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Abstract

We compare the efficiency of two rank-reduction methods for repre-
senting the essential features of a two-dimensional turbulent vorticity field.
The two methods are both projections onto the largest components, in one
case onto the wavelet packet best basis, in the other case onto the best ba-
sis of adapted local cosines. We compare the two methods in three ways:
for efficiency of capturing enstrophy or square-vorticity, for faithfulness
to the power spectrum, and for precision in resolving coherent structures.
These properties are needed for subsequent segmentation into isolated co-
herent structures, or for measurement of statistical quantities related to
coherent structures. We find that in all three respects the wavelet packet
representation is superior to the local cosine representation.

1 Background
1.1 Models of turbulence

The classical approach to turbulent flows considers either ensemble averages
or equivalently, assuming ergodicity, time or space averages. In particular the
Kraichnan—Batchelor theory for two-dimensional turbulence [2, 10] postulates
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homogeneous mixing within the flow and supposes that the whole vorticity field
is involved in the turbulent cascade process.

In contrast to this approach, we think that a two-dimensional turbulent flow
is generically inhomogeneous and can be better described as a superposition
of coherent rotational vortices embedded in a random quasi-irrotational flow.
We have observed, in numerical simulations of two-dimensional Navier Stokes
equations with random initial conditions, that isolated vortices result from the
condensation of enstrophy into localized, well-separated structures. These struc-
tures are stable as long as they do not interact with one another, but during
close encounters they experience strong deformations, which then excite some
internal degrees of freedom. This gives rise to a local cascade or transfer of en-
strophy toward small scales and to its concomitant dissipation. Consequently,
only a limited active portion of the vorticity field, correlated to the coherent
vortices, is responsible for the turbulent cascade. The remainder, or background
portion of the field, is passively advected and plays a negligible dynamical role.

Our atomic view may be compared with the vortex methods of Winckel-
mans and Leonard [22], Marchioro and Pulvirenti [15], and Saffman [18]. We
generalize the simplest model used to approximate two-dimensional flows, that
of superposed point vortices, by considering the flow to be a superposition of
atoms that we choose from among a library of smooth localized functions such
as wavelet packets [4] or localized cosine functions [3, 14]. The additional pa-
rameters available to these atoms enable us to take into account the internal
degrees of freedom of each vortex, which can be considered as a molecule.

1.2 Turbulent flow computation

The usual methodology to compute turbulent flow evolutions is to separate them
into active components responsible for the nonlinear and chaotic dynamics, and
passive components, advected by the active ones which they merely perturb.
The active components must be explicitly computed, while the passive compo-
nents can be modeled by some subgrid scale parametrization. The question we
want to address is: which components in a two-dimensional turbulent flow are
active and which are passive?

1.2.1 Wavenumber segmentation

The commonly used computational techniques, such as Galerkin methods, large
eddy simulation, and nonlinear Galerkin methods, assume that there exists a gap
in the energy spectrum of turbulent flows. Such a gap allows us unequivocally
to distinguish low-wavenumber Fourier modes, which we consider to be active,
from high-wavenumber Fourier modes, which we consider to be passive. In fact
this assumption is misleading, because such a spectral gap is never observed,
neither for two-dimensional turbulent flows, nor for three-dimensional ones. We
have to look for other functional bases where some kind of gap both exists and



represents a physically meaningful distinction. Then the segmentation between
active and passive modes will be more than a leap of faith.

In the case of three-dimensional turbulence, according to Kolmogorov’s the-
ory [9, 17], energy cascades directly from low wavenumbers to high wavenum-
bers, where it is dissipated. In this case, the previous wavenumber segmen-
tation is still relevant as long as there is no local inverse energy cascade from
high-wavenumbers to low-wavenumbers. But in fact, such an inverse cascade
seems to arise whenever the flow presents well-localized active structures, such
as horseshoe vortices in boundary or mixing layers.

In the case of two-dimensional turbulence, wavenumber segmentation is al-
ways inappropriate. Kraichnan’s theory [11, 12] predicts, and numerical ex-
periments have confirmed, that two-dimensional turbulent flows on average ex-
hibit inverse energy cascades. Furthermore, any segmentation must also take
into account the presence of coherent structures, since they are generic in two-
dimensional turbulence and their mutual interactions are very probably respon-
sible for the inverse energy cascade. Because such features are well localized in
physical space, we propose to segment the field into components with definite
physical space location as well as recognizable spectral content.

