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1. Introduction

In a signal most of the time the useful information is carried by both its frequency 
content and its time evolution. If one considers only the time representation, one does not 
know the spectrum, while the Fourier spectral representation does not give information 
on the instant of emission of each frequencies. A more appropriate representation should 
combine these two complementary descriptions. This is true in particular for turbulent 
signals,  especially the very intermittent ones presenting bursts or some quasi-singular 
behaviours. Indeed, there is no perfect representation due to the limitation resulting from 
the uncertainty principle, which forbids us to perfectly analyse the signal from both sides 
of the Fourier transform at the same time due to the limitation  ∆t.∆ν  1 (normalized≥  
information cell). Therefore there is always a compromise to be made in order to have, 
either a good time resolution ∆t but loosing the spectral resolution ∆ν, which is the case 
when we sample a signal by convolving it with a Dirac comb (Figure 1.1), or a good 
spectral  resolution  ∆ν but loosing the time resolution  ∆t,  which is  the case with the 
Fourier transform (Figure 1.2). These two transforms are the most commonly used in 
practice because they allow to construct orthogonal bases onto which one projects the 
signal to be analysed and eventually computed.

In order to try to recover some time locality while using the Fourier transform, 
Gabor  /1946/  has  proposed  the  windowed  Fourier  transform,  which  consists  of 
convolving the signal with a set of Fourier modes localized in a Gaussian envelop of 
constant  width  a0 (Figure  1.3).  This  transform  allows  then  a  time-frequency 
decomposition of the signal at a given scale a0, which is kept fixed. But unfortunately, as 
shown  by  Balian  /1981/,  the  bases  constructed  with  such  windowed  Fourier  modes 
cannot be orthogonal. More recently, Grossmann and Morlet /1984, 1985/ have devised a 
new transform, so called the wavelet transform, which consists of convolving the signal 



with  a  set  of  affine  functions  presenting  all  the  same  frequency  ν0;  the  family  of 
analysing wavelets  ψa,b is  obtained by dilation and translation of  a  given function ψ 
presenting at least one oscillation. The wavelet transform allows therefore a time-scale 
decomposition of the signal at a given frequency  ν0, which is kept fixed. Actually the 
wavelet  transform realizes  the  best  compromise in  view of  the  uncertainty principle, 
because it adapts the time-frequency resolution  ∆t.∆ν to each scale a. In fact it gives a 
good spectral resolution ∆ν with a limited time resolution ∆t in the large scales, and on 
the contrary it gives a good time localization ∆t with a limited spectral resolution ∆ν in 
the small scales (Figure 1.4). The continuous wavelet transform has been extended to n 
dimensions by Murenzi /1989/.

In 1985 Meyer,  while trying to prove the same kind of impossibility to build 
orthogonal bases as done by Balian in the case of the windowed Fourier transform, has 
been quite surprised to discover an orthogonal wavelet basis built with spline functions, 
now called the Meyer-Lemarié wavelets  /Lemarié and Meyer 1986/.  In fact  the Haar 
orthogonal  basis,  which  has  been  proposed  in  1909,  is  now  recognized  as  the  first 
orthogonal  wavelet  basis  known,  but  the  functions  it  uses  are  not  regular,  which 
drastically limits its application. In practice one likes to build orthogonal wavelet bases 
using functions having a prescribed regularity,  as  good as one needs enough spectral 
decay depending on the application. In particular, following Meyer's work, Daubechies 
/1988/  has  proposed  new  orthogonal  wavelet  bases  built  with  compactly  supported 
functions of prescribed regularity defined by discrete Quadratic Mirror Filters of different 
lengths, the longer the filter, the more regular the associated functions. Mallat /1989/ has 
devised a fast  algorithm to compute the orthogonal wavelet transform using wavelets 
defined by QMF; it  has been used in particular to devise more efficient technics for 
numerical analysis /Beylkin, Coifman and Rokhlin 1992/. Then, more recently, Malvar 
/1990/, Coifman and Meyer /1991/ has found a new kind of windows of variable width 
which  allows  the  construction  of  orthogonal  adaptative  local  cosine  bases.  The 
elementary functions of such bases are then parametrized by their position b, their scale a 
(width  of  the  window)  and  their  wavenumber  k  (proportional  to  the  number  of 
oscillations  inside  each  window).  In  the  same  spirit,  Coifman,  Meyer,  Quake  and 
Wickerhauser  /1990/,  Wickerhauser  /1990/  and  Coifman,  Meyer  and  Wickerhauser 
/1992/  have  proposed  the  so  called  wavelet  packets  which,  similarly  to  compactly 
supported  wavelets,  are  wavepackets  of  prescribed  regularity  defined  by  discrete 
Quadratic Mirror Filters, from which one can construct orthogonal bases. A review of the 
different  types  of  wavelet  transforms  and  their  applications  to  analyse  or  compute 
turbulent flows in 2D and 3D is given in Farge 1992a and 1992b.

