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Abstract

In a first part, we study a parallel algorithm (written for a MIMD
machine) to compute the two-dimensional wavelet packet transform.
Then, we apply it to compute the multiplication of a matrix by a
vector in parallel. In a last part, we will use it to analyze and
compress a two-dimensional turbulent field.
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8.1. INTRODUCTION

We will present an implementation on a MIMD computer of the
two-dimensional periodic wavelet packet transform, the two-dimensional "best-
basis" choice algorithm, the non-standard matrix multiplication algorithm [1]
and some analysis and compression techniques for studying two-dimensional
turbulent fields. Our implementation also works for the wavelet transform
numerical algorithms of Beylkin, Coifman and Rokhlin [2]. It is one way to
obtain a fast functional calculus for certain classes of linear operators ; those
operators, which sparsify in the wavelet basis or the "best-basis" of the wavelet
packets, can be applied to vectors in a lower order of complexity. The purpose of
parallelizing the transform is to distribute the cost of the initial sparsification
"investment” over a large number of machines. This one-time cost is
O(N? log(N)) with a non negligible constant; we envision applications in which
N=105, for example evolutions of 2-dimensional fluid velocity fields on
1000x1000 point grids.

We will compute matrix coefficients for operators with respect to an
orthonormal basis of separable wavelet packets, using the 2-dimensional version
of the fast wavelet packet transform [3], [4]. The main idea is to lift an NxN
matrix, which maps RY to RV | into the space of maps from RV (4

R8N Any of a large number of NxN coefficient subsets of this lifting can

be used to represent the operator, so we may pick the subset in which the matrix
is most sparse. The choice is made with the "best-basis" algorithm and is itself a
fast algorithm. The number of basis subsets of this type grows like 4N for an
NxN matrix, but computing all of the coefficients with respect to all of the basis
functions requires just O(N? log(N)) operations. The algorithm for choosing the
"best-basis" in which the operator appears most sparse is described in [5]; it has
a complexity of O(N?). We have reason to believe that the equations of motion
for large physical systems sparsify by nearly an order of magnitude in this
collection of bases. We thus obtain lower complexity matrix application and
matrix multiplication algorithms from the new representation. Of course the
method is not perfectly general : the speedup depends very much upon the
problem. However, others have shown that for broad classes of operators we can
expect an order of magnitude asymptotic complexity reduction for matrix
multiplication.

As an application, we will use the wavelet packet representation of a field to
extract parts of it, either by keeping only its significative coefficients or by
selecting a particular zone. In this new representation of the field, we can then
perform some well-known analyzes , to get some local information. As an
example of this method, we will in the last part of this chapter analyze and
compress a two-dimensional turbulent field.
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8.2. PARALLEL WAVELET PACKET DECOMPOSITION

Suppose we have a two-dimensional periodic signal S = (s;5) with

0<i<2Xmand 0 < j < 2Y™X, and suppose nmax = min(Xmax, Ymax). We want
to calculate all the wavelet packets 7/C’ or rather the sets of wavelet packet

coefficients 7/ C,fp,} defined as follows :

- The indices are in the range :
0< j< nmax
0k, <2¥max~]
05y, <2™e=)
0<f; <4/

- The initial packet is :
0C) | =54 with 0Sk<2¥™* 0< [ <2Vm

- Then every other packet is defined recursively by the formula :

wirhj,kj ,ljandfj-e N

T :4.f +d i+1 I -
Fd C::,,,Im =Y Fd,.f; Iny =2k my =21, * jca{,..m, with
Ry
d =0, 1, 2 or 3. We shall say that the packet 71 ¢/is the father of

the four packets *//*“C7*! or that they are its four children.

- From a one-dimensional wavelet ¥ (defined by its filter G) and its

smoothing function @ (defined by its filter H) we obtain four two-
dimensional filters by tensor products :

Filter(0),, ,=H,-H,,

Filter (1), ,,=H, -G,

Filter(2), ,=G,-H,

Filter(3), ,=G, -G,

n m

In order to keep the frequencies (along the x- and y-axis) increas-
ing, we then define F(d,}‘})‘,",,1 =Filrer(gray_code2d(d,fj))"'m

where :
gray_code2d(d, f;)=2-a+b

dmod?2 if fjis even
““1-(dmod2) if f;is odd
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14 ol

The symbol [ x ] is the integer part of x.

- At a scale j+1, there are four times as many wavelet packets as there
are at scale j, and each wavelet packet has four times fewer coef-
ficients than those at scale j.

- From the first remark, with an initial signal of 2Xmax by 2Ymax points,
we deduce that :

. At scale j, there are 4 wavelet packets, each with 2Xmaxj
by 2Ymaxi coefficients, so we still have 2Xmax x 2Ymax
coefficients.

- We can then use the following representation of the two-
dimensional wavelet packet decomposition.

scale 0 : scale 1 : scale 2 :
2Xm.a.x 2Xmax‘l 2J(max-l
2Ymax- f=01] f=1 0f1(4]5
213 |6 l7
2Yl'rmJ|: f=0
. 819 |12|13
2 £=2 | £=3
10)11] 141 15
1 packet of 4 packets of 16 packets of
2Xmay oYmaX ints Xmaxy) HYmax:) nts pXmaxs2 HYmaxd ints

Figure 8.2.1 : Data arrangement for a 2D wavelet packet decomposition

. If Xmax=Ymax=nmax, then at scale nmax, we have 4nmax
wavelet packets of 1 coefficient each.

To do the decomposition in parallel, we will separate each scale (represented by
a field of 2Xmax by 2Ymax points) into 4P (0 < jp < nmax) parts of equal size. Each
process always stores the same part of the field so we can identify the process
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name by the name of the packet it contains at scale jp. For example, dividing the
wavelet packet onto 4 processes (jp = 1) from scale 0 to 2 gives the following :

Iscale O :

Figure 8.2.2 :
Repartition of the wavelet packets of scale 0 onto 4 processes

scale 1 :
(= scale jp)

Figure 8.2.3 :
Repartition of the wavelet packets of scale 1 onto 4 processes
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Figure 8.2.4 :
Repartition of the wavelet packets of scale 2 onto 4 processes

From the decomposition formula, one sees how the packets at scale j+1 are
obtained from those at scale j. To calculate the decomposition in parallel, after
cutting up the field as shown above, we will use the formula in two different
ways depending upon whether j is smaller or greater than jp.

