University of California, Santa Barbara Department of Mechanical and Environmental Engineering ME 252 B, Computational Fluid Dynamics: Wavelet transforms and their applications to turbulence Prof. Marie Farge / Prof. Kai Schneider

Exercise sheet 1: Fourier transforms and sampling

Exercise 1:

Given a one-dimensional signal $s(t) = \exp(-(t - t_0)^2/\sigma^2)$.

• Compute its Fourier transform

$$\widehat{S}(f) = \int_{-\infty}^{+\infty} s(t) \exp(-i2\pi f t) dt$$

• Discuss the role of t_0 and σ in Fourier space.

Exercise 2:

Given a discrete signal $s_n = s(t_n)$ with $t_n = n/N$ for n = 0, ..., N - 1 and with $t_0 = 0.5$, $\sigma^2 = 1/500$ and $N = 2^{10} = 1024$.

- Plot the signal (e.g. using matlab plot(s)).
- Compute its discrete Fourier transform

$$\hat{s}_k = \frac{1}{N} \sum_{n=0}^{N-1} s_n \exp(-i2\pi kn/N) , \quad k = 0, ..., N-1$$

(e.g. using matlab fft(s))

• Plot the spectrum (modulus of the Fourier coefficients), $|\hat{s}_k|$, k = 0, ..., N - 1 and compare the result with the computation of exercise 1.

Exercice 3:

Given a discrete Dirac pulse

$$d_n = \begin{cases} 1 & \text{for } n = mN/f_0 , \quad m \in I\!\!N \\ 0 & \text{else} \end{cases}$$

for n = 0, ..., N - 1 with $N = 2^{10} = 1024$, and frequency $f_0 = 2^6 = 64$.

- Plot the Dirac pulse.
- Compute its discrete Fourier transform.
- Plot the spectrum.

Exercise 4:

Multiply the signal s with the Dirac pulse and plot the resulting sampled signal $r_n = s_n d_n$ for n = 0, ..., N - 1.

- Plot the spectrum of r.
- What do you observe?

Exercise 5:

Reconstruct the signal s^{rec} from the sampled signal r by applying an ideal low pass filter in Fourier space with cut off frequency $k_c = f_0/2 = 32$, i.e.

$$\hat{s}_k^{rec} = \begin{cases} \hat{r}_k & \text{for } |k| \le k_c \\ 0 & \text{else} \end{cases}$$

for k = 0, ..., N - 1.

Apply the inverse discrete Fourier transform (e.g. using matlab ifft(s^{rec})) to get

$$s_n^{rec} = \sum_{k=0}^{N-1} \hat{s}_k^{rec} \exp(i2\pi kn/N) \quad , \quad n = 0, ..., N-1$$

and plot s^{rec} .

Exercise 6:

Repeat exercises 2-5 with different values $f_0 > 64$ and $f_0 < 64$. What do you observe?