1.2.2 Phase space segmentation

The method we will follow to define a better segmentation is to search for a
decomposition which puts the strongest concentration of enstrophy into the
fewest phase space atoms. We choose the atoms to be smooth functions, well
localized in both space and wavenumber coordinates. The additional dimensions
available in phase space better allow us to discriminate individual coherent
structures. We propose to characterize a coherent structure as the superposition
of phase space atoms which share the same position. The degrees of freedom
within each coherent structure are just the amplitudes of its component atoms.

We isolate structures by coarse graining in phase space. This is most easily
accomplished if our representation yields very few large components, rather than
large numbers of smaller components. We therefore compare techniques on the
basis of their gain of concentration. This is similar to the goal of adapted wave-
form denoising [5], or else transform coding image compression [19, 21], where
effectiveness is measured by transform coding gain. In this paper we will com-
pare transform coding into wavelet packets and local cosine phase space atoms.
The wavelet packet representation has proved superior to the Fourier represen-
tation in capturing features which control the dynamics of two-dimensional flow
evolution [7].



2 Methods

2.1 Two-dimensional incompressible viscous flows

We begin with a high resolution direct numerical solution of the Navier—Stokes
equations, which describe the dynamics of a two-dimensional incompressible
viscous flow. In the periodic plane S = (0,27) x (0,27r) C R? and in the
absence of external forcing, these take the following form:

)
U (u-V)u+VP-vV2u=0, inSxR"

ot
V-u=0, in S xR,
u(x, 0) = ug(x), inS.
Here u is the velocity field, P is the pressure field, and v is the kinematic

viscosity. We also impose periodic boundary conditions. We can rewrite these
equations in terms of vorticity w and streamfunction v, defined by

o
wo[(m Y ). _dw 0w
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The Navier—Stokes equations then become

%—L:‘l‘J(’L/J,w)—l/va:O, (x,t) € S x RT;

w = V2, (x,t) € S x RT;
w(x,0) = wo(x), xes.
Again we have periodic boundary conditions. The Jacobian operator in terms
of these new variables is:
oY dw Y dw
Jp,w)= ——— — ——.
aIl 83’72 (91‘2 (9171

We can expand w and % in their Fourier series over the periodic domain S:

, — ~ k, zk-X’ ~ k, I , 7zk-Xd :

w(x, 1) %;W( t)e ok 1) = o /X vl N

b t) = Yok kX k1) = % ety KX i
k XeS

We obtain a turbulent vorticity field by starting with a random initial vor-
ticity field wy(x), then integrating for many time steps in the presence of time-
periodic external forcing. Forcing is subsequently turned off and the same inte-
gration is continued until the vorticity field reaches a statistically steady state.



To integrate the Navier—Stokes equations, we use a pseudospectral Galerkin
method which, at each time step, performs all differentiation in w, 121 coordinates
and all multiplication in w, 1 coordinates. Both w and 1) are represented as finite
Fourier series, or superpositions of the Fourier modes at wavenumbers 0 < k| <
k., where k, is the cutoff wavenumber which gives some fixed resolution. The
time integration is done using an Adams Bashforth scheme. For the subgrid
scale model we use a hyperdissipation operator —(—V?2)#, which replaces the
Laplacian operator in the Navier—Stokes equations.

The periodic plane S is sampled on 5122 grid points in our simulation. The
program ran for 38,000 time steps At = 103 in units of 7", which corresponds
to 635 initial eddy-turnover times, starting from a random distribution of vor-
ticity with energy E = 0.5 in M L?T~2 units and an initial enstrophy Z = 279
in 772 units. The vorticity field we analyze is one time slice, presumably a
typical snapshot of a fully-developed turbulent flow, taken from the equilibrium
end of this preparation.

2.2 Wavelet packet best basis

Wavelet packets are generalizations of the compactly-supported wavelets in-
troduced by Daubechies, Mallat, and Meyer [6, 13, 16]. They constitute an
overabundant set of basis functions with remarkable orthogonality properties,
namely, that very many subsets form orthonormal bases. The one-dimensional
functions were first described in Reference [4]. Each basis element ¢ is char-
acterized by three attributes: scale s, wavenumber k, and position p, so we
may label them g,. By the Heisenberg uncertainty principle, it is not possi-
ble to localize a function to arbitrary precision in both p and k; we must have
dp -0k > 1 in normalized units, where dp is the uncertainty in position and dk
is the uncertainty in wavenumber. In our construction, we have dp =~ 2° and
0k ~ 27° in the same normalization, so that the product of the uncertainties
is roughly as small as possible. Such functions, which cannot be significantly
better localized in phase space, are evidently phase space atoms.

