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Background material

Multiresolution analysis

We consider a sequence Vj, j ∈ ZZ of closed subspaces of L2(IR) which constitutes a one-
dimensional orthogonal multiresolution analysis of L2(IR). A scaling function φ(x) is re-
quired to exist. Its translates generate a basis in each Vj, i.e.

Vj = span{φji}i∈ZZ . (1)

where
φji(x) = 2j/2φ(2jx− i) j, i ∈ ZZ . (2)

This basis is orthonormal, so that

〈φji, φjk〉 = δik (3)

with 〈f, g〉 =
+∞∫
−∞

f(x) g(x) dx being the inne-product in L2(IR) .

The scaling functions satisfy a refinment equation: φj−1,n(x) =
∑

k∈ZZ hk−2nφj,k(x) with the
filter coefficients hn = 〈φjn, φj−1,0〉.
The orthogonal projection of a function f ∈ L2(IR) on VJ is defined as

PVJ
: f −→ PVJ

f = fJ (4)

with
fJ(x) =

∑

k∈ZZ

〈f, φjk〉φjk(x) . (5)

As VJ−1 is included in VJ we can define its orthogonal complement space in VJ :

VJ = VJ−1 ⊕WJ−1 (6)

Correspondingly, the approximation of the function f at scale 2−J , belonging to VJ , can
be decomposed as a sum of orthogonal projections on VJ−1 and WJ−1, i.e.

PVJ
f = PVJ−1

f + PWJ−1
f . (7)

Based on the scaling function φ, one can construct a function ψ, the so–called mother
wavelet, such that

ψjn(x) =
∑

k∈ZZ

gk−2nφj,k(x) (8)
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with gn = 〈φjn, ψj−1,0〉, and where

ψji(x) = 2j/2ψ(2jx− i) j, i ∈ ZZ . (9)

The filter coefficients gn can be computed from the filter coefficients hn using the relation
gn = (−1)1−nh1−n.

The translates and dilates of the wavelet ψ constitute an orthonormal bases of the
spaces Wj,

Wj = span{ψji}i∈ZZ . (10)

Any function f ∈ L2(IR) can now be expressed as

f(x) =
∑

i∈ZZ

f j0i φj0i(x) +
∞∑

j=j0

∑

i∈ZZ

f̃ji ψji(x) (11)

where
f ji = 〈f, φji〉 f̃ji = 〈f, ψji〉 (12)

In numerical applications the sums in (11) have to be truncated, which corresponds to
the projection of f onto a subspace of VJ ⊂ L2(IR). The decomposition (11) is orthogonal,
as, by construction,

〈ψji, ψlk〉 = δjl δik (13)

〈ψji, φlk〉 = 0 j ≥ l (14)

in addition to (3).

Fast wavelet transform (FWT)

Starting with a function f given at a finite resolution 2−J , i.e. we know fJ ∈ VJ

and hence the coefficients f Ji for i ∈ ZZ, the fast wavelet transform computes its wavelet
coefficients f̃ji by decomposing successively each approximation PVJ

f = fJ into a coarser
scale approximation PVJ−1

f plus its differences PWJ−1
f . The algorithm uses a cascade of

discrete convolutions with the filters hn and gn, plus downsampling.

Initialization: given f ∈ L2(IR) and fJ,n = f
(

n
2J

)
for n ∈ ZZ.

Decomposition: for j = J to 1, step −1, do:

f j−1,n =
∑

k∈ZZ

hk−2nf j,k (15)

f̃j−1,n =
∑

k∈ZZ

gk−2nf j,k for n ∈ ZZ . (16)

The inverse wavelet transform is based on successive reconstrunctions of a fine scale
approximation PVJ

f from a coarser scale approximation PVJ−1
f plus its differences PWJ−1

f .
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The algorithm uses a cascade of discrete convolutions with the filters hn and gn, plus
upsampling.

Reconstruction: for j = 1 to J , step 1, do:

f j,n =
∑

k∈ZZ

hn−2kf j−1,k +
∑

k∈ZZ

gn−2kf̃j,k for n ∈ ZZ . (17)

Scalogram, intermittency measures

We define the scale distribution of energy, also called scalogram, as

Ẽj =
2j
−1∑

i=0

|f̃j,i|2. (18)

By summing the scalogram over all scales we get the total energy of the function, i.e.,

E = |f00|2 +
J−1∑

j=0

Ẽj. (19)

Note that due to Parseval we also have E =
∑

2J
−1

n=0 |fJn|2.
To measure intermittency we use the space-scale information contained in the wavelet
coefficients to define scale-dependent moments and moment ratios. Useful diagnostics to
quantify the intermittency of a field f are the moments of its wavelet coefficients at different
scales j,

Mp,j(f) = 2−j
2j
−1∑

i=0

|f̃j,i|p. (20)

Note that Ej = 2jM2,j .

