
Peter Krautzberger on the web

Written elsewhere
16 Jun 2016

As has been established a number of times, I write better
elsewhere. So for the nth time, here are some cross-postings of
things I wrote elsewhere.

math formats for the web
Somebody asked on the MathJax user group

To my understanding MathJax supports these input
formats: LaTeX, MathML, and AsciiMath. If I’m
making a website and I can choose to use any of the
three formats, what are some advantages of
choosing each?

Since I’ve answered this so many times, I thought it might be worth
copying here:

Written elsewhere · Peter Krautzberger https://www.peterkrautzberger.org/0189/

1 of 7 12/09/16 17:33



“That’s a tricky (trick?) question.

MathML is MathJax’s internal format (essentially anyway) so
anything that can be done in MathJax is done through our MathML
support, cf http://docs.mathjax.org/en/latest/mathml.html. While
MathML is quite good for such an internal purpose, it can be
difficult to create. It’s rarely written manually (much like HTML or
CSS) and tools can have trouble producing high-quality MathML
(converters can fail, editors might produce overcomplicated
MathML). MathML is the dominant format used in professional
publishing workflows and thus comes with a rich toolchain out of
XML-land.

MathJax’s LaTeX-like input provides a faithful implementation of
the most common math-mode LaTeX commands as well as other
standard packages and a few non-standard features, cf.
http://docs.mathjax.org/en/latest/tex.html. LaTeX is much easier to
author by hand than MathML and provides the typical LaTeX
advantages such as custom macros (for even easier authoring). It
also has the benefit of a large community thanks to the wide
adoption of TeX as a programming language for print layout in
academic writing. LaTeX is probably the most popular format when
people have a choice, so MathJax’s TeX-like input has a wide
community out there. From a real TeX perspective, MathJax
restricts LaTeX input to math-mode since it converts internally
into MathML. Due to LaTeX’s print heritage, some constructions
are hard to do (e.g., equal-width columns are trivial in MathML but
not doable with the default LaTeX macros).

AsciiMath is a lightweight markup language designed to convert
well to MathML. I sometimes like comparing it to markdown – not
as powerful but much more sensible to write. It does not have the

Written elsewhere · Peter Krautzberger https://www.peterkrautzberger.org/0189/

2 of 7 12/09/16 17:33



expressive power of MathML but it is very easy to learn because it
was designed by Peter Jipsen specifically for high-school- and
college-level students. It is less frequently used but if it’s
expressive power is sufficient, I tend to recommend it.

In summary, MathML is MathJax’s internal format so anything you
can do with MathJax you can do with its MathML input. LaTeX is
virtually as powerful (with some edge cases), is easier to author by
hand, and has a large community both from real TeX-land and
MathJax’s community. AsciiMath is the little brother of both
MathML and LaTeX and provides a good compromise between
expressive strength and human readability.

If you look beyond MathJax there are even more options, of
course.”

Moving on.

math accessibility vs machine readability

On the “Getting Math Onto Web Pages” community group, Tzivya
raised a big topic regarding accessibility:

I would love it the world would come to understand
that accessibility is a subset of machine readability.
Accessibility APIs are a specialized kind of machine.
If we are working on machine readable math, we
need to make sure that those specialized machines
can read the math too. Otherwise we will do the
work twice.

I found myself disagreeing with Tzivya (which means I’m probably
wrong because she is awesome). This disagreement is mostly

Written elsewhere · Peter Krautzberger https://www.peterkrautzberger.org/0189/

3 of 7 12/09/16 17:33



influenced by our work at MathJax for the past year or so, making
math rendering accessible via MathJax. But the point is an
important one to me because, as I expected (feared?), a few
discussion on the Community Group have already brought up the
problem of looking for the right™ solution instead of the realistic
one.

For me, what we have now is the right solution: HTML, CSS, ARIA,
SVG etc, several competing math rendering/computation/etc
implementations based on these, lots of tools tangential to them.
An excellent kind of mess without standards beyond what works ok
for each project out there. It’s not the right™ solution but it has
the potential of becoming better and better. It’s really just another
part of web development; nothing else needed.

Anyway, so I wrote:

“I do dream that eventually (maybe 10 years from now?) we’ll have
a thorough a11y API mapping for mathematics. At the moment, I
don’t think mathematics (as a culture / language) is ready for this
(though web technology probably would be).