First, let us consider the case when j < jp.

A packet at scale j is shared by 4P processes. In the initial step, those processes
will exchange their data in order to have the whole shared packet on each of
them. Then, in the second step, they will calculate their own part of the packet
they share at scale j+1. This part will be the entire child packet when scale j+1

equals jp.

From the decomposition formula we obtain that at scale j, the frequency f of the

packet stored on process p is given by f =[ P ] where [x] is the integer part

4dr=i
of x. Reciprocally, a packet at scale j and frequency f is shared by the processes
p=4"71.f 1o p=47~1.(f+1) — 1. We shall say that the first one is the base
process and all processes sharing the same packet are companions. The base
process is the one with the upper left-hand corner of the wavelet packet array.

In the same way, at scale j, the position (base_x, base_y) of the upper left corner
of the packet stored on process p is given by :
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- baseﬁx=r:x(p, i, ZM)—cx([ P :|,j. ZX"""} where

4ir=i
j 0 if jp=0
. Xmax __ | Jjp
C.I(P-J'Puz )_ ZZM—M.{[4J£m]mOd2} Otheﬂvise
m=1 )

- base_y—_-CJ’(P- jp, 2¥me )—cy[l:‘;jf_j ].j. 7 Ve ) where

0 if jp=0

P
Cy(Prjp:Zym )= izl’mﬂ.r-m ) |:4jp—m]

mod2; otherwise
m=1 2

The width and height of the part of the packet stored on a process at scale j is
9 Ximax-jp by 2 Ymax-jp_

Example : Suppose we have 16 processes (jp=2) and we try to calculate which
processes share the packet at scale j=1 and frequency f=2.

meur.-_ll
8 2Xmax~2 0 2)(111&::—_!1 %
' D
p:O p:] p:4 p=15
Seale ] maxa| £=0| £=0|f=1 |f=1
p=2|p=3|p=6 |p=7
2Ymax_l] f=0]| f=0]|f=1 f=1
0 p=8| p=9 |p=12|p=13
2Ymax- f=2]| f=2|f=3 | f=3
p=1q p=11|p=14 p=15
Y ) fI=2]| =2 |1f=3 |f=3
i |
yV
Figure 8.2.5 :

Example of the repartition of wavelet packet coefficients
at scale 1 with 16 processes.
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From these hypotheses, f =|:§]=2, so we deduce from the former formulas that

the processes sharing “C' are numbered & to /1. Each of them has wh = 2Xmaxip
by ht = 2Ymaxp data points arranged as follows :

Process 8 contains the local packet Z1Cy s 1 o -1 = 2Coi Ol .

Process 9 contains the local packet IICé‘M,I.O_m_I =20 0.ht=1

Process /0 contains the local packet 2ICy 1 0 -1 = Co bt 201

Process /1 contains the local packet 2ICy 1 o -1 = 2C:,,,__2w,,_,.,,,_2,,,_[
We will do the transfers as follows, looping in the index jj :
- We start with jj equals jp-1 and define a pivot process named depl,

p
4Jp=i

where depl=4-[ . In the initial step, processes p verifying

|:4;_ 7 ]zdepl +i (A) exchange their data with processes

[:;’_—B_]=dep!+ I+i (B) where i equals 0 or 2. At the end of this
step, the processes (A) and (B) share the same data. In the second

. j:i §]=dep1+i (C) and processes

step, processes verifying

verifying [4}.;:’_}..". ]=depl+2+i (D) with i equals 0 or 1 will
exchange the data they got from step one. At the end of these two
steps, the four processes share the same data.

- We decrement jj by one and repeat until jj equals j.

- At this point, each process sharing a packet contains all the coefficients
of that packet.

For definiteness, let us consider an example :

Suppose we have four processes (jp = 1) and we want to calculate the
packets at scale 1 from the packet at scale 0. We have j=0,
Ji =]jp-1=0. In this example, there will be only one loop over jj. In
the first step process 0 exchanges its data with process 1 (while
process 2 exchanges its data with process 3). Then in the second
step process 0 exchanges its new set of data (its initial data plus
process 1 initial data) with process 2 new set of data (while process
1 does the same with process 3). We exit the loop on jj, and every
processes now carries the packet °C?.

The pseudo-code representation of the algorithms described above is given in the
annex 1 "Decomposition".
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To calculate the transfer complexity, we will assume that the cost of a data
transfer is independent of the size of the data set. This is approximately true for a
large size data set. Thus, the transfer complexity will only show an order of the
number of transfers without any specification of the sizes of the data sets.

Counting passes through the jj loop, we see that the transfer complexity for the
function Data transfers is then 4*(jp-j).

In this previous algorithm (when scale j < jp), the function Data transfers is
done jp times so we deduce that the total transfer complexity is of order
O(2*jp*(jp+1)). The  decomposition  complexity is of  order
O(jp*2Xmaxx2 Ymax/4ip) where the constant depends on the length of the filters. In
simple terms, if NP=4" is the number of processes and if we have N=4nmax
points (Xmax=Ymax=nmax), then the transfer complexity is O(2*[log,(NP)]?)
and the decomposition complexity is O(P*log(NP)*N/NP).

Second, let us consider the case when j 2 jp.

Each process has 419 packets, and from each of these, we need to calculate their
four children. In this case, there is no parallelism as the children also belong to
the process. We will then use the sequential algorithm on the subset of packets
each process carries at scale j.

For j 2 jp, there is no transfer complexity. The decomposition complexity is of
order O((nmax-jp)*2Xmax*2Ymax/4ip) [f we consider NP =4 processes and
N =4"m% points, then the total complexity of this part is O((log,(N)-
log,(NP))*N/NP).

Combining the calculations from the two different parts of the parallel
decomposition algorithm, we conclude that the transfer complexity is of order
O(2*jp*(jp+1)) and the computational complexity is of order
O(nmax*2Xmax*9 Ymax/4ip)

Thus, if N=4"2% js the number of points (Xmax=Ymax=nmax) and NP=4 is the
number of processes then the transfer complexity is O(2*[log,(NP)]?) and the
computational complexity is O(log,(N)*N/NP).