Fourier analysis with such waveforms or atoms consists of calculating the
wavelet packet transform wspp(f) = (Yskp, f). Certain subsets of the indices
(s, k,p) give orthonormal bases B, and for these subsets we have the inversion

formula:
f = Z <¢skpa f>'¢]skp-

(s,k;p)EB

Wavelet packets are rarely constructed explicitly. More usually, we simply
apply the fast discrete algorithm described in Reference [4] to the sampled values
of f, and thereby produce the coefficients wgj,(f). The underlying functions ¢
can, however, be developed as follows. We introduce two (short) finite sequences



| n | Low-pass filter coefficient h,, | High-pass filter coefficient g,

<0 0 0
0 1.6387336463179785 x 1072 | —7.2054944536811512 x 10~*
1| —4.1464936781966485 x 1072 1.8232088709100992 x 1073
2 | —6.7372554722299874 x 102 5.6114348193659885 x 103
3 3.8611006682309290 x 10~ | —2.3680171946876750 x 102
4 8.1272363544960613 x 107! | —5.9434418646471240 x 102
5 4.1700518442377760 x 107! 7.6488599078264594 x 102
6 | —7.6488599078264594 x 102 4.1700518442377760 x 1071
7 | —5.9434418646471240 x 1072 | —8.1272363544960613 x 10!
8 2.3680171946876750 x 102 3.8611006682309290 x 101
9 5.6114348193659885 x 1073 6.7372554722299874 x 102
10 | —1.8232088709100992 x 102 | —4.1464936781966485 x 102
11 | —7.2054944536811512 x 10~* | —1.6387336463179785 x 1072
> 11 0 0

Table 1: C 12 coefficients for orthogonal wavelet packets

{hn} and {g,,}, called conjugate quadrature filters, which satisfy the relations:

1
Z — ZhgnH =5 Gn = —(—1)"h11_n, for all n; (1)

1, iftm=0,
Z hnlingom = Zg”g"“m - { 0, otherwise; (2)
> hngniam =0,  forallm e Z. (3)

Next, we define a family of functions recursively for integers k > 0 by:

Wor(@) = V2 haWi(22 —n); Warra(z) = V2D g Wi(22 —n)  (4)

Note that Wy satisfies a fixed-point equation. Conditions 1 through 3 ensure
that a unique solution to this fixed-point problem exists, and that {W, : k € Z}
forms an orthonormal basis for L?(R). The quadrature filter pair h, g can be
chosen (see Reference [6]) so that the solution has any prescribed degree of
smoothness.

Equations 1 through 4 all have periodic analogs as well, which we use in the
case of periodic boundary conditions. For the experiments in this article, we
used periodic algorithm with the so-called “C 12” coefficients, using h,, and g,
as given in Table 1.

One-dimensional wavelet packets are defined from these W}, by the formula:

Ysp(x) = 275/2Wk,(27sw —p).



As described in Reference [4], we obtain an orthonormal basis subset Z by taking
those functions {¢sp : (s,k,p) € Z} for which the half-open dyadic intervals
{[&, &) : (s, k,p) € I} form a disjoint cover of the unit interval.

Our library of basis functions in two dimensions consists of all possible ten-
sor products of the 9 functions with both factors sharing the same scale s. The
definitions and formulas for this two-dimensional case may be found in Refer-
ence [21], elsewhere in this volume. Certain basis subsets can be described by
dlSJOlIlt tlhn% 02 th<13 unit square, as follows. Let I be a half-open dyadic square
(52, Bty x (32, 2) and put ¢ (p, p,) (7, y) = 27 *sWi, (27 *w—pg) Wi, (2~ *y—
py). Then every basis in our library, for functions on the 25 x 25 grid, corre-
sponds to a set of the form:

{1/)1,(pw,py) 1 el,p, € Zapy €Z,0<p, < 257570 <py < 2S75},

where 7 is a disjoint cover of the unit square by such dyadic squares I, for
0<s<Sand0 < kyk, <2 ' Computation of inner products with all
such functions is performed recursively, as is the search for the best-basis; the
implementation of both algorithms is described in Reference [20]. The entire
procedure has complexity O(N log N) where N is the rank of the problem, and
N = 225 for the original grid-point formulation.

