
 
 

ME 252 B 
 

Computational Fluid Dynamics: 
Wavelet transforms and their applications to turbulence 

 
 

 
Marie Farge1 & Kai Schneider2 

 
 
 
 

 

 
 
 
 

 
Winter 2004 

 
University of California, Santa Barbara 

 
 
 
 
 
1 LMD-CNRS, Ecole Normale Supérieure  2 CMI, Université de Provence 
24 rue Lhomond      39 rue Joliot-Curie 
75231 Paris Cedex 05, France    13453 Marseille Cedex 13, France 
Email : farge@lmd.ens.fr     Email : kschneid@cmi.univ-mrs.fr 



Classification of signals (1d)

s : t→ s(t) with t ∈ IR, s(t) ∈ IR or IC

1) Continuous ←→ discrete

s(t), t ∈ IR s(tn), n ∈ ZZ

t

s(t)

t

s(t  )

n

n

∆t
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2) Nonperiodic ←→ periodic

• continuous

Period T , s(t) = s(t + nT ), n ∈ ZZ

• discrete

Period T , s(tn) = s(tn + nT ),

n ∈ ZZ with T = N∆T
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3) Compact support

s(t) 6= 0 for t ∈ [A, B] and s(t) = 0 else

Α Β

4) Signals with finite energy

• continuous, nonperiodic

E =

∫
∞

−∞

|s(t)|2dt <∞

• continuous, periodic

E =

∫
T

0

|s(t)|2dt <∞



• discrete, nonperiodic

E =
∞∑

n=−∞

|s(tn)|
2 <∞

• discrete, periodic

E =
N−1∑
n=0

|s(tn)|
2 <∞

For mathematicians: spaces of square-integrable functions

(norm + scalar product)

s(t) ∈ L2(IR), L2(TT ), l2(IR), l2(TT ) where TT = IR/ZZ
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5) Absolutely integrable signals

S =

∫
∞

−∞

|s(t)|dt <∞ s(t) ∈ L1(IR)

Classification of signals (higher dimensions)

2d −→ images s(~x) = s(x, y), x, y ∈ IR or s(m, n), n, m ∈ ZZ

3d, n-d

scalar-valued ←→ vector-valued signals

- temperature - velocity

- pressure - RGB signal

=⇒ similar classification possible.
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The Fourier transform

Motivation

• representation of signals with sine and cosine functions

• transformation of signals into the frequency plane

• fast algorithms (FFT), N log2N complexity

• correlation and convolution can be efficiently computed in the

frequency domain

• system theory:

sine and cosine are eigenfunctions of linear time-shift invariant

systems
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u(t) y(t)
linear time-shift
�����

ariant system

u(t) = sin 2πft y(t) = a sin(2πft+ φ)

cos 2πft a cos(2πft+ ψ)

For simplification one uses complex exponentials:

eit = cos t+ i sin t

Recall complex numbers: z ∈ IC, z = x+ iy = reiθ

x = <z, y = =z

r2 = x2+ y2, θ = arctan y/x

Recall trigonometric polynomials:

s(t) =
∑

k≥0
ak cos 2πkt+ bk sin 2πkt
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Fourier transforms

1) Continuous signals

We consider an absolutely integrable signal s(t) ∈ L1(IR)(∩L2(IR)),

t, s ∈ IR

The Fourier transform is defined as:

Ŝ(f) =
∫ ∞

−∞
s(t)e−i2πftdt

=
∫ ∞

−∞
s(t) cos 2πftdt+ i

∫ ∞

−∞
s(t) sin 2πftdt

Note that in general Ŝ(f) ∈ IC.