2. The Continuous Wavelet Transform

The  only  condition  a  function  ψ(x) ∈ L2(RR),  real  or  complex-valued,  should 
satisfy to be called a wavelet is the admissibility condition:



(1)

(2) with

If ψ is integrable, this condition implies that the wavelet has a zero mean :

(3)

In practice one also wishes the wavelet to be as localised as possible on both sides of 
Fourier, namely that:

(4)

(5) and

k0 being the frequency of the wavelet 
and n as large as possible.

Figure  2  shows  examples  of  the  most  commonly  used  wavelets:  the  Marr  wavelet 
(Figure 2.1),  also called the Mexican hat,  real-valued function which is  used for the 
isotropic continuous wavelet transform, the Morlet wavelet (Figure 2.2), complex-valued 
function which is used for the non-isotropic continuous wavelet transform, the Meyer-
Lemarié wavelet (Figure 2.3) and the Daubechies wavelet, (Figures 2.4 and 2.5) which 
are real-valued functions  used to build orthogonal bases.

For several applications, in particular to study fractals, one also wishes the wavelet to 

have a good regularity, namely that    decays rapidly near 0, or equivalently that the 

wavelet has enough cancellations such as:

(6)

with n as large as possible.



Then, after having chosen the so-called 'mother wavelet' ψ, ones generates the family of 
wavelets  Ψb,a(x), by  continuously  translating  (parameter  b)  all  along  the  signal  and 

continuously dilating (parameter a) to all accessible scales the 'mother wavelet' ψ, which 
gives:

(7)

with N(a)  a  normalization coefficient  equal,  either  to  a1/2   if  one wishes the 
squarred modulus  of the wavelet  coefficients  to correspond to  an energy density  (L2 

norm), or to  a  if one uses the wavelet coefficients to analyse the local regularity of the 
signal (L1 norm).

The continuous wavelet analysis of the function f(x)∈L2(RR) is then the inner product 
between f(x) and the set of all translated and dilated wavelets Ψb,a(x), such as:

(8)

where * indicates the complex conjugate.

The wavelet transform therefore projects the L2(RR) space of finite energy functions into 

the L2(RRΧRR+) wavelet coefficients having a measure dadb/a2, which is the Haar measure 
associated  to  the  affine  group. Figure 3  shows five examples  of  wavelet  analysis  of 
academic signals: a Dirac spike (Figure 3.1), the superposition of two cosine functions 
having different frequencies (Figure 3.2), the superposition of two cosine functions of 
very different amplitudes (Figure 3.3),  a tchirp (Figure 3.4),  a Gaussian white noise 
(Figure 3.5), and finally a tchirp in presence of a strong noise (Figure 3.6).

 From the wavelet coefficients  , one is able to reconstruct the function f(x) using 
the inverse wavelet transform, defined as:

(9)



with 

finite valued coefficient  given by the admissibility condition (1).