The best basis of wavelet packets for a fixed vorticity field is the one maxi-
mizing the coding gain or entropy, as described in Reference [21]. The field is
then approximated by w®, a superposition of just the largest components. Call
the best basis Z,.. We project onto the top few coefficients as follows:

wt = Z cry.

ler|>e

Here I € 7., ¢; = (w,9y) and € is some predetermined threshold. We also sum
over all integer translates (pg,py), even though that notation is suppressed for
compactness.

In our four compression experiments, ¢ was chosen to ensure that w® con-
tained, 99.9, 99, 90, and 50 percent of the total enstrophy (or square vorticity)
of the field. The remainder fields w”™ = w — w® thus contain 0.1, 1, 10, and 50
percent of the enstrophy, respectively.

2.3 Local cosine best basis

The local cosine transform has much in common with the windowed Fourier
transform [8], which is a well known decomposition into phase space atoms.
Like the one-dimensional wavelet packet library, the library of one-dimensional
local cosines contains atoms that can be characterized by scale s, wavenumber
k, and position p. Since local cosines are real-valued, orthonormal analogs of
windowed Fourier modes, we may use the nominal window width for s, the



nominal left endpoint of the window for p, and the frequency index for k. Local
cosines have the formula

2 x—p

barp(@) =\ = b

) cos[w(k+%)x2sp].

Here b = b(z) is a smooth function supported in the compact interval [—¢, 1+ €]
for 0 < e < 3. This interval contains [0,1] which we will say is its nominal
support. The only special features are the use of odd half-integer frequencies in

the cosine function, and the symmetry properties of the window function b:
b(—x)? +b(z)? =1, bl —x)*+b(1+2x) =1, —e<z<e

These special properties insure orthogonality and make certain fast algorithms
possible. Reference [1] explores the one-dimensional case in much greater detail.

Two-dimensional local cosines consist of tensor products Vsgp(2)s krp ().
and their nominal supports are the cartesian product rectangles of the nominal
supports of the z and y factors. For simplicity we will be using the same scale
in both directions: s = s’ throughout this paper. Subsets of such functions
can be indexed by dyadic squares, with the squares correspond to the nominal
supports of the functions.

A two-dimensional adapted local cosine basis, as described in Reference [21]
elsewhere in this volume, corresponds to a disjoint cover by dyadic squares.
The best basis for a given vorticity field is the one which maximizes coding gain.
Descriptions and basic implementations of the algorithm to extract this basis
may be found in Reference [20].

2.4 Radial power spectrum

Given a sampled vorticity field w(x, tg) at some instant ¢y, we can compute its
Fourier power spectrum |@w(k, to)|? using the discrete Fourier transform or FFT.
This will be a nonnegative function of two variables, but we are only interested
in its mean behavior as |k| — oo, regardless of direction. Thus, we will average
over all rotations to get a radial power spectrum density:

1

= (k)2 k> 0.
el L

p(k)

We have suppressed the unneeded variable ty. The radial power spectrum that
we actually plot is an approximation of this density, found by summing the
discrete samples of |@|? lying in the annulus between two wavenumber radii &
and k + 1, then dividing by the multiplicity M} or number of samples in each
annulus: 1

pdisc(k) Z “D(k)|2) kZO,l,

= onk M,
k<|K|<k+1



The resolution of the discrete radial power spectrum is the same as that of the
discrete Fourier transform.

From the slope of the log—log plot of pg;sc, we can estimate the scaling law for
enstrophy as a function of wavenumber. This can be used to test the faithfulness
of segmentation methods, as described in Reference [7].

3 Results

We focused our attention on one vorticity field (Figure 1), representing what we
believe is a generic time slice of a homogenous, isotropic, fully developed turbu-
lent flow. Our experiment segmented it into high-enstrophy and low-enstrophy
components in both the wavelet packet and local cosine best bases, and we re-
constructed the different portions for visual inspection (Figures 2 to 5). We
then computed the radial power spectra of the reconstructed pieces (Figures 6
to 8), and estimated the spectral slopes in the inertial and noise-like regions
(Tables 2 and 3). Finally, we found the rate of accumulation of enstrophy by
components in the two methods (Figure 9 and Table 4).