Define modulus |Ŝ(f)| and phase φ = arctan=Ŝ(f)/<Ŝ(f)
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The inverse Fourier transform is defined as:

s(t) =
∫ ∞

−∞
Ŝ(f)ei2πftdf
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Example:

s(t) =

{
1 for − T ≤ t ≤ T,
0 elsewhere

(1)

Ŝ(f) =
sin 2πfT

πf

s(t)

t-T T
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2) Properties

a) scaling

s(at) ⇐⇒ 1

|a|
Ŝ(
f

a
) a ∈ IR, a 6= 0

Ŝ(af) ⇐⇒ 1

|a|
s(
t

a
)

b) time-shift

s(t− t0) ⇐⇒ exp(−i2πft0)Ŝ(f) t0 ∈ IR

c) frequency-shift

Ŝ(f − f0) ⇐⇒ exp(i2πf0t)s(t) f0 ∈ IR
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d) differentiation (with respect to time)

If s(t) is n-times continuously differentiable and s(n)(t) ∈ L1(IR),

then

s(n)(t) ⇐⇒ (i2πf)nŜ(f)

e) differentiation (with respect to frequency)

If tms(t) ∈ L1(IR) for m = 0,1, ...,M , then Ŝ(m)(f) exists and

(−i2πt)ms(t) ⇐⇒ Ŝ(m)(f)

f) multiple application of the Fourier transform

F{s(t)}(f) =

∫ ∞

−∞
s(t)e−i2πftdt = Ŝ(f)

F2{{s(t)}(f)}(t) = F{Ŝ(f)}(t) =

∫ ∞

−∞
Ŝ(f)e−i2πftdf = s(−t)

−→ F2 corresponds to time inversion

and hence F4 = Identity
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F3 = F−1 = F? (inverse Fourier transform)

Remark: The Fourier transform is a cyclic operator of 4th degree.

g) convolution

given s1(t) and s2(t) with s1(t) ∈ L2(IR) and s2(t) ∈ L∞(IR).

s1(t) ? s2(t) =

∫ ∞

−∞
s1(τ)s2(t− τ)dτ

? commutes, i.e. s1 ? s2 = s2 ? s1
? is associative, i.e. s1 ? s2 ? s3 = s1 ? (s2 ? s3) = (s1 ? s2) ? s3

s1(t) ⇐⇒ Ŝ1(f) and s2(t) ⇐⇒ Ŝ2(f)

s1(t) ? s2(t) ⇐⇒ Ŝ1(f)Ŝ2(f)

h) correlation

- cross-correlation: s1(t), s2(t) ∈ L2(IR)

φ12(t) =
∫ ∞

−∞
s1(τ)s2(t+ τ)dτ = s1(t) ? s2(−t)
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φ21(t) =

∫ ∞

−∞
s1(t+ τ)s2(τ)dτ = s1(−t) ? s2(t)

If Ŝ1(f) and Ŝ2(f) exist, then

Φ̂12(f) = F{φ12(t)}(f) = F{s1(t) ? s2(−t)}(f)

= F{s1(t) ? F2{s2(t)}}(f) = F{s1(t)}(f)F3{s2(t)}}(f)

= Ŝ1(f)Ŝ
?
2(f)

and analogously

Φ̂21(f) = Ŝ?1(f)Ŝ2(f)

i) autocorrelation

s1(t) ∈ L2(IR)

φ11(t) =

∫ ∞

−∞
s1(τ)s1(t+ τ)dτ = s1(t) ? s1(−t)
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and with s1(t) ⇐⇒ Ŝ1(f)

we obtain in frequency space

Φ̂11(f) = F{φ11(t)}(f) = Ŝ1(f)Ŝ
?
1(f) = |Ŝ1(f)|2

j) multiplication

s1(t)s2(t) ⇐⇒ Ŝ1(f) ? Ŝ2(f) =
∫ ∞

−∞
Ŝ1(ξ)Ŝ2(f − ξ)dξ

k) Parseval’s identity
∫ ∞

−∞
s1(t)s2(t)dt =

∫ ∞

−∞
Ŝ1(f)Ŝ2(−f)df

−→
∫ ∞

−∞
s1(t)s

?
2(t)dt =

∫ ∞

−∞
Ŝ1(f)Ŝ

?
2(f)df

and in particular for s1 = s2 = s ⇐⇒ Ŝ(f) we have
∫ ∞

−∞
|s(t)|2dt =

∫ ∞

−∞
|Ŝ(f)|2df
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l) energy spectrum

E(f) = |Ŝ(f)|2 and E =
∫∞
0 E(f)df

E(f) is called spectral energy density, or energy spectrum.

