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Background material

Multiresolution analysis

We consider a sequence V;,j € Z of closed subspaces of L?(IR) which constitutes a one-
dimensional orthogonal multiresolution analysis of L?(IR). A scaling function ¢(z) is re-
quired to exist. Its translates generate a basis in each Vj, i.e.

V; = span{¢jiticz - (1)
where
dji(w) = 2772¢(27w — 1) jieZ . (2)
This basis is orthonormal, so that
(Dji» Djk) = Ok (3)

+o00
with (f,g) = [ f(z)g(z)dz being the inne-product in L*(IR) .

The scaling functions satisfy a refinment equation: ¢;_1,(2) = Y ez hr—2n¢;k(x) With the
filter coefficients h, = (¢jn, Pj_1.0)-
The orthogonal projection of a function f € L*(IR) on V; is defined as

Py, . f — Py, f=f; (4)
with
fr@) =Y (f, om)dm(x) . (5)

As V;_1 is included in V; we can define its orthogonal complement space in V/:
Vi=Viie W, (6)

Correspondingly, the approximation of the function f at scale 277, belonging to V;, can
be decomposed as a sum of orthogonal projections on V;_; and W;_4, i.e.

PVJf:PVJflf—i_PWJflf . (7)

Based on the scaling function ¢, one can construct a function v, the so—called mother
wavelet, such that

Vin(®) = D Gr—200j k() (8)

keZ
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with g, = (@jn, ¥j-1,0), and where
ii(r) = 272272 — i) JIEZ . (9)

The filter coefficients g,, can be computed from the filter coefficients h,, using the relation
gn = (_1)1_nhl—n~

The translates and dilates of the wavelet 1 constitute an orthonormal bases of the
spaces W,

W; = span{jiticz - (10)

Any function f € L*(IR) can now be expressed as

F@) = S Taom@ + SN Fatl) (11)

€Z J=Jjoi€Z

where

In numerical applications the sums in (11) have to be truncated, which corresponds to

the projection of f onto a subspace of V; C L?(IR). The decomposition (11) is orthogonal,
as, by construction,

(Vji, Yie) = 01 G (13)
(Vji o) = 0 Jg=l (14)

in addition to (3).

Fast wavelet transform (FWT)

Starting with a function f given at a finite resolution 277, i.e. we know f; € V;
and hence the coefficients f g for i € Z, the fast wavelet transform computes its wavelet
coefficients f;; by decomposing successively each approximation Py, f = f; into a coarser
scale approximation Py, | f plus its differences Py, , f. The algorithm uses a cascade of
discrete convolutions with the filters h,, and g,, plus downsampling.

2J

Initialization: given f € L*(IR) and f,;, = f (i) forne Z.

Decomposition: for j = J to 1, step —1, do:

Ficvn = 2 hieanfiy (15)
keZ

ficin = Z gk_Qn?j’k for ne Z . (16)
keZ

The inverse wavelet transform is based on successive reconstrunctions of a fine scale
approximation Py, f from a coarser scale approximation Py, , f plus its differences Py, | f.
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The algorithm uses a cascade of discrete convolutions with the filters h,, and g,, plus
upsampling.

Reconstruction: for j =1 to J, step 1, do:

?jm = Z hn—2k7j_17k + Z gn_gkf%k for ne Z. (17)
keZ keZz

Scalogram, intermittency measures

We define the scale distribution of energy, also called scalogram, as

27 -1

E; =3 |fil* (18)
i=0
By summing the scalogram over all scales we get the total energy of the function, i.e.,
E= [T+ B, (19)
5=0

Note that due to Parseval we also have F = Zi‘]:_ol \f ]2

To measure intermittency we use the space-scale information contained in the wavelet
coefficients to define scale-dependent moments and moment ratios. Useful diagnostics to
quantify the intermittency of a field f are the moments of its wavelet coefficients at different

scales 7,
27 -1

Myi(f) =273 |fl? (20)
i=0
Note that E; = 27 M, ;.

The sparsity of the wavelet coefficients at each scale is a measure of intermittency, and
it can be quantified using ratios of moments at different scales,

Mp,j(f)
G, () (2

Classically, one chooses ¢ = 2 to define typical statistical quantities as a function of scale.
Recall that for p = 4 we obtain the scale dependent flatness F; = Q2. It is equal to 3
for a Gaussian white noise at all scales 7, which proves that this signal is not intermittent.
The scale dependent skewness, hyperflatness and hyperskewness are obtained for p = 3,5
and 6, respectively. For intermittent signals @), 4 ; increases with j.