Regarding general machine readability vs accessibility, one
important difference I see is that machine readability can benefit
from partial results whereas accessibility cannot.

A typical example for this might be units. If we can find a way to
make units machine readable, I think we’d have a major
improvement for STEM on the web. But it won’t help accessibility
(much) to know that there are units in an expression if it is
otherwise unintelligible.

Of course, we currently don’t have any standard or best practice for

Written elsewhere · Peter Krautzberger https://www.peterkrautzberger.org/0189/

4 of 7 12/09/16 17:33



exposing units on the web. The MathWG had a very old note on
units (from 2003) which suggested class=’MathML-Unit’ on
MathML elements; I don’t think that’s viable approach today.
Perhaps schema is a better starting point considering how
successful search engines can leverage units in recipes (I could
imagine lab protocols and engineering might benefit from similar
methods).

For some tools it’s extremely easy to generate markup for units,
e.g., Jos de Jong’s MathJS has a rich interface for handling units and
could probably easily expose them in a visual output. TeX has a
rich history with the physics and siunitx packages (which are, for
example, partially available in MathJax as third party extensions)
and heuristics seem feasible to enrich formats in general (again,
MathJax can do some of that via the speechruleengine).

I think for humans we have to change our expectations. Otherwise,
we’ll just end up repeating the mistakes of the past. I’ll post some
thoughts on the accessibility thread later.”

And I then also wrote on the related thread:

“Today the most reliable method is still to use binary images with
alt text: static images are the most reliable in terms of cross
browser/platform/network conditions for visual rendering and
alt-text is the only way to guarantee at least some alternative
rendering (e.g. aural and braille) – no matter how poor the results
may be.

Don’t get me wrong, in many specific situation, there will be better
ways. If you have simple content, then you can get decent visual
results with HTML tags with nested aria-labels. If you know you

Written elsewhere · Peter Krautzberger https://www.peterkrautzberger.org/0189/

5 of 7 12/09/16 17:33



can rely on webfonts (e.g., many ebook situations) then you can
use CSS with webfonts for rendering (and again nested labels). If
you don’t need IE8 (sigh) then you can use SVG etc.

But in generality, binary images with alt-text are still the most
robust way – and that’s an extremely sorry state. I’m pretty sure we
can do better but we need to identify what users need and what
tools can realistically achieve today.

My first guess would be: some form of speech text, potentially
enabling some level of exploration through nesting (and perhaps
full exploration via JS). That’s not as bad as it sounds. SVGs with
aria-labels are already a close second in terms of usability (pending
the ultimate demise of IE8), and like HTML they open up the
opportunity of deep-labels and thus already get a certain level of
exploration.

But there are other aspects. For example in the US, MathSpeak has
a long history and many users of aural rendering are trained to its
way of describing the visual structure of an equation. I’ve heard
enough anecdotal evidence to take this very seriously – after all,
that’s how visual users do it. Still, a few months ago I learned that
in Germany, on the other hand, blind students might learn TeX
syntax early in school (most likely because there is no tradition like
MathSpeak which, after all, precedes the web by decades).

I also expect much overlap with SVG accessibility, where the
challenges of summary information at a top level and exploration
of details are very similar to mathematics.”

Barrierefreiheit
Oh, I gave a talk for Global Accessibility Awareness Day 2016 at the
FernUni Hagen – in German (it’s been a while). The slides are on

Written elsewhere · Peter Krautzberger https://www.peterkrautzberger.org/0189/

6 of 7 12/09/16 17:33



GitHub Pages. It’s already somewhat outdated because Wikipedia
now serves mainly SVGs (generate with mathjax-node).

Anyway, the core summary stays true:

Why is it difficult to make formulas accessible? 1.
Formulas compress information (extremely) 2.
Formulas are often visual 3. Formulas are context-
dependent 4. Formulas are poorly authored

In other words, math accessibility sucks bad. And no solution will
really help you there. But MathJax now does its best to make it suck
less.

Oh, speaking of accessibility, I’m extremely disappointed that I
won’t make it to role=drinks after all – but if you’re close by, why
don’t you drop by?

To leave a comment write me an email.

Written elsewhere · Peter Krautzberger https://www.peterkrautzberger.org/0189/

7 of 7 12/09/16 17:33


