Properties of Wavelets

Norm equivalences: \[\|f\|_X = \|2^{j\alpha} \langle f, \psi_{j,k} \rangle \|_X \]
for Hölder, Lebesgue, Sobolev and Besov spaces.

Nonlinear approximation:
\[\|f - f_N\| \leq CN^{-s} \]
where \(f_N \) is the best \(N \)-term approximation, i.e. one retains \(N \) coefficients such that
\[|\langle f, \psi_{j,k} \rangle| > \epsilon. \]

Compression and preconditioning of operators
\[Lf = \int K(x, y) f(y) dy \]
The matrix \(\langle L \psi_{j,k}, \psi_{j',k'} \rangle \) is sparse. Diagonal preconditioning yields a uniformly bounded condition number.

Fast Wavelet Transform: \(O(N) \) complexity
Figure 2: Matrix B (in the case $A = D$) of size 255×255 in the system of coordinates associated with the basis of Daubechies' wavelets with 3 vanishing moments. Entries with the absolute value greater than 10^{-14} are shown black.
Adaption Strategy

Time t^n

Time $t^{n+1/2}$

Time t^{n+1}

Scale (j) space (i) representation
COHERENT VORTEX SIMULATION (CVS)

Wavelet-filtered 2d Navier-Stokes equation
\[
\partial_t \omega_\sigma - \nabla \cdot (\omega \vec{v})_\sigma - \nu \nabla^2 \omega_\sigma = \nabla \times \vec{F}_\sigma, \quad \nabla \cdot \vec{v} = 0
\]

with \(\omega = \omega_\sigma + \omega_< \) we decompose the nonlinear term into
\[
(\omega \vec{v})_\sigma = \omega_\sigma \vec{v}_\sigma + L + C + R
\]

time discretization: semi-implicit scheme of 2nd order (EB2/AB2)
spatial discretization: Petrov-Galerkin scheme

Trial functions: wavelets
\[
\omega^n(x, y) = \sum_\lambda d^n_\lambda \psi_\lambda(x, y)
\]

Testfunctions: vaguelettes (Liandrat & Tchamitchian 1990)
\[
\theta_\lambda = (Id - \nu \Delta t \nabla^2)^{-1} \psi_\lambda
\]

Solution: change of basis
\[
d^{n+1}_\lambda = \langle \omega^n - \nu^n \cdot \nabla \omega^n, \theta_\lambda \rangle
\]

adaptive vaguelette decomposition (Fröhlich & S., JCP 130, 1997)

Nonlinear term: partial collocation in physical space

Summary: \(O(N) \) algorithm \(N = \) number of d.o.f.
CVS of an impulsively started cylinder at $Re = 3000$

Isolines of vorticity

$T = 1$

$T = 3$

$T = 5$

Adaptive grid

$N = 512^2$

7.2% N

7.7% N

7.9% N