One verifies that the wavelet transform conserves energy (as the Plancherel identity we 
have for the Fourier transform), namely that:

(10)

If the function f(x) belongs to the functional space L2(RR), and if the wavelet is regular 
enough  and  therefore  well  localised  in  Fourier  (5),  the  wavelet  analysis  may  be 
interpretated as a pass-band filter with dk/k constant  (Figure 1.4.d) :

(11)

The extension  of the continuous wavelet transform to analyse signals in n dimensions 
has been done by Murenzi /1989/,  considering in this  case the Euclidean group with 
dilations. The generation of the wavelet family Ψa,r,b(x) is obtained by translation (vector 

b), dilation (parameter a) and rotation (corresponding to the operator r defined in  Rn), 
such as:  

(12)

For  RR2, r is the rotation matrix:

(13)
with θ, the rotation angle.

In n dimensions the admissibility condition becomes:



(14)

The analysis and synthesis are then:

(15)

(16)

The energy conservation is still verified:

(17)

Holschneider  /  1988/  has  shown that  one  can  reconstruct  the  function  f(x)  from its 
wavelet coefficients  (b,a) by using any other function φ(x), which verifies a modified 

admissibility condition such as:

(18)

This  for  instance  allows  to  reconstruct  f(x)  by  a  simple  summation  of  all  wavelet 
coefficients along the verticals b = constant, which in fact corresponds to using a Dirac 
function as function φ(x) to reconstruct the signal, which gives:

(19)

with
      



3. Properties of the Continuous Wavelet Transform

31. Covariance by Translation and Dilation

One of the property of the continuous wavelet transform, which is lost in the case 
of the orthogonal wavelet transform, is its covariance, by both translation, i.e. shift by x0:

(20)

with W the continuous wavelet transform operator,

and dilation, i.e. under scale changes by a factor λ:

(21)

32. Linearity

The continuous wavelet transform is a linear transform and therefore we have the 
following superposition principle:

(22)

with α and β two arbitrary constants.

33. Locality in both Space and Scale

The double localization of wavelets in both positions b and scales a allows to read 
both informations from the wavelet coefficients. This is not the case with the Fourier 
coefficients  because  the  basis  functions  are  non  local:  a  given  Fourier  coefficient 
therefore depends on the behaviour of the whole signal. On the contrary a given wavelet 
coefficient  (bo,ao) does not depend on the value of the signal outside the so called 

'influence cone' localized in , with  ∆b depending on the support of the wavelet 

(Figure 4.a). Likewise the wavelet coefficients at a given scale ao depends only on the 
spectral behaviour of the signal in the bandwidth [kmin/ao,kmax/ao] with kmin and kmax 

given by the support of   (Figure 4.b). The support of  is defined as the region where 

ψ is larger than a given value, because wavelet ψ has at least an exponential decay.



34. Characterisation of the Local Regularity of a Function

One of the most useful property of the wavelet transform to analyse turbulent 
flows is the fact that the local scaling of the wavelet coefficients computed in L1 norm, 
i.e.  with the normalization N(a)=a in (7),  allows to  characterize the regularity  of the 
signal /Holschneider 1988/ and /Jaffard 1989/.

Thus, if 
 
exists, i.e. if f is m times continuously differentiable in xo, then:

(23)

when a tends to 0.

If   ,  the space  of  Lipschitz  functions  having exponent −1<α<1,  which are 

continuous functions non differentiable in xo , such that:

(24)

 with C,  constant >O,

then

(25)

when a tends to  0.

Thus the behaviour of the wavelet coefficients (xo,a) at xo in the limit a → o measures 
the local regularity of the function f in xo, which is given by the slope of the modulus of 
(xo,a)  represented  in  Log-Log  coordinates.  For  instance  the  wavelet  coefficients 

computed in norm L1 of a function presenting a Lipschitz singularity α in xo will diverge 
in the very small scale limit (Figure 5.a), while those of a function which is regular in xo 

will  tend to zero in the same limit (Figure 5.b).