8.3. PARALLEL WAVELET PACKET BEST BASIS
SELECTION

At the end of the decomposition, we have obtained the complete discrete
analysis of the input data. We must now extract a subset of wavelet packets
forming a basis. There are many methods to extract a basis : keeping only the
wavelet packets at a certain scale, for example, gives one solution.
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But if we consider a family of wavelet packets /C/ with jeJand f eF,,
selecting a basis among all those packets means that if a packet 72C % belongs to

the basis, all its descendants, the packets hotdo 0 i+l & ordo )4y - o424
... (with d,;, d, equals 0,1,2 or 3) cannot belong to the same basis.

We will maximize a concentration criterion to find a "best basis". For each
packet / C/, we compute a value M( f'c j) using a cost function M on the set.

For example, we can take a measure M which counts the non null wavelet packet
coefficients of a wavelet packet. Another commonly used measure is Me, which
evaluates the entropy of a wavelet packet expansion :

Me(D) = 0

Me(! ¢y =-3.( c] ufc ¢l )]t
k1

Once the measure is chosen, we shall produce a family of wavelet packets that
satisfies the condition for being a basis and that minimizes the value of the
measure.

to be the value of the
measure of the best basis of wavelet packets in the subset below / C /. First, for
all the frequencies f at scale j=nmax, we initialize ! C“;,w = M( ICJ). Then we
start the algorithm at scale j=nmax-1. For all the frequencies f at scale j, we

This is done by an iterative algorithm. We define / C/

value

: i
compare vy = M( fC*') to vy =Y, /I If vy is smaller than or equal to v,
d=0

we keep the wavelet packet / C/, we set /C ;L,“ = vy, and we discard all its
descendants. If v, is greater than v,, we keep the four children packets

S+ i and we set IC;";M to v,. We decrement j by one and iterate until j

equals 0. At scale 0, all the kept packets form the "best basis" of the signal.

To select the best basis in parallel, we will use how the wavelet packets are
stored on the different processes after the decomposition. Thus, if we have 4P
processes, then from scale 0 to scale jp-1 the wavelet packets will be shared by
more than one process, while from scale jp to nmax they will be part of a single
process.

From the definition of the best basis selection, one can see that there will be two
different algorithms, depending on whether j is greater or smaller than jp. In

order to know if a packet is kept or not, we define a variable ‘c ;Lum Ic ;';um
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for a local packet) equal to KEPT if the wavelet packet / C/is part of the best
basis, and NOT_KEPT if it is not.

Before selecting the best basis, we will suppose that the user has already chosen
a measure M and has already computed the value M(Jr c f) for every packet of

the decomposition. Hence it will not be counted in the computational
complexity.

First, let us consider the case when j 2 jp.
In that case, the best basis algorithm is the same as the sequential one except that
it is done on each subset of wavelet packets which belongs to each process.

The computational complexity of this algorithm is of order O(4/3*(4nmax-p _ 1)).
Therefore, if we have NP=4" processes and N=4""* points, this complexity
becomes O(4/3*(N/NP - 1)).

Second, let us consider the case when j < jp.
From the parallel decomposition, we have seen that at scale j, process p contains

-
the local packet [“”_’]!C /. At scale j, the packet / C/ is then shared by the
processes p=4%7J.f to p=47~J.(f+1) - 1. With another small calculation,
one can see that the packets *'/**C/*! (d=0..3) are shared by this same list of
processes.

P

From these three remarks, we deduce that if we add up lvy=M [4”4] IC’ | for

all the processes p=4"7/.f base to p=4""1.(f_base+1)—1 where

f _base =[4Tp—f]‘ we will obtain v0=M("-b“"Cj). Similarly, if we add up

P ] 2 ba
—J=1 i 1 j
[4‘” e ‘”:‘ for the same processes, we will get v, = E,‘PI' = Cv‘:r:ule :
vall d=0

One solution consists in adding up all those local values in order to get voand v,.
However, this is redundant : we do the same calculation at scale j+1 and at scale
J, once for calculating v, and the second time for v,. But we can easily change
the sequential algorithm to improve this if at each scale j, after having calculated
r

4=

v, and v, we set the local value [ ]IC';LM to the winner.
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4')",_ba.fc+d’c j+!

Then, each process sharing will have the same local value

4 baserd )0 I 5o the calculation of v, as we have already explained it, does

not give v, but gives 47~/~". v, Although it seems worse than the first solution,

this approach is in fact better, because the calculation of v, needs only the
addition of four local values instead of 4. Indeed, we can now calculate v, by
dep!'+(prmd4”""")+4"’"""-|'
3 qlr=i-1 .
the following formula: v,= Ic :‘:‘L with
i=0

i

depl=4P~1. f _base.

An example might clarify this formula :
Suppose that jp=2, j=0 and p=5. To calculate v,, the previous formula

gives vy='ICl +31C I+ +21C T + 3 1C* 50 process 5 only

value value value

has to exchange its data with processes 1, 9 and 13.

If we store the information costs locally in this way, then the parallel best-basis
search algorithm for process p at levels j < jp becomes the following :
- We start at j = jp-1.

- First, we calculate f_base =[ 4}5_}. ] and depl=4"J.f pase.

ai-1_y [deens] _
Second, we calculate vo= 3 M| L 4" Jic/ | by adding all

i=0

the values of the local packets at scale j. Third, we calculate
|:n‘ep!+(pnmd4”’""')+4"‘"1"‘1‘:|
i=3 4p=J-1 :
v=3 ICJ%) by adding all the values
i=0

of the local packets at scale j+1. Finally, we compare v, to v,. If v,
is smaller than or equal to v, then we keep the local wavelet packet

[4“’"]161’ [4"”’]:cf d we di I i
, we set valie 1© Vo, and we discard all its

descendants. If v, is greater than v,, we keep the local packet
.

[ [#,c
IC7", and we set IC, 1 tO V.
- We decrement j by one and iterate until j equals 0.
One way to exchange the local values is to take all the processes involved and

perform pairwise exchanges until every process has the total sum. Figure 8.3.1
depicts this algorithm graphically.