3.1 Strong fields reconstructed after compression

Analysis and synthesis, either with local cosines or wavelet packets, is a perfect
reconstruction algorithm, but we envision discarding most of the components
before synthesis so as to compress the representation. The disappearance of
some components introduces distortion and artifacts that become progrssively
more visible at higher compression rates.

In the local cosine case, the basis functions are registered on a fixed grid
which may be inconveniently placed with respect to the principal features. Thus,
it may take a superposition of several components to match the phase of a peak.
If some of the components are small and disappear in the compression, there may
be oscillations in the reconstructed compressed field near features of interest.
These are visible in Figures 2b,d to 5b,d. Some of this oscillation also appears
in the wavelet packet reconstructions in Figures 2a,c to 5ba,c.

A quasi-singular structure, namely a sampled function near a discontinuity
or cusp, is described as the superposition of all Fourier modes. The local cosine
representation, like any Fourier compression, is unable to preserve nonsmooth
functions. Thus the compressed image is undesirably smoother than the orig-
inal, especially at high compression rates (Figure 3b,d). On the other hand,
wavelet packets include wavelets which concentrate the energy of singularities
into a few components. Those components vital for representing nonsmooth
portions of the field survive the wavelet packet compression, so that even at
high compression rates (Figure 3a,c) the quasi-singular features remain sharp
and well-separated.



Figure 1: Vorticity field at an instant of time, scaled to fill an 8-bit dynamic
range.
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a. 3129 wavelet packets, .9997. b. 5114 local cosines, .9997.
c. 803 wavelet packets, .997. d. 1479 local cosines, .997.

Figure 2: Vorticity fields reconstructed from “many” strongest wavelet packets
and local cosines, scaled to fill an 8-bit dynamic range.
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a. 79 wavelet packets, .97. b. 425 local cosines, .97.
c. 16 wavelet packets, .5Z. d. 70 local cosines,

Figure 3: Vorticity fields reconstructed from “few” strongest wavelet packets
and local cosines, scaled to fill an 8-bit dynamic range.
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b. 257,030 local cosines, .001Z.

c. 261,341 wavelet packets, .01Z. d. 260,665 local cosines, .017.

Figure 4: Vorticity fields reconstructed from “few” weakest wavelet packets and
local cosines, scaled to fill an 8-bit dynamic range.
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a. 262,065 wavelet packets, .1Z7. b. 261,719 local cosines, .1Z.

c. 262,128 wavelet packets, .57. d. 262,074 local cosines, .5Z.

Figure 5: Vorticity fields reconstructed from “many” weakest wavelet packets
and local cosines, scaled to fill an 8-bit dynamic range.
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The discarded coefficients in both types of compressions will typically contain
most of the high frequencies. These are registered at the unsmooth regions of the
field, where they must superpose to match the rapid variation. These nonsmooth
regions include vortex cores and the strongly sheared regions around vortices,
or in between two interacting vortices. Since components are registered around
these well localized phenomena, the field reconstructed from the discarded local
cosine coefficients can be highly structured, as is evident in Figures 5a—d. At
low compression rates such as those of Figures 4a—d, the discarded coefficients
constitute a low-enstrophy, homogeneous, noise-like remainder field. Wavelet
packets differ from local cosines in this respect chiefly because they are more
efficient; they allow more small components to be discarded as noise.

The local cosine components are not isotropic nor even very close to symmet-
ric, since they are tensor products of nonsymmetric one-dimensional functions.
We note, however, that we can use symmetric functions if we are willing to
using cosines on the odd intervals and sines on the even intervals [3]. Simi-
larly, compactly-supported one-dimensional orthogonal wavelet packets cannot
be symmetric or antisymmetric, so they too must give rise to nonisotropic ten-
sor product two-dimensional synthesis functions. However, if we use symmetric
biorthogonal filters in the wavelet packet algorithm [20], or still other modi-
fications, we can have compactly-supported synthesis functions which exhibit
considerably more symmetry, though they will still have the tensor product
character.

3.2 Weak fields reconstructed from the remainders

In both the wavelet packet and local cosine cases, for small compression ratio,
the fields reconstructed from discarded weak components are homogeneous, but
this homogeneity is lost as the compression ratio increases. At high compression
ratios, there are so many components and so much energy in the weak field that
it begins to exhibit the same inhomogeneity and anisotropy as the original field.