4. Analysis of Two-dimensional Turbulent Flows

'In  the  last  decade  we  have  experienced  a  conceptual  shift  in  our  view  of  
turbulence. For flows with strong velocity shear... or other organizing characteristics,  
many now feel that the spectral description has inhibited fundamental progress. The next  
"El Dorado" lies in the mathematical understanding of coherent structures in weakly 



dissipative  fluids:  the  formation,  evolution  and  interaction  of  metastable  vortex-like 
solutions of nonlinear partial differential equations...'   Norman Zabusky /1984/.

As Norman Zabusky stated it in this quotation, it is essential before modelling 
turbulent flows to understand the dynamical role of coherent structures and analyse their 
contribution to the different nonlinear interactions. With the Fourier transform we cannot 
separate the coherent structures from the rest  of the flow, because the Fourier modes 
contain a non local information, and we are therefore unable to discriminate the role of 
coherent structures. On the contrary this local spectral analysis becomes possible when 
using the wavelet transform and we can with it devise new types of diagnostics. After 
defining them, we will apply them to analyse some vorticity fields corresponding to long 
time evolution of a forced two-dimensional flow, computed with a resolution 1282.

41. The wavelet coefficients

If  we denote the position as b,  the scale  as a and the angle as θ,  the wavelet 
coefficients computed in Lp norm are:

(26)   
 

(27)    with     

If p=2, the wavelet coefficients are in L2 norm and the squarred wavelet coefficients 
correspond to the local energy density of the signal at location b, scale a and direction θ. 
If p=1, the wavelet coefficients are in L1 norm and in this case the local scaling of the 
wavelet coefficients gives information on the local regularity, or the Lipschitz exponent 
in the case of discontinuities, of the signal at location b, scale a and direction θ.

On figure 6 we show the 1D continuous wavelet analysis of a one-dimensional cut done 
in a two-dimensional turbulent vorticity field. The wavelet coefficients are computed, 
either in  L2 norm (Figure 6.1), or in L1 norm (Figure 6.2), using the Morlet wavelet 
with k0=5.

On figure 7 we show the 2D continuous wavelet analysis of a two-dimensional turbulent 
vorticity  field.  The wavelet  coefficients  are  computed  in   L2 norm at  three  different 
scales, namely 32 pixels (Figure 7.1), 16 pixels (Figure 7.2), and 2 pixels (Figure 7.3), 
using  the  isotropic  Marr  wavelet  (there  is  no  angular  dependence  of  the  wavelet 
coefficients in this case due to the wavelet isotropy).



42. The intermittency factor

The intermittency factor is given by the wavelet coefficients renormalized by the 
space averaged energy at each scale, such that:

(28)   
 

It gives information on the space variance of the energy spectrum, namely if I(a,b)=1 the 
field is homogeneous and there is no space variance of the energy at scale a. If I(a,b) is 
large the field on the contrary is very intermittent, namely all the energy contribution at 
scale a comes from few very excited regions, while the rest of the field has little energy at 
this scale.

Figure 8 shows the intermittency factor computed at three different scales, namely 32 
pixels (Figure 8.1), 8 pixels (Figure 8.), and 2 pixels (Figure 8.) using the isotropic Marr 
wavelet (there is no angular dependence of the wavelet coefficients in this case due to the 
wavelet isotropy).

43. The local energy spectrum

It is defined from the wavelet coefficients, such that:

(29)   
 

Figure 9 shows the local energy spectra (Figure 9.4) computed by integrating in space 
the Marr wavelet coefficients after segmenting the vorticity field (Figure 9.1) into three 
different  regions  using  the  Weiss  criterium  (Weiss  1981):  the  elliptical  region 
corresponding to the cores of the coherent structures (Figure 9.2), the parabolic region 
corresponding to the shear layers at the periphery of the coherent structures (Figure 9.3) 
and  the  hyperbolic  region  corresponding  to  the  vorticity  filaments  of  the  incoherent 
background flow. We observe that the elliptic region scales around k-6,  the parabolic 
region  around  k-4,  while  the  hyperbolic  region  scales  around  k-3 .  Therefore  more 
coherent  the region is,  steeper  its  spectrum, while  the incoherent region,  such as the 
background flow, which is much more homogeneous, has a flater spectrum similarly to a 
noise.