Chapter 8 : A parallel ... Page 14

i=0 depl depl + 1 depl + 2 depl + 3
jp=1 \/ \/
depl &> depl+1 depl + 2 &> depl+3

\/

depl —— 5 depl+2
depl+1 &————  depl+3

Figure 8.3.1 :
Transfer of the local values v, between processes depl to depl+3

To calculate v, we will use the same principle, except that the first transfer may
not be anymore between process depl and depl+1, but might instead be between
depl and depl+4#J!'. The transfer complexity of this function is of order
O(2*log,(np/p_shift)) and the computation complexity is of order
O(log,(np/p_shift)).

The pseudo-code representation of the algorithms described above is given in the
annex 2 "Best-basis".

Since we do the external loop jp times and we call the function Local value
transfer twice, the first time with np/p_shift equaling 4/ and the second time
with np/p_shift equaling 4, we deduce that the transfer complexity is of order
O(2*jp*(jp+1)) and the computational complexity is half of that, or
O(jp*(jp+1)). If NP=4" is the number of processes, then the transfer complexity
is of order O(2*[log,(NP)]?) and the computational complexity is of order
O([log,(NP)]?).

For the whole parallel best basis algorithm, the transfer complexity is of order
O(2*jp*(jp+1)) and the computational complexity is of order
O(4/3*(4mmaxiP-1) + jp*(jp+1)).

In the case when we have N=4""* points and NP=4iP processes, the transfer

complexity is O(2*[log,(NP)]?) and the computational complexity is
O(4/3*N/NP + [log,(NP)]?).

8.4. PARALLEL WAVELET PACKET RECONSTRUCTION
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The reconstruction is the opposite of the decomposition, from a family of kept
wavelet packets ”/C/ with jeJ (where JcN,,. ={n € N;0< n < nmax b
and f; € F, (where for each jeJ, F;c N,,_,), we want to obtain s, , =“Ck°J
(where 0<k<2*™* and 0<1<2") which is the corresponding signal

representation (S). We obtain S by applying the following recursive formula
until we get to °C? :

[y+d
f_=[—‘—] _ 3 +d ,
TL#lgH, ¥ 5 F[(f,+d) mod4.[f’4 ] slra
5 -
d=0n;.m; ki =2n;,0,,-2m;

where F(d, f; )M,=Fi!rer(gray_cod32d{d,fj ) am is exactly the same as for
the decomposition.

Usually we do not program this formula directly, rather we reconstruct a whole
branch of the tree, one level at a time. Instead of having its entire father

g

L]

[4 Cj", we only have one part of it, but if we reconstruct from all the packets
at scale j, we will obtain their entire fathers. The formula we program is then :

1
J -|=[_L] . : 2
e ¢, =frigl. & b3 F[fjmod4,[—?D «fic)
Y A |
kja=2ny, 0, =2m;

b kjyilin
nyumy

and the first time we encounter the packet Ti=1 C,c’: 1, We must initialize it to the

null packet (its coefficients being all zeros) if it is not a kept packet.

We suppose again that we have 41 processes, and that the data are dispatched to
each of them as before. In the same way as the sequential algorithm, we will start
at scale nmax and reconstruct the ancestors of each kept packet until we reach
scale 0. There will again be two different algorithms, one when scale j is greater
than jp, and the other when scale j is less than or equal to jp.

First, we consider the case when j > jp, the algorithm is the same as the
sequential one except that it is done on the subset of wavelet packets that belong
to a process.

In the worst case, the best basis is composed of all the packets
at scale nmax. In that case, the computational complexity is of order
O((nmax-jp) * 2Xmax*2Ymax/4ip) In all other cases it is less than this.

If we have N=4"" points and NP=4/ processes, the computational complexity
is therefore smaller than or equal to O((log,(N)-log,(NP))*N/NP).
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Second, we consider the case when scale j < jp, we suppose initially that each
process has an entire data set. Each of them will do the reconstruction locally
using the sequential algorithm, and when they reach scale 0, each of them will
have a partial signal. We will then need to add all these partial signals in order to
get the whole signal. Unfortunately, even if we do not have a lot of transfers, the
calculation complexity is exactly the same as for the sequential algorithm; so the
only advantage is that we need less memory. Instead we will propose another
solution which has a lower computational complexity but might require a larger
number of transfers.

We proceed in the following way. At scale j (1 <j < jp), we reconstruct the local
;=[__P_ , .
packet  “*"’NiCJin a full size temporary father packet /"*tC 7" using the
formula: /"*1C[7 =1"*1C [+ 3 FF, suse_cotym-2vhase_ysty * T IC,l,, Where
n.m

FF is the filter F(f mod 4,f / 4), and base_x and base_y are the x- and y-offsets of
the local packet f1c7. At this point we must add the local packet e i o
this temporary packet if it is a kept packet. Then, each process sharing the packet
ol vl exchanges and adds all the temporary packets in order to have the
whole one. After the transfer, they keep their own part of this father //*1C /™',
Then we decrement j by one and iterate until j equals 0.

One problem occurs when all concerned processes have to exchange the
temporary packets : what happens when not all the processes are waiting for the
transfer ? This case is not impossible, it happens when there is no kept packet
when scale j is greater than or equal to jO (with 0 < jO < jp) on at least one
process. We handle this problem in a very simple manner : if the packet ”IC 7
does not exist, we pretend it is the null packet. The propagation of this packet to
all scales j smaller than jp will handle the problem once and for all.

We first discuss the function which transfers packets between the concerned
processes, then we explain the computational part of the reconstruction
algorithm.

The function doing these transfers is similar to the local value transfer function
we have presented in the best basis selection algorithm. Here, we consider the
transfer and the addition of local arrays instead of local values.

The pseudo-code representation of the algorithms described above is given in the
annex 3 "Reconstruction”.

The transfer complexity of this function is of order O(2*log,(np/p_shift)) and the
computational complexity is of order O(size_array*log,(np/p_shift)).
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As the function Local array transfer is done jp times, we deduce that the transfer
complexity of the algorithm is of order O(2*jp*(jp+1)) and the computational
complexity is of order O(jp*(jp+1)*2Xmax*2 Ymax/4ip)

If N=4" points and NP=4" processes, the transfer complexity is
O(2*[log,(NP)]?) and the computational complexity is O([log,(NP)]**N/NP).