The requirement that the discarded components look like homogeneous noise
imposes an upper limit on the compression ratio. We must not have organized
features in the weak component field. The wavelet packet compression permits
a higher upper bound than the local cosine compression, since its remainder or
weak field remains disorganized up to higher compression ratios.

3.3 Spectra

Figure 6 shows the radial power spectrum of the original vorticity field. Figures
7a—d and 8a—d show the radial power spectra of vorticity fields compressed to
varying degrees by both methods. In each plot, three spectra are superposed for
comparison: that of the total field, that of the strong components, and that of
the weak or discarded components. All plots use the same vertical scale [6, —10],
which is the common logarithm of the radial power spectral density, and the
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Figure 6: Power spectrum of the original vorticity field.

same horizontal scale [0, 2.5], which is the common logarithm of wavenumber
magnitude |k| and roughly corresponds to the wavenumber range [0, 316]. We
use uniform scaling in order to allow a fair comparison for both slope and in-
tensity.

The radial power spectra computed from the strong wavelet packets oscil-
late rather wildly in the large wavenumbers, possibly because of the complicated
spectra of individual wavelet packets. There may also be a kind of Gibbs phe-
nomenon, in the wavenumber domain, as the long smooth spectral tails of the
wavelet packets try to match the sharp spectral cutoff at |k| = 170 in the orig-
inal field. The local cosines match this cutoff much better; also, the spectrum
of the total field does not oscillate near the cutoff.

We take the inertial region to be the wavenumbers 10 < |k| < 50, or 1.0 <
|log; Ok| < 1.7. In the inertial region the curve is approximated well by a line
of slope —5.63. The radial power spectra of various reconstructions also have
identifiable inertial ranges, and we list their slopes in those regions in Table
2. Notice that the local cosine compression’s inertial range shrinks much faster
than that of the wavelet packet compression, as the absence of discarded high-
wavenumber modes eats into the spectrum from the right.

We have listed the slopes of the fields reconstructed from the weakest coef-
ficients in Table 3, looking at the wavenumbers from |k| = 1 up to the highest
wavenumber taken to belong to the inertial range. Ideally these slopes would
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Full signal —
L Strong WP, .999Z -
Wesk WP, .001Z -

0 0.5 1

a. 3129 strongest wavelet packets,
19997, plus 259,015 weakest wavelet
packets, .0017.

Full signal —
L Strong WP, .99Z -
Wesk WP, .01Z -

0 0.5 1

c. 803 strongest wavelet packets,
997, plus 261,341 weakest wavelet
packets, .017.

“ Full signéla“—
-g [ Strong LC, .999Z ——
Wesk LC, .001Z

0 0.5 1 15 2

b. 5114 strongest local cosines,
19997, plus 257,030 weakest local
cosines, .0017.

Full signal —
g L StrongLC,.99Z —
Wesk LC, .01Z

0 0.5 1 15 2

d. 1479 strongest local cosines,
997, plus 260,665 weakest local
cosines, .017.

Figure 7: Superposed power spectra of the vorticity fields reconstructed from a
segmentation into the “many” strongest and “few” weakest wavelet packet and

local cosine components.
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Full signal ——
Strong WP, .9Z -
Wesk WP, .1Z -

0 0.5 1

a. 79 strongest wavelet packets, .97,
plus 262,065 weakest wavelet packets,

AZ.
Full signal —
Strong WP, .52 -
Weak WP, .5Z
0 0.5 1

c. 16 strongest wavelet packets, .57,
plus 262,065 weakest wavelet packets,

bZ.

Full signa —— |
Strong LC, .9Z ]
Weak LC, .17 -~ \
0 0.5 1 15 2 25
b. 425 strongest local cosines, .97,
plus 261,719 weakest local cosines,
1Z.
Full signd — 1
Strong LC, .52 ]
Wesk LC, .52 -
0 0.5 1 15 2 25

d. 70 strongest local cosines, .57,
plus 262,074 weakest local cosines,
bZ.

Figure 8: Superposed power spectra of the vorticity fields reconstructed from a
segmentation into the “few” strongest and “many” weakest wavelet packet and

local cosine components.