5. Filtering of Two-dimensional Turbulent Flows
using Continuous Wavelets



The wavelet transform being invertible it is always possible to select a subset of 
the coefficients and reconstruct a filtered version of the field from them. We propose 
several filtering technics to extract coherent structures from the background vorticity in 
two-dimensional  turbulent  flows.  The  first  one  consists  of  discarding  all  wavelet 
coefficients outside the influence cones (Figure 4.a) attached to the local maxima of the 
vorticity field which correspond to the coherent structures cores. The second one consists 
of discarding all wavelet coefficients which are smaller than a given threshold, which 
depends on the quantity of enstrophy we want to retain in the filtered vorticity field.

Figure 10 shows the extraction of one coherent structure, done by filtering all wavelet 
coefficients which are outside the influence cone attached to the center of this coherent 
structure,  before  computing  the  inverse  wavelet  transform.  We  display  the  complete 
vorticity field (Figure 10.1), the coherent structure alone (Figure 10.2), the vorticity field 
without the coherent structure (Figure 10.3) and the energy spectra of the three previous 
fields (Figure 10.4).

Figure  11  shows the  extraction  of  the  40  most  excited  coherent  structures,  done  by 
filtering all wavelet coefficients which are outside the influence cones attached to the 
center of these coherent structures, before computing the inverse wavelet transform. We 
display  the  complete  vorticity  field  (Figure  11.1), the  40  coherent  structures  alone 
(Figure 11.2), the vorticity field without the coherent structures (Figure 11.3) and the 
energy spectra of the three previous fields (Figure 11.4).

Figure 12 shows the extraction of all excited coherent structures, done by filtering all 
wavelet coefficients which are smaller than a given threshold and then computing the 
inverse wavelet  transform. We display the complete vorticity field (Figure 12.1),  the 
coherent structures alone (Figure 12.2), the vorticity field without the coherent structures 
(Figure 12.3) and the energy spectra of the three previous fields (Figure 12.4).

As  seen  with  the  local  energy  spectra,these  filtering  techniques  show again  that  the 
spectral behaviour depends on the region of the flow, with a tendency to scale as k-6 near 
the cores of the coherent structures, as k-4 or k-5 at their periphery and as k-3  in the 
background.

6. Compression of Two-dimensional Turbulent Flows
using Wavelet Packets

Wavelet packets represent a family of orthogonal bases which unifies wavelets 
with Dirac, Fourier and wavepacket functions, affording increased flexibility in tiling the 
information plane, because now each element of the basis is parametrized independently 
in position b, scale a and wavenumber k. For a given signal sampled on N points the 
wavelet packet algorithm generate 2N possible orthogonal bases and then selects the one 



which minimizes the number of coefficients having significant contributions to the total 
signal. In this sense, the wavelet packet algorithm defines the most efficient basis, so 
called the Best Basis, upon which to expand a given signal. If the flow is dominated by 
point vortices, then it is optimally represented using the Dirac grid point basis, and the 
output of the wavelet packet algorithm will reflect this. On the contrary, if the flow is 
dominated by waves, then it is optimally represented using the Fourier basis, and the 
output of the wavelet packet algorithm will again reflect this. If the flow behaviour is in 
between  these  two  extreme situations,  other  bases  will  be  more  appropriate  and  the 
wavelet packet algorithm will give us the Best Basis in which the vorticity field will be 
represented with the smallest number of significant coefficients. The computation of the 
Best Basis for a signal sampled on N points is done in N.log2N operations, while the 
reconstruction  of  the  signal  from  its  projection  onto  the  Best  Basis  is  done  in  N 
operations.