In the worst case, if we consider that the best basis is composed of all the
wavelet packets at scale nmax, the transfer complexity is O(2*jp*(jp+1)) and the
computational complexity is O((nmax-jp?)*2Xmax*)Ymax/4ijp)

' If we now suppose that N=4"" points and NP=4" processes, the transfer
complexity is smaller than or equal to 0(2*[I0g‘(NP)]2) and the computational
complexity is smaller than or equal to O((log,(N)+[log,(NP)]?)*N/NP).

8.5. PARALLEL MATRIX-VECTOR MULTIPLICATION IN
THE WAVELET PACKET BASIS EXPANSION

We wish to compute the product of a matrix C = (cu) by a vector D = (d;) in the
wavelet packet expansion. We suppose that 0 < i < 2¥* gapd
0<j< 2¥max 56 the result is a vector E = (e;). We perform the multiplication
in 3 steps.

During the first step we decompose the matrix C in a wavelet packet best basis,
we obtain a family of kept wavelet packets D¢ with jed (where
JCN,p={n € N;0S n < nmax}) and cf;€F, (where for each jelJ,
F;c N

4i_)- In the second step, we decompose the vector D in all the possible

one dimensional wavelet packets Y1 pJ with 0 < J<nmax and 0 < df; < 27,

Each frequency cfj is the combinaison of a frequency cf_xj along the x-axis and a
frequency cf_yj among the y-axis. We write that ¢f; =(cf _x;,cf _y;) and we
calculate cf_xj and Cij by :

-1 B
of _xy=T2tit. f{ - ] mod 2]
ji=0 \L4

-~

T ij
= 41
Cf—yj = 22"‘”" 1 —2———‘ mod 2
ij=0
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The multiplication in the wavelet packet expansion consists in obtaining all the

packets “-"EJ which are the solution of the multiplication of
g=d x93 by d-5pi

The third and final step is to reconstruct all the packets IVNEI 10 obtain the
vector E.

@02 G.o2 02 3
(O‘Obl OEI
@12 B2 -
022 22
(1! Ig!
03)2 IR2
I D' I 'D |
22 [ 32 |
S5 5[5 ]
Figure 8.5.1 :

Example of the multiplication in the wavelet packet expansion,
we consider *E =393 3p3

We can use the parallel algorithms previously described in order to perform the
first step and the multiplication.

At the beginning, we use 4 processes to decompose the matrix C in all the
wavelet packets and we select its best basis. On each process, we decompose the
vector D in all the one dimensional wavelet packets.

The multiplication between the wavelet packets can now be done as follows :

- for each kept packet / C/ at scale j, we first find the frequencies fx and
fy corresponding to f, then
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-if j is smaller than jp we do a multiplication between
7IC7 and the corresponding local packet of D/
(named ”ID7) to obtain the local packet 7 IE /. We
insert it in the null packet 7 E /.

- if j is greater than or equal to jp, we do the multiplication
between / C/ and D/ to have P E /. -

At the end of the multiplication, each process has a partial vector E in a wavelet
packet expansion (it is not usually a basis). They will then reconstruct all the
kept packets to get their partial vector E.

In a last part, each process exchanges and adds all the partial vectors E in order
to get the complete result of the multiplication of C by D.

The pseudo-code representation of the algorithm described above are given in
the annex 4 "Matrix-vector multiplication".

To calculate the transfer and computational complexities, we have to add the
complexities of one parallel 2d decomposition, one parallel 2d best basis
selection, one sequential 1d decomposition, one matrix vector multiplication,
one sequential 1d recomposition and one array transfer.

If we consider the case when all the coefficients in the best basis are non
negligible, this is of course much worse than the direct computation. But, if
instead of all the coefficients N, we consider that only R are non negligible, the
matrix-vector multiplication becomes of order O(R), and if R << N then this
method is more efficient than the ordinary multiplication.

8.6. APPLICATIONS OF THE WAVELET PACKET
TRANSFORM TO THE COMPRESSION AND
ANALYSIS OF A TWO-DIMENSIONAL TURBULENT
FLOW.

8.6.1. Methodology

We will now apply the wavelet packet transform algorithm to compress a two-
dimensional turbulent field which has been computed using a pseudo-spectral
Galerkin integration of the Navier-Stokes equations. We will represent this field

as asequence S, , where 0<k<2*™* and 0</<2"™*,

Our first goal will be to decompose this turbulent field into two distinctive
parts : its inhomogenous and organized components S~ , called coherent
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structures, and its homogenous and random components S called background

noise. Both components contain energy at all scales, so finding an optimal
representation to perform this segmentation is not straightforward. An example is
the Fourier representation; although the spatial information is kept in the phases,
it is quite complicated to use it in that form. The grid-point representation is not
a good one either, because we want to be able to compute the power spectrum of
both components. The decay of energy at small scales, or the scaling law,
provides an information very relevant for the stastistical theory of turbulence. To
segment the field, we will look for the fewest number of wavelet packet
coefficients necessary to adequately describe the coherent structures. We will
select the fewest wavelet packet coefficients such that the discarded is
homogeneous and its Fourier spectrum is a broad-band noise.

Our second goal will be to study an individual coherent structure. From the non
compressed wavelet packet representation of the field, we will extract one
coherent structure and compute its local spectrum to analyze its scaling law. The
number of wavelet packet coefficients defining this structure will then give us an
estimate of the number of degrees of freedom attached that it has. This is a kind
of "theoretical dimension" of the coherent structure.

8.6.2. The compression technique

From the wavelet packet best-basis representation of the field, namely a family
of kept wavelet packets Lici with jeld (where
JEN,,0={n € N;0Sn<nmax}) and f;eF, (where for each jel,
Fjc N,,_,), we will only keep the most energetic coefficients containing a

given percentage of the total energy.

In sequential, the compression algorithm is implemented as follows : first, we
sort the squares of all the wavelet packet coefficients in a decreasing order.
Then, we keep as many coefficients as needed in order that the remaining field
has a certain percentage of the initial energy (sum of the squares of the field's
coefficients). This gives us a deterministic way of selecting a threshold €
underneath which we set all the wavelet packet coefficients to zero.