Enstrophy | Wavelet packet | WP slope | Local cosine | LC slope
fraction inertial range inertial range
9997 [10, 50] —6.73 [10, 50] —6.84
997 [10, 50] —6.60 [10, 30] —6.99
97 [10, 50] —6.26 [10, 18] —6.37
bz [10, 28] —6.58 [8,12] —7.72

Table 2: Spectral slopes in the presumed inertial range of various reconstructions
from strong components.

be 0, the radial power spectrum of white noise, but as the compression ratio
increases and the discarded coefficients hold more of the enstrophy, they begin
to assume more of the spectral characteristics of the original flow.

We can calculate the spectral slopes of the weak wavelet packet reconstruc-
tions in Figures 7a,c and 8a,c using rather high wavenumbers, but the weak
local cosine spectra are sharply disturbed at the rather low wavenumbers where
the strong-field spectrum has its cutoff, as seen in Figures 7b,d and 8b,d. The
region where we can estimate the weak-field spectral slope is the chief difference
between the two methods. Once that region is chosen, the slope decreases as
compression ratio increases at nearly the same rate in both methods.

3.4 Enstrophy concentration

Table 4 shows that wavelet packets concentrate enstrophy better than local
cosines, and that the stronger the compression, the better the wavelet packets
behave in comparison with local cosines. Wavelet packets are about twice as
efficient for retaining 99 and 99.9 percent of the enstrophy, and about five times
as efficient for retaining 50 and 90 percent of the enstrophy.

Figure 9 shows the concentration of enstrophy into coefficients in the wavelet
packet and local cosine transforms, respectively. The plots represent the enstro-
phy accumulated by retaining 1, 2, ..., 1000 of the coefficients after sorting
them into decreasing order by amplitude. Certainly with the same number of
coefficients retained, wavelet packets keep more enstrophy and therefore behave

Enstrophy | Wavelet packet | WP slope Local cosine LC slope
fraction noise-like range noise-like range
0017 [1,50] —0.46 [1,50] +2.20
017 [1,50] —-1.92 [1,30] +1.68
1z [1,50] —2.73 [1,18] —0.53
bZ [1,28] —2.70 [1,12] —0.91

Table 3: Spectral slopes of various reconstructions from weak components.
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Enstrophy | Wavelet packets | Local cosines
(percent) (per 1000) (per 1000)
99.9 11.94 19.51
99 3.06 5.64
90 0.30 1.62
50 0.06 0.27

Table 4: Fraction of coefficients needed to retain a given portion of the enstrophy
in the vorticity field.

better in terms of enstrophy contraction.

3.5 Coherent structure identification

One of our main goals is to locate the centers and influence regions of coherent
structures. This is done quite effectively by wavelet packets where the more we
compress, the more we isolate strong features. The process of discarding weak
wavelet packets Kkills off the small variations of the vorticity field and leaves
only the strongest peaks; Figure 3¢ shows the culmination of this process, a
few surviving vortex cores floating on a perfectly zero background. In the local
cosine or any other Fourier-like techniques, the more we compress the smoother
the signal will get and the more that quasi-singular features will be smeared one
into another. This problem is evident in Figure 3d, but is foreshadowed even
even in a moderate compression such as Figure 3b. Another problem with local
cosines is the parasitic oscillations we get at high compressions, which interfere
with algorithms that localize peaks by finding maxima. In extreme cases, we
may even encounter false peaks.

Another of our aims is to identify without ambiguity the dynamic portion of
the field and to distinguish it from any passive background. We expect that this
background flow should be a kind of noise: spatially homogeneous, isotropic,
with a broad spectrum. Ideally, the rejected portion of the field should have
amplitudes distributed like independent Gaussian random variables, so it is
indistinguishable from measurement error. From the radial spectrum plots in
Figures Ta,b, we see that both local cosine and wavelet packet compressions leave
remainders that behave much like weak, uncorrelated noise, if the compression
ratio stays below 100 or so. As the compresion ratio increases, the noise-like
portion of the local cosine spectrum occupies fewer and fewer wavenumbers, until
there is virtually no difference betwen the strong and weak spectra. In Figure 8d,
the strong and weak spectra match almost perfectly above |k| = 12. By contrast,
the noise-like portion of the weak wavelet packet spectrum covers almost the
same wavenumbers at low or high compressions, but it gets progressively less
noise-like, in the sense of spectral slope, from Figure 7a to Figure 8c.