Figure 13 shows the compression of a two-dimensional vorticity field using its wavelet 
packet  coefficients  with  three  different  compression  ratios.  For  a  compression  by  2 
(Figure 13.1) we split the field into the 50 % strongest wavelet packet coefficients and 
the 50 % weakest wavelet packet coefficients, then  for a compression by 20 (Figure 
13.2) we split the field into the 5 % strongest wavelet packet coefficients and the 95 % 
weakest wavelet packet coefficients and for a compression by 200 (Figure 13.3) we split 
the field into the 0.5 % strongest wavelet packet coefficients and the 99.5 % weakest 
wavelet  packet  coefficients.  For  the  three  compression  ratios  we  display  the 
uncompressed fields with their energy spectrum, the compressed fields with their energy 
spectrum and the discarded fields with their energy spectrum. These results have been 
obtained  in  collaboration  with  Meyer,  Pascal  and  Wickerhauser  and  are  extensively 
discussed in Farge et al. /1992/.

With these compression techniques we find as before that the spectral behaviour depends 
on the region of the flow we analyse, with a tendency to scale as k-6 near the cores of the 
coherent structures, as  k-4 at their periphery and as k-3 in the background.



7. Conclusion

Nowadays  turbulence  is  commonly  viewed  from  one  of  two  alternative 
perspectives, depending upon which side of the Fourier transform one looks from. In 
physical space, we observe coherent vortices and wonder if there is universality in their 
structure and interactions. In Fourier space, we see transfers of energy and enstrophy 
between different  scales  of  motion  and ask,  for  example,  if  the  slope  of  the  energy 
spectrum is universal. The selection of bases in which turbulence may be examined must 
be extended if these perspectives are to be effectively reconciled. Through the use of 
wavelets and wavelet packets, we have constructed a class of bases, which includes grid 
point and Fourier representations as special cases, from which we select the basis which 
is optimal for a given flow, namely the one which compress the most the information 
while keeping track of the behaviour of the flow in both space and scale. 

With such a wavelet or wavelet packet representation we can compute a local 
energy spectrum. Using the continuous wavelet transform, we have shown that different 
regions of the flow present different slopes for the local energy spectrum. Clearly the 
Fourier transform is unable to detect these different spectral behaviours which vary in 
space,  while  the  wavelet  transform  is  here  the  appropriate  tool.  Typically  we  have 
observed  that  the  cores  of  the  coherent  structures,  which  correspond  to  the  elliptic 
regions,  scale  around  k-6,  the  shear  layers  around  the  coherent  structures,  which 
correspond to the parabolic regions, scale around k-4, while the vorticity filaments in the 
background, which correspond to the hyperbolic  regions,  scale around k-3.  From this 
constatation  we  infer  that  the  variation  of  the  Fourier  spectral  slope  we  commonly 
observe  for  two-dimensional  flows may be  related  to  the  variation  of  the  density  of 
coherent structures which varies depending on the initial conditions and on the forcing. If 
it is true we may hope that the local scaling of the different regions may be universal 
enough in order to be able to model their behaviour, each regions having then its own 
parametrization.

Using  the  orthogonal  wavelet  packet  transform,  we  have  shown  that  the 
significant coefficients correspond to the coherent structures, while the weak coefficients 
correspond to the vorticity filaments which are only passively advected by the coherent 
structures. One possible application of the wavelet packet algorithm is to apply it from 
time to time during a numerical simulation, in order to separate regions with highly active 
small scales, which need a better grid resolution, from regions with inactive small scales, 
which do not contribute much to the dynamics and can either be discarded or modelled. 
Indeed  the  wavelet  packet  Best  Basis  seems  to  distinguish  the  low-dimensional 
dynamically active part of the flow from the high-dimensional passive components. It 
gives us some hope of drastically reducing the number of degrees of freedom necessary 
to the computation of two-dimensional turbulent flows.
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Legends

Figure 1

Comparison between different types of transforms: a. the analysing function in physical  
space, b. the analysing function in Fourier space, c. the corresponding information cells