The parallel algorithm is not very different : in a first step, each process will sort
the squares of the wavelet packet coefficients that belong to them. Then, two by
two they will exchange their sorted list, and will perform a merge sort on those
two lists to obtain the sorted list corresponding to both processes. They will
repeat this step until each process has the whole sorted list of coefficients. This
exchange of data is done as presented in paragraph 8.4 in the function
Local_array_transfer, the difference is that here we merge the two arrays instead
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of adding them. In a last part, each process selects the coefficients as in the
sequential algorithm and only keeps those that belong to itself.

The pseudo-code algorithm is given in the annex 5 "Compression".

8.6.3. The local extraction and local spectrum

The purpose of local extraction is to keep the wavelet packet coefficients / C ,f .
that are positioned at a certain point (ay,b,)  where
{aq. bo) [0, 2% [x[0, 2" [, or in a certain interval [a,, a,]  [B,, b, ]

where [a;, a,] x [y, b,] < [0, 22 [x[0, 27 [

Each wavelet packet coefficient / C ;:_, is localized in the space domain in the
interval [ko -2/ ko+2j"] X [!0 -2 1 +2j"’] where (kg , [;) is the center

of mass of the wavelet packet coefficient and is defined as follows :

ko=27 -k+!Shiftx/

{zozzf‘-ufs::mw and
IShifixX ! =2+ 1" ShifixX "' + F(f mod 4,f/4) ..
Ishifiy! =2+ /" shifty /™ + F(f moda, f[4) . and

{ 3 ;‘*F(duf)?.j
F(d’f)xsk{ﬁ =L§W
* Y ’
> j*F(d.f)i,-
F(d,f)ymﬁ = ‘-fz‘ F(d,f) .
x ]

L

We will keep this coefficient if the intersection between this interval and the
interval [ao-2j". a0+2H] X [bu—2f_"b0+2jh'] (respectively the interval

[a, -2/ a, +2-H] X [b] -2/, b2+2f_']) is not empty.

Extracting the local coefficients consists in keeping, for each wavelet packet
belonging to the best-basis, the coefficients which verify this property.
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To perform the local extraction, the algorithm will go over the wavelet packet
tree in a depth-first order. This allows us to calculate ”ShiftX / and /Shifty /

directly using the above formula. Then, for each kept wavelet packet of the tree,
we will retain its local coefficients, namely those which are positionned in

(ag, by) (respectively [a, az] X [b, . bz]).
The pseudo-code algorithm is given in the annex 6 "Local extraction".

After having locally extracted some wavelet packet coefficients, we can compute
their corresponding local spectrum. Once we have chosen what area of the field
we want to represent in the Fourier domain, either at a point (a,, b,) or in an
interval [a,, a,] % [b,,b,], we perform the local extraction of that particular

area and we reconstruct the filtered field by using only the coefficients kept
during the extraction. Once the reconstruction is done, we compute the Fourier
transform of this filtered field. We name it the local spectrum of the original
field for the area (ay , by) (respectively [a,, a,] x [b;. b, ]) as it is the spectrum
of the coefficients corresponding to that area.

4. i nd analysis of a -dimensional
turbulent flow

The Navier-Stokes equations describe the dynamics of a two-dimensional
incompressible flow.

Considering the periodic plane S =(0,27) x (0,2%t) € R?, and in the absence of
external forcing, the Navier-Stokes equations are :

%-&-(u V)u+VP-vV?u=0 inSxR*

1V-u=0 inSxR*
u(x,0)=uy(x) inS
.
where u is the velocity field, P the pressure field, and v  the kinematic viscosity.
SO o d
We can rewrite these equations in terms of the vorticity o = i o 0l and of
X 0X
Rl
5 | axz
the stream function y defined such that u= =l 3
Uy Ll
dx,

The Navier-Stokes equations then become :
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. .
%‘-:-+J(w,m)—vvzcn=0 inSxR*
dy do Jy Jw

0=V? mSxR* Vwith Jow,0)==2.29 Y 00
1% " A N 3%, 3m 3

o(x,0)=w,(x) in§

e

The vorticity field we will consider was computed by Thierry Philipovitch® on a
512x512 grid, with a hyperdissipative operator —(-V?)* and no external
forcing, using the numerical code developped by Claude Basdevant®. The time
integration was done with an Adams-Bashforth scheme and the space integration
with a pseudo-spectral Galerkin method. The code ran for 38000 time steps

At=107? (T’), which corresponds to 635 initial eddy-turnover times, starting
from a random distribution of vorticity with energy E=0.5 (M & T‘z) and an
initial enstrophy Z=279 (72).

We first compressed the vorticity field and observed as shown in figure 8.6.4.2
that :
- the 3000 strongest wavelet packet coefficients, corresponding to a
compression factor of 87, retain 99.9 % of the energy?,
-the 739 strongest wavelet packet coefficients, corresponding to a
compression factor of 355, retain 99 % of the energy,
-the 73 strongest wavelet packet coefficients, corresponding to a
compression factor of 3591, retain 90 % of the energy,
-the 14 strongest wavelet packet coefficients, corresponding to a
compression factor of 18724, retain 50 % of the energy.

4 LMD, Ecole Normale Supérieure, Paris, France

3 In turbulence the L%norm of the vorticity field is usually called enstrophy. In
this paragraph, we have called it energy to conform with the notation of the first
part of this chapter.
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Figure 8.6.4.1 : Initial Vorticity field, 512x512 (262144) coefficients

Parta:999 % > Partb:90% >
Partc:99 % > Partd: 50 % >

Figure 8.6.4.2 : The compressed fields S~
Pallette : maximum 36.3 in white, minimum -38.1 in black
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Parta: 0.1 % < Part b : <
Partc:10% < Partd : 50 % <
Figure 8.6.4.3 :

The discarded fields S
Pallette : maximum 36.3 in white, minimum -38.1 in black

In looking at the corresponding discarded fields and their power spectrum
(Figure 8.6.4.3 and 8.6.4.4), the field containing 99% of the energy
(compression factor of 355) is selected as the optimal one, because its discarded
field remains quite a homogeneous broad-band noise. Therefore, the fewest
number of wavelet packet coefficients necessary to represent the set of coherent
structures of this vorticity field is 739, which gives us an estimate of the number
of degrees of freedom we will have to consider to compute the flow evolution.
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Power Spectrum Comparison

[ T e s wg 10%> - = |

Original —
90% > — ]

" I i

0.5 1 1.5 2 2.5
Log10(Frequency)

Power Spectrum Comparison

Original —
S 50% > — ]
50% < - - |

0 0.5 1 1.5 2 2.5

Log10(Frequency)

Figure 8.6.4.4 : S” and S power spectrum comparisons
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Second, We extracted the maximum positive coherent structure from the whole
set of wavelet packet coefficients (Figure 8.6.4.5). There are 9000 wavelet
packet coefficients defining the structure.