Both goals advance the efficiency of further computations involving the fields.
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Figure 9: Accumulated enstrophy in partial sums of a decreasing-amplitude
rearrangement of wavelet packet and local cosine representations.

When we obtain a satisfactory separation, we can follow the evolution of the two
portions separately. We explicitly compute the time evolution of the coherent
structures, which costs little because there are few of them. We replace the
background by a synthetic noise having the same statistics, i.e, the same spectral
slope and similar higher order spectral moments such as skewness and flatness.
This model may be simple and cheap to compute. If the background plays only
a small role in the evolution, we will obtain reasonably accurate approximations
to the “true” evolution at much lower cost.

3.6 Improvements in compression techniques

We may try to do the compression recursively until the discarded coefficients
will represent only a noise. Starting with a high compression, we keep the top
few strong coefficients. Then we highly recompress the reconstructed remain-
der field, keeping only the top few strong coefficients, and so on. This is the
technique used in adapted waveform de-noising [5]. That method introduces a
different basis for each stage in the compression so that at the end we do not
have a single orthogonal basis representation of the field. However, the resulting
“best component” decomposition of the coherent portion of the field can still
be evolved by a low complexity computation, while the remainder can be even
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more accurately modeled because it has more of the properties of homogeneous
noise for a given enstrophy than the remainder produced by a single best basis
expansion.

Using the iterative compression technique, we can also try to recover some
isotropy by rotating the initial field several times and performing a strong com-
pression at each stage, then superposing all the strong coefficient reconstructed
fields. Such methods, however, complicate the problem of computing and com-
paring the total number of retained coefficients. Further research is needed to
circumvent the anisotropy of these separable compressions when the fields to be
analyzed are a priori isotropic.

3.7 Conservation of conservation laws

Enstrophy Z = |jw(-,t)||? is conserved in the Navier-Stokes evolution. We
are assured that Zgtrong + Zyeak = Ztotal for any segmentation wyiq) =
Wstrong T Yweak using orthogonal projections, and the conservation law ensures
that the total enstrophy in the weak part will never grow more significant.

It is important to note, though, that energy E = |lu(-,t)||? decreases as
t — oo because of the dissipation term in the Navier—Stokes equation. Having
split a vorticity field into pieces, we are not assured that the energy in the
two pieces will decay at equal rates. Furthermore, since we are using vorticity
and stream function coordinates rather than velocity coordinates, the energy
portions Egtrong and Eye,y will not add up to Ey ¢, in a general orthogonal
segmentation. Thus it is possible for a significant part of the initial field’s
energy to wind up in the remainder portion after segmentation, and then for
the retained portion’s energy to decay faster so that with time the remainder
portion’s energy becomes even more significant, relatively speaking.

We do have conservation of energy across vorticity segmentations in the
Fourier representation, however, where there is a relation Z = |k|?E for the
Fourier mode at wavenumber k. Since this holds at all times t, the energy
in the remainder field will never grow more significant relative to the retained
field. But no such relation holds for wavelet packets or other localized functions.
This absence may be a major drawback of our atomic approach, and must be
considered seriously if we want to use wavelets or wavelet packets to solve or
simulate Navier—Stokes evolutions. Addressing such concerns, however, would
go beyond the scope of our present paper.

4 Perspective

Turbulence, either two-dimensional or three-dimensional, seems to be the ran-
dom superposition of a set of metastable vortices, whose interactions give rise
to its characteristic unpredictible behaviour. The goal for modeling or comput-
ing the evolution of turbulent flows is to take a coarse-graining point of view,
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namely to keep the essential information and discard details as noise.

The bases we have proposed to use in this paper, wavelet packets and local
cosines, consist of phase space atoms which can be independently labeled by
position, scale, and wavenumber. The Navier-Stokes evolution tends to aggre-
gate these atoms into molecules corresponding to coherent structures. We can
calculate the interaction matrix corresponding to the energy and enstrophy cas-
cades in these atomic coordinates, where the number of significant components
is much lower.

We gain by drastically reducing the number of degrees of freedom necessary
to compute the turbulent flow evolution. Wavelet packets seem to be more effi-
cient than local cosines at accomplishing this reduction. We think that this ap-
proach may be extended to the case of three-dimensional turbulent flows, where
vorticity tubes will play the role of coherent structures. The three-dimensional
case poses even greater computing challenges and might benefit even more from
parameter reduction than our two-dimensional case.
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