Qp#zd(f) =



Examples of orthogonal wavelets
Filter coefficients of h,,.

e Haar D1 (1 vanishing moment):

ho = 1/v/2,hy = 1/V2.

e Daubechies D2 (2 vanishing moments):
ho = 0.482962913145, hy = 0.836516303736, he = 0.224143868042, hy = —0.129409522551.

e Daubechies D3 (3 vanishing moments):
ho = 0.332670552950, h; = 0.806891509311, he = 0.459877502118, hy = —0.135011020010,
hy = —0.085441273882, hs = 0.035226291882.

Exercice 1:

e Verify that 35, h, = v/2 and that ¥, kg = 0 for n = 0, M — 1, where M corresponds
to the number of vanishing moments of the wavelet 1, for D1, D2 and D3.

The Fourier transform of the filters h and g is defined as H (W) =, hpe 2™ and @(w) —
S g€~ 2™ respectively.

e Compute H(w) and G(w) numerically for D1, D2, and D3, and plot |H(w)| and
|G(w)]. Discuss the properties of both filters.

e Show that G(w) = e 2™ H*(w + 1).
Exercice 2:

Implement the fast orthogonal wavelet transform and its inverse using the formulas (15)
and (17) using Haar wavelets (D1) and Daubechies wavelets (D2, D3).

Input: function values (fo, fi, f2, ..., fy—1), number of scales J with N = 27,

Output: wavelet coefficients (fo|foolfro, fril--1fr-1,0, fr-1.1, o frm127-124])-

In order to simplify the discrete convolutions, suppose the function is periodic, i.e. f(n) =
fn+pN) forpe Z.

Given a discrete signal f, = f(t,) with ¢, = n/N for n = 0,..., N — 1 and with ¢, = 0.5,
0? = 1/500 and N = 210 = 1024.

e Plot the signal f,.

e Apply the fast orthogonal wavelet transform to f, and plot the magnitude of the
wavelet coefficients f;; in logarithmic scale using a scale-space representation (e.g. j
vertical axis, ¢ horizontal axis).

e Reconstruct the signal from its wavelet coefficients f], using the inverse FWT and
compare the result with the signal f,.

e Compute the energy of the signal, either in physical space (E), = SN fal?), or in
wavelet space (B, = | fool® + 720 Xi25" |£ji|?). Discuss the result.
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e Compute approximations of the signal at different scales Jy (linear filtering). Recon-
struct different approximations fj, for Jy = 4,...9. For this apply an inverse FWT

to the wavelet coefficients f;; and set the coefficients for j = Jy —1,...J — 1 and
i=0,...,27 — 1 equal to zero.
Plot the different approximations f;, for Jf = 4,...9, assembled in one figure.

e Compute approximations of the signal using thresholding of the wavelet coefficients
(nonlinear filtering). Reconstruct several nonlinear approximations fr. For this
apply an inverse FWT to the wavelet coefficients whose modulus is larger than the
threshold 7', which means that coefficients f;; with |f;;| < T are set to zero. Test
different thresholds, 7' = 107!,1072,1072,107%,1075, count the number of retained
coefficients and plot the results assembled in one figure.

Exercise 3 (optional):

Given a realization of a Gaussian white noise with variance ¢? = 0.1 (using a random
number generator), w, forn =0,..., N — 1.

e Plot the noise w, and construct a noisy signal g, = f, + w, using f,, from exercise 3.

e Apply the FWT to w,, and compute its scalogram Fj;, its scale dependent flatness
F; = Q4 and its scale dependent skewness S; = (032 ;. Discuss the results, knowing
that the noise is uncorrelated, that the flatness of a Gaussian white noise is equal to
three and its screwness is zero.

e Apply the wavelet transform to the noisy signal g,.
Threshold its wavelet coefficients g;;, by retaining only those values being larger than
a threshold T' = ¢(21log, N)'/2.
Reconstruct the denoised signal using the inverse FW'T, compute the difference be-
tween the denoised signal and the original f,, and plot the results.