Figure 8.6.4.5 : Local extraction of the maximum positive vortex
Pallette : maximum 36.3 in white, minimum -38.1 in black

We then performed the fourier transform to this extracted field and we computed
its power spectrum (Figure 8.6.4.6).

Log10(Energy)

Power Spectrum Comparison

L "

Original —
Local Extraction - - 1

-16 :
0 0.5

1 1.5
Log10(Frequency)

2 25

Figure 8.6.4.6 : Local extraction power spectrum comparison
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8.9. ANNEXES : Algorithms written in pseudo-code

8.9.1. Annex 1 : Decomposition

The function doing the data transfers has the following representation in pseudo-
code :

The parameters of function Data transfers are :
p is the process_name
jp i< such that 4% is the number of processes
j is the current scale
f is the current frequency
width is the width of the signal at scale 0
height is the height of the signal at scale 0
Local_packet is the local packet to transfer

First we initialize the parameters :
f=p/4iri
factor =1
f_child=p
11x = width / 2iP
Ily = height / 2i
base_x = cx(p,jp,width)-cx(f,j,width)
base_y = cy(p,jp,height)-cy(f,j,height)

Il —
Chuse_x+0.wh—1 pase_y+0.u-1 = Local_ packety o -

Then we transfer data :
FOR jj=jp-1 TOjBY STEP -1

f_father = f_child / 4

depl =4 * {_father

IF (((p/factor) equals depl) OR ((p/factor) equals (depl+2)))
bx=cx(f_child*factor,jp,width)-cx(f.j,width)
by=cy(f_child*factor,jp,height)-cy(f,j,height)
Send 7 CS; +0.1l1x—1,by+0.1ly—1 1O Process p+factor

bx=cx((f_child+1)*factor,jp,width)-cx(f.j,width)
by=cy((f_child+1)*factor,jp,height)-cy(f,j,height)
Receive / Clrrt.tix—t, by+0.11y—1 fYOM process p+factor

ELSE
bx=cx((f_child-1)*factor,jp,width)-cx(f,j,width)
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by=cy((f__ch?ld- 1)*factor,jp,height)-cy(f.j,height)
Receive /C}, +0.llx-1 by+0_ily—1 TOM process p-factor

bx=cx(f_child*factor,jp,width)-cx(f.j,width)
by=cy(f_child*factor,jp,height)-cy(f.j,height)

Send / Cl +0.l1x—1,by+0.11y—1 1O Process p-factor
ENDIF

llx = lIx *2

IF (((p/factor) equals depl) OR ((p/factor) equals (depl+1)))
bx=cx(depl*factor,jp,width)-cx(f.j,width)
by=cy(depl*factor,jp,height)-cy(f,j,height)

Send /'C/ -1 by+0.11y—1 1O PrOCess p+2*factor
bx=cx((depl+2)*factor,jp,width)-cx(f.j,width)
by=cy((depl+2)*factor,jp,height)-cy(f,j,height)
Receive / C. +0.1x—1,by+0.1ly~1 from process p+2 *factor

ELSE
bx=cx((depl-2)*factor,jp,width)-cx(f,j,width)
by=cy((depl-2)*factor,jp,height)-cy(f,j,height)
Receive /C/ lle—1,by+0.11y—1 ITOM process p-2*factor

bx=cx(depl*factor,jp,width)-cx(f,j,width)

by=cy(depl*factor,jp,height)-cy(f,j,height)

Send TCLop s v by+0.11y—1 10 Process p-2*factor
ENDIF

lly = lly*2

f_child = f_father

factor = 4*factor
ENDFOR j

Data transfers returns the packet Ici,

The algorithm of the decomposition when j < jp has the following pseudo-code
implemetation :

p is the process name

41 is the number of processes
wh = width / 2/

ht = height / 2iP
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FOR j=0TO jp-1
f:pf4IP‘J
fc=p / 4ipi!

d = fc modulo 4

/[First we exchange data to have /C/
¢! =Data fransfer:(p,_;p,j,f,me g fle)

//Second, we define the filter to use :
FF = F(d,f)

/[Third, we calculate the x- and y- offsets :
base_x = cx(p,jp,width)-cx(f,j,width)
base_y = cy(p,jp.height)-cy(f.j,height)

// Fourth we calculate 1€ /*!
I 1_ f
i [ij: - %{FFk&. i C.ik +2%(base_x+k), ll+2*%(base_y+1)
ENDFOR j

The algorithm of the decomposition when j > jp has the following pseudo-code
implemetation :

p is the process name
FOR j = jp TO nmax
FOR f = 45 * p TO 4i * (p+1) - 1
FORd=0TO3
First we set the filter to use : FF = F(d,f)
The we calculate */*4C/*! .
4f+dck{+:| = Z FFy.u s Cé'hz'k. +2%
kk 1t
ENDFOR d
ENDFOR f
ENDFOR j

8.9.2. Annex 2 : Best Basis Selection

First, we consider the case when j 2 jp :

FOR f = 4maxip * p TQ 40maxjp * (p+1) - |
1€} s =KEPT
fei = M( ! CJ")

value
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ENDFOR f

FOR j = nmax-1 TO jp BY STEP -1
FOR f = 419 * p TO 43P * (p+1) - 1

3 -
we 3 Ich

d=0
von(ij)