1.1 Sampling by a Dirac comb
1.2 Fourier transform
1.3 Windowed Fourier transform
1.4 Wavelet transform

Figure 2

Most commonly used wavelets: a. the function and b. its Fourier transform 

2.1 Marr wavelet (Mexican hat)
2.2 Morlet wavelet
2.3 Meyer-Lemarié wavelet 
2.4 Daubechies wavelet (n=2)
2.5 Daubechies wavelet (n=7)

Figure 3

Wavelet transform of several academic signals using Morlet wavelet: a. the signal, b. the 
wavelet  coefficient  modulus, c. the wavelet  coefficient  phase.
We have used the code TecLet 1D (copyright Science & Tec).

3.1 a Dirac spike
3.2 the superposition of two cosine functions having different frequencies
3.3 the superposition of two cosine functions of very different amplitudes

 3.4 a tchirp
3.5 a Gaussian white noise
3.6 a tchirp in presence of a strong noise

Figure 4

Locality in wavelet coefficient space: a. the influence cone attached to xo, b. the spectral 
band attached to wavenumber ko

Figure 5



Analysis of the local regularity of a function f in xo (given by the slope of the modulus of 
(xo,a)  represented  in  Log-Log coordinates):  a.  f  is  a  function  presenting a Lipschitz 

singularity α in xo, b. f is a function which is regular in xo.



Figure 6

Continuous wavelet analysis, using Morlet wavelet with k0=5, of a one-dimensional cut 

done  in  a  two-dimensional  turbulent  vorticity  field:  a.  normalization a-1/2, b.  
normalization en a-1.

Figure 7

The wavelet coefficients in L2 norm computed using the Marr wavelet:
a. Large scale, 32 pixels,b. Medium scale, 8 pixels, c. Small scale, 2 pixels

Figure 8

The intermittency factor computed using the Marr wavelet:
a. Large scale, 32 pixels,b. Medium scale, 8 pixels, c. Small scale, 2 pixels

Figure 9

Local  energy  spectra  computed  from  the  wavelet  coefficients  after  segmenting  the  
vorticity field into three different regions.

9.1 The complete vorticity field
9.2 The elliptical region corresponding to the coherent structures
9.3 The parabolic region corresponding to the shear layers at the periphery 

of the coherent structures
9.4 The hyperbolic region corresponding to the vorticity filaments of 

the incoherent background flow
9.5 The corresponding energy spectra

Figure 10

Extraction of one coherent structure, done by filtering all wavelet coefficients which are  
outside  the  influence  cone  attached  to  the  center  of  this  coherent  structure,  before  
computing the inverse wavelet transform: a. the complete vorticity field, b. the coherent  
structure alone, c. the vorticity field without the coherent structure, d. the energy spectra 
of the three previous fields.

Figure 11

Extraction  of  the  40  most  excited  coherent  structures,  done  by  filtering  all  wavelet  
coefficients  which  are  outside  the  influence  cones  attached  to  the  centers  of  these  
coherent structures,  before computing the inverse wavelet transform:  a.  the complete 



vorticity  field, b.  the  40  coherent  structures  alone, c.  the  vorticity  field  without  the 
coherent structures, d. the energy spectra of the three previous fields.



Figure 12

Extraction of all excited coherent structures, done by filtering all wavelet coefficients  
which  are  smaller  than  a  given  threshold  and  then  computing  the  inverse  wavelet  
transform: a. the complete vorticity field, b. the coherent structures alone, c. the vorticity  
field without the coherent structures, d. the energy spectra of the three previous fields.

Figure 13

Compression  of a two-dimensional vorticity field using its wavelet packet coefficients: a. 
the uncompressed field and its energy spectrum, b. the compressed field and its energy  
spectrum, c. the discarded field and its energy spectrum.
The visualisation has been done in collaboration with Jean-Francois Colonna.

 13.1 Compression by a factor 2
13.2 Compression by a factor 20
13.3 Compression by a factor 200