The sparsity of the wavelet coefficients at each scale is a measure of intermittency, and
it can be quantified using ratios of moments at different scales,

Qp,q,j(f) =
Mp,j(f)

(Mq,j(f))p/q
. (21)

Classically, one chooses q = 2 to define typical statistical quantities as a function of scale.
Recall that for p = 4 we obtain the scale dependent flatness Fj = Q4,2,j . It is equal to 3
for a Gaussian white noise at all scales j, which proves that this signal is not intermittent.
The scale dependent skewness, hyperflatness and hyperskewness are obtained for p = 3, 5
and 6, respectively. For intermittent signals Qp,q,j increases with j.

3



Examples of orthogonal wavelets

Filter coefficients of hn.

• Haar D1 (1 vanishing moment):
h0 = 1/

√
2, h1 = 1/

√
2.

• Daubechies D2 (2 vanishing moments):
h0 = 0.482962913145, h1 = 0.836516303736, h2 = 0.224143868042, h3 = −0.129409522551.

• Daubechies D3 (3 vanishing moments):
h0 = 0.332670552950, h1 = 0.806891509311, h2 = 0.459877502118, h3 = −0.135011020010,
h4 = −0.085441273882, h5 = 0.035226291882.

Exercice 1:

• Verify that
∑

k hk =
√

2 and that
∑

k k
ngk = 0 for n = 0,M−1, where M corresponds

to the number of vanishing moments of the wavelet ψ, for D1, D2 and D3.

The Fourier transform of the filters h and g is defined as Ĥ(ω) =
∑

n hne
−2πiωn and Ĝ(ω) =∑

n gne
−2πiωn respectively.

• Compute Ĥ(ω) and Ĝ(ω) numerically for D1, D2, and D3, and plot |Ĥ(ω)| and
|Ĝ(ω)|. Discuss the properties of both filters.

• Show that Ĝ(ω) = e−i2πωĤ?(ω + 1).

Exercice 2:

Implement the fast orthogonal wavelet transform and its inverse using the formulas (15)
and (17) using Haar wavelets (D1) and Daubechies wavelets (D2, D3).
Input: function values (f0, f1, f2, ..., fN−1), number of scales J with N = 2J .
Output: wavelet coefficients (f 0,0|f̃0,0|f̃1,0, f̃1,1|...|f̃J−1,0, f̃J−1,1, ..., f̃J−1,2J−1−1|).
In order to simplify the discrete convolutions, suppose the function is periodic, i.e. f(n) =
f(n+ pN) for p ∈ ZZ.

Given a discrete signal fn = f(tn) with tn = n/N for n = 0, ..., N − 1 and with t0 = 0.5,
σ2 = 1/500 and N = 210 = 1024.

• Plot the signal fn.

• Apply the fast orthogonal wavelet transform to fn and plot the magnitude of the
wavelet coefficients f̃ji in logarithmic scale using a scale-space representation (e.g. j
vertical axis, i horizontal axis).

• Reconstruct the signal from its wavelet coefficients f̃ji using the inverse FWT and
compare the result with the signal fn.

• Compute the energy of the signal, either in physical space (Ep =
∑N−1

n=0 |fn|2), or in

wavelet space (Ew = |f00|2 +
∑J−1

j=0

∑
2j
−1

i=0 |f̃ ji|2). Discuss the result.
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• Compute approximations of the signal at different scales Jf (linear filtering). Recon-
struct different approximations fJf

for Jf = 4, ...9. For this apply an inverse FWT

to the wavelet coefficients f̃ji and set the coefficients for j = Jf − 1, ...J − 1 and
i = 0, ..., 2j − 1 equal to zero.
Plot the different approximations fJf

for Jf = 4, ...9, assembled in one figure.

• Compute approximations of the signal using thresholding of the wavelet coefficients
(nonlinear filtering). Reconstruct several nonlinear approximations fT . For this
apply an inverse FWT to the wavelet coefficients whose modulus is larger than the
threshold T , which means that coefficients f̃ji with |f̃ji| ≤ T are set to zero. Test
different thresholds, T = 10−1, 10−2, 10−3, 10−4, 10−5, count the number of retained
coefficients and plot the results assembled in one figure.

Exercise 3 (optional):

Given a realization of a Gaussian white noise with variance σ2 = 0.1 (using a random
number generator), wn for n = 0, ..., N − 1.

• Plot the noise wn and construct a noisy signal gn = fn +wn using fn from exercise 3.

• Apply the FWT to wn and compute its scalogram Ej, its scale dependent flatness
Fj = Q4,2,j and its scale dependent skewness Sj = Q3,2,j . Discuss the results, knowing
that the noise is uncorrelated, that the flatness of a Gaussian white noise is equal to
three and its screwness is zero.

• Apply the wavelet transform to the noisy signal gn.
Threshold its wavelet coefficients g̃ji, by retaining only those values being larger than
a threshold T = σ(2 log2N)1/2.
Reconstruct the denoised signal using the inverse FWT, compute the difference be-
tween the denoised signal and the original fn and plot the results.
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