interval [T,,T;] C IRT such that Ix N(Tw) >
Te and Ix n(Ty) < Ty. If there exists a step ng such that Ty, € [Ta, Tp],
then Ty, = Ix n(Ty,—1) converges to a limit T, within [T,,Ty], such that
Ty = Ix n(Ty). The number of iterations n, is smaller than N.

Corollary 1 One has suppcp+ Ix N(T) = Tp = (2In(N))1/2 oo and
Ix ny(0) = 0. Therefore theorem 1 implies that the sequence {In}ncv
converges to a limit T, € [0, Tp].

Corollary 2 Let A: X — FTE(X) be the operator corresponding to
the recursive algorithm described above, then A(A(X)) = A(X) V X¢€
H. This means that A is a non linear projector.



Application to Gaussian white noise W

Orthonormality of {¢x},.as implies that {Wy}, . is also a Gaussian
white noise.

Analytic expression of the PDF of its wavelet coefficients is known.

Berman (1989): probability that the maximum of the modulus of N
ow In(In N)

values of a Gaussian white noise W is inside the interval [TD — W, Th],
i.e.
~ ow In(In N)
P(N)=p (mfxﬂwxl) € |1p — N , Ip (7)

tends to 1 for large N.

Hence for N large enough, T'p is a good estimator of the expected
maximum modulus of the noise.



First iteration of the algorithm, we have Tp = (2InN)/ 24y,

(21n N)1/2 65 = Ty, which yields

1/2
2In N -
Iy N(To) = Iy N(Tp) = ~ N o, (W2
AEN
1/2
2In N ~ 9
ol By > (WA =To=Tp
AENS

(8)

Threshold Ty (first iteration of the algorithm) is almost a fixed point

of the iteration function Iy n.

Using the analytical expression of the Gaussian PDF of the noise, one
can show that the derivative of the iteration function is almost zero
around T'p. This forces the threshold 7, to be close to T'p and the

algorithm to converge in one iteration.



Numerical application
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Iteration functions Iy n,If n,Ix n TOr W, f and X, respectively. The
points A and B correspond to the intersections between the graphs
of Im,N and ILN with the line y = z, respectively. The point C
corresponds to the first iteration of the algorithm applied to the
noisy signal X and its abscissa is 1.
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Histograms of the wavelet coefficients X, f\, and W,
for the 1D signal.



Signal Ty Tg Tm T g(Tg) g(Tm) E(TD)
X 4 4.34 419 |4.25|7.281073|7.0610°3|7.32103
f 21[1.710°[9910 7| 0 |4.710 14891016 0
W 1 4.24 4.19 4.24 —+ o0 ~+ o0 ~+ o0

Thresholds Ty, Ty, and Tp and the corresponding mean square esti-

mation errors.




Conclusions and perspectives

Recursive algorithm for nonlinear wavelet thresholding

Mathematical convergence of the algorithm

Numerical application

Extension to correlated noise and non Gaussian distributions

http://wavelets.ens.fr
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