m) symmetries

s(t) = seven(t) + sodd(t)

with seven(t) = 1
2(s(t) + s(−t)) and sodd(t) = 1

2(s(t)− s(−t))
Decomposing the corresponding Fourier transform into real and

imaginary part we obtain:

Ŝ(f) = Ŝr(f) + iŜi(f)

where Ŝr(f) = <Ŝ(f) and Ŝi(f) = =Ŝ(f)

seven(t) ⇐⇒ Ŝr(f)

sodd(t) ⇐⇒ Ŝi(f)

and additionally, we have that Ŝr(f) is even (cosine-transform)

and Ŝi(f) is odd (sine-transform).
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n) real valued signals

If s(t) is real valued, then we have Ŝ(−f) = Ŝ?(f)

o) regularity

If sn(t) ∈ L1(IR) then limf→±∞ |(i2πf)nŜ(f)| = 0, i.e.

Ŝ(f) = O(|f |−n−ε)
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Bandwidth of signals and Heisenberg’s uncertainty principle

θ2 =
∫ ∞

−∞
(t− t0)2|s(t)|2dt

B2 =

∫ ∞

−∞
(f − f0)2|Ŝ(f)|2df

where
∫∞
−∞ |s(t)|2dt =

∫∞
−∞ |Ŝ(f)|2df = 1

and t0 and f0 are the center of gravity in the t/f plane, respectively:

t0 =
∫ ∞

−∞
t|s(t)|2dt f0 =

∫ ∞

−∞
f |Ŝ(f)|2df

Heisenberg’s uncertainty principle yields:

θB ≥ 1

4π

Proof:

w.l.o.g. let t0 = f0 = 0
Using Schwarz inequality

|
∫ b

−a
g1(t)g2(t)dt|2 ≤

∫ b

−a
|g1(t)|2dt

∫ b

−a
|g2(t)|2dt
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for a, b→∞ and with

g1(t) = ts(t) and g2(t) = ds/dt we have

|
∫ ∞

−∞
ts(t)ds/dtdt|2 ≤

∫ ∞

−∞
|ts(t)|2dt

∫ ∞

−∞
|ds/dt|2dt

As s ∈ L2(IR), limt→±∞ |s(t)| ≤ C 1√
t

∫ ∞

−∞
ts(t)ds/dtdt = −1

2

and
∫ ∞

−∞
|ds/dt|2 dt =

∫ ∞

−∞
|2πfŜ(f)|2df

1

4
≤ 4π2

∫ ∞

−∞
t2|s(t)|2dt

∫ ∞

−∞
f2|Ŝ(f)|2df
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Distributions

δ(t− t0) =

{
∞ for t = t0,
0 elsewhere

(2)

∫ ∞

−∞
δ(t− t0)dt = 1

Properties:

∫ ∞

−∞
s(t)δ(t− t0)dt = s(t0)

√
n

π
exp(−nt2) −→ δ(t) for n −→∞

√
n

π
exp(−nt2) ⇐⇒ exp(

−π2f2
n

)
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δ(t) ⇐⇒ 1

1 ⇐⇒ δ(t)

δ(k)(t) ⇐⇒ (i2πf)k

(−i2πt)k ⇐⇒ δ(k)(f)

Scaling:

δ(k)(at) ⇐⇒ 1

|a|
(i2πfa)k

1

|a|
δ(k)(

t

a
) ⇐⇒ (i2πfa)k

and for k = 0
1

|a|
δ(
t

a
) ⇐⇒ 1
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Shift:

δ(k)(t− t0) ⇐⇒ exp(−i2πft0)(i2πf)k

exp(i2πf0t)(−i2πt)k ⇐⇒ δ(k)(f − f0)

and for k = 0

δ(t− t0) ⇐⇒ exp(−i2πft0)

exp(i2πf0t) ⇐⇒ δ(f − f0)

sin(2πf0t) ⇐⇒ 1

2i
(δ(f − f0)− δ(f + f0))

cos(2πf0t) ⇐⇒ 1

2
(δ(f − f0) + δ(f + f0))
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Convolution:

s(t) ⇐⇒ Ŝ(f)

δ(k)(t) ? s(t) ⇐⇒ (i2πfa)kŜ(f)

and for k = 0

δ(t) ? s(t) = s(t)

δ(t− t0) ? s(t) = s(t− t0)

Sampling theorem: Let s(t) ∈ L1(IR) with Ŝ(f) = 0 for |f | > fc.

Then we have

s(t) =
∞∑

n=0

s(nT )
sin π(t− nT )/T

π(t− nT )/T
for T ≤ 1

2fc
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2) Periodic signals

Periodic signal s(t) = s(t+ nT ), t ∈ IR, n ∈ ZZ with period T ,

Discrete Fourier coefficients Ŝk, k ∈ ZZ with Ŝk = 1
T

∫ T
0 s(t)e

−i2πktdt

and s(t) =
∑
k∈ZZ Ŝke

i2πkt/T

3) Discrete signals

Discrete signal sn, n ∈ ZZ

Periodic Fourier transform

Ŝ(f) =
∑

n∈ZZ
sne

−i2πnf

4) Discrete periodic signals

Discrete periodic signal sn,0 ≤ n ≤ N − 1 with sn = sn+mN ,m ∈ ZZ
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Periodic discrete Fourier transform

Ŝk =
1

N

N−1∑

n=0

sne
−i2πkn/N ,0 ≤ k ≤ N − 1

where Ŝk = Ŝk+mN ,m ∈ ZZ
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5) Summary

• Continuous signal s(t), t ∈ IR ←→ continuous spectrum, Ŝ(f), f ∈
IR

• Periodic signal s(t), t ∈ TT ←→ discrete spectrum, Ŝk, k ∈ ZZ

• Discrete signal sn, n ∈ ZZ ←→ periodic spectrum, Ŝ(f), f ∈ TT

• Discrete periodic signal sn,0 ≤ n ≤ N −1 with sn = sn+mN ,m ∈ ZZ
←→ periodic discrete spectrum Ŝk,0 ≤ k ≤ N − 1 and with Ŝk =

Ŝk+mN ,m ∈ ZZ

Extention to higher dimensions: tensor product ansatz
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Ad Fourier transform

Continuous signals: s(t), t ∈ IR

Ŝ(f) =

∫
∞

−∞

s(t)e−i2πftdt, f ∈ IR and s(t) =

∫
∞

−∞

Ŝ(f)ei2πftdf

Periodic signals (continuous): s̃(t) = s̃(t + mT ), m ∈ ZZ

Ŝk =
1

T

∫ T

0

s(t)e−i2πkt/T and s(t) =
∑

k∈ZZ

Ŝkei2πkt/T

with

ei2πkt/T
⇐⇒ δ(f −

k

T
)

Ŝ(f) =
∑

k∈ZZ

Ŝkδ(f −
k

T
)
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Dirac pulse:

∞∑

k=−∞

δ(t − kT ) =
1

T

∞∑

k=−∞

δ(f − k/T )

Periodisation

s̃(t) =
∞∑

n=−∞

s(t − nT )

s̃(t) = s̃(t + mT ), m ∈ ZZ

s̃(t) ⇐⇒

∑

k∈ZZ

Ŝkδ(f −
k

T
)

with Ŝk = 1

T Ŝ(k/T )

ME 252 B, Wavelet transforms and their applications to turbulence, Marie Farge & Kai Schneider, UCSB, Winter 2004 ME 252 B, Wavelet transforms and their applications to turbulence, Marie Farge & Kai Schneider, UCSB, Winter 2004 



Discrete signals: sn, n ∈ ZZ

Ŝ(f) =
∑

n∈ZZ

sne−i2πnf

Discrete periodic signals: sn, n = 0, ..., N − 1

Ŝk =
∑

n∈ZZ

sne−i2πkn/N

ME 252 B, Wavelet transforms and their applications to turbulence, Marie Farge & Kai Schneider, UCSB, Winter 2004 ME 252 B, Wavelet transforms and their applications to turbulence, Marie Farge & Kai Schneider, UCSB, Winter 2004 



Sampled signals:

ssamp(t) = T
∑

k∈ZZ

s(kT )δ(t − kT )

fsamp = 2flimit =
1

T

ssamp(t) ⇐⇒ Ŝsamp(f) =
∞∑

k=−∞

Ŝ(f − kfsamp)
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