IF (vg < v)
fc) =KEPT

stars

! C\{m'uz =V

factor=1

FOR jj=j+1 TO nmax
factor = factor*4
f_base = factor*f
FOR ff = 0 TO factor

I _base+ ff C"{'{"m =NOT _KEPT
ENDFOR ff

ENDFOR jj

ELSE
fc! ..=NOT_KEPT
! Clilne =W

ENDIF

ENDFOR f
ENDFOR j

Second, we consider the case when j <jp :
To implement this algorithm,
First set the parameters of function Local value transfer :

p is the name of the current process
np is the number of processes doing the transfer
p_base is the pivot process
p_shift is the shift of processes to do the transfer
local_valucp is the value of the process p to transfer

We must also store some side daia :
test=np
stepsize=p_shift
pvalue=local_valucp

Then, we do the transfers :
WHILE (test > p_shift)
IF (((p - p_base) mod (2*stepsize)) < stepsize)
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p2=p+stepsize
start=1
ELSE
p2=p-stepsize
start=0
ENDIF

IF (start= 1)
Send pvalue to process p2
Receive p2value from process p2
ELSE
Receive p2value from process p
Send pvalue to process p
ENDIF

pvalue = pvalue + p2value

test = test/2

stepsize = stepsize * 2
ENDWHILE
total_value=pvalue

Local value transfer returns total_value

The best basis selection algorithm when j is smaller than jp is then :

p is the name of the current process
4P is the maximum number of processes

FOR j =jp-1 TOOBY STEP -1
f=p/4iri
f_child = p / 4!

vo = Local value transfer(p.4i%i £, 1, M( /17 )

v, = Local value transfer(p,4iPi f,4ip-i-1 /-child jo J+1

value

IF (vy<v))
fic! ..=KEPT
1 leilIue = Vo
factor=1

FOR jj=j+1 TO nmax
factor = factor*4
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f_base = factor*f
FOR ff =0 TO factor
fbee+ficd  =NOT_KEPT
ENDFOR ff
ENDFOR jj
ELSE
1€} s =NOT _KEPT
! Icv‘ifue |
ENDIF
ENDFOR j

8.9.3. Annex 3 : Reconstruction

First, we consider the case when j > jp.
In this case, the algorithm is the same as the sequential one :

p is the process name
FOR j = nmax TO jp+! BY STEP -1
FOR f = 4+ip! * p TO 41901 * (p+1) - 1
IF (/ C 77! exists)

IF(/Cl7) =NOT_KEPT)
Weset /C/7'=0, Vk,1
ENDIF
ENDIF
ENDFOR f

FOR f = 45 * p TO 4190 * (p+1) -1
IF (ij exists)
IF(/c},.=KEPT)

1/ We set the filter to use for reconstructing :
FF = F(f mod 4,f/ 4)

2/ We create /"*C /™! is it doesn't exist
by setting all its coefficients to zero.

3/ Weset /¢ = KEPT

Status
4/ We compute the partial reconstruction :
14~ j-1 -1 -
el =]+ X FF an1m* 7 Cl,,
n.m
5/ We don't need any more / C/
ENDIF
ENDIF
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ENDFOR f
ENDFOR j

Second, we consider the case when scale j < jp.

Function Local array transfer has the following parameters :
p is the name of the current process
np is the number of processes doing the transfer
p_base is the pivot process
p_shift is the shift of processes to do the transfer
local_array  is the array of the process p to transfer
size_array is the size of the local array

It contains the following local variables :
test=np
stepsize=p_shift
pvalue[i]:local_valuep[i] for 0<i<size _array

It then does these transfers :
WHILE (test > p_shift)

IF (((p - p_base) mod (2*stepsize)) < stepsize)
p2=p+stepsize
start=1

ELSE
p2=p-stepsize
start=0

ENDIF

IF (start = 1)
Send array pvalue to process p2
Receive array p2value from process p2
ELSE
Receive array p2value from process p
Send array pvalue to process p
ENDIF

pvalue[i] = pvaluel[i] + p2value[i] for 0<i< size _array
test = test/2
stepsize = stepsize * 2

ENDWHILE

total_value[i] =pvaluel[i]
Local array transfer returns the array total_value
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The reconstruction algorithm can be implemented as follows :

p is the name of the process

2Xmax#)Ymax is the size of the field at scale 0
wh = 2Xmax-jp

ht = 2Ymax-jp

FOR j=jp TO 1 BY STEP -1

np — 4]‘*]
f=p/4iri
f2=f/4
IF (VIC 7 exists)
IF(/Ic!  =NOT_KEPT)
I/ Weset /IC] =0, VO< k<wh, 0<I<ht
2/Weset 'ic! =KEPT
ENDIF
ELSE
1/ We create / IC/ by setting all its coefficients to zero
2 Weset/IC) =KEPT
ENDIF

IF (7IC7 exists)
IF(ic} . .=KEPT)

1/ We calculate local shifts
bx:cx(p,jp,zxmm )—cx(fZ,j—l,Zx"““ )

by=cy(p. jp; 2 )—cy(fz.j—l,z"m )
base_x:cx(p,jp.me )—cx{f,j.Zx""”)
base_y=cy(p.jp,2""“‘ )—cy(_f,j.ZY"“‘ )

2/ We create a real size temporary father /2 1C /™!
with null coefficients

3/ We update it if needed
IF (2IC 7" exists)
IF (2ic/”! = KEPT)
2 -1 — f -
4 tch-kﬂ..wh =Lby+0.u—1" lcﬂ{wh—l.(].m—l
ENDIF

ENDIF
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4/ We calculate the partial reconstruction
2~ -t _ [2 -l j
- tck,f = : rck,l' + zFFk—?"(nWse_x).f—l‘(mwme_y) e !lC:,m

n,m

5/ We calculate the sum of all /%:C /™!
len = 2Xmax-j+l % 9Xmax-j+1

I2tC 171 = Local arraytransfer| p,47~/*! | f2%4/0=14 | 124C - ,Ien)

6/ 1f 721C 7" doesn't exist we set it to the null vector
7/ We set 12IC /! = KEPT

Status

8/ We transfer the data from /2 ¢C /™ to /2 1C /™"

f2 i1 —J2 .~ -l
ICo wh-10.-17" “1Chr0.soh1by+0.he—1

9/ We don't need any more /*+C /™ and 7 IC/
ENDIF
ENDIF
ENDFOR

8.9.4. Annex 4 : Matrix-Vector Multiplication

The multiplication algorithm may be implemented as follows :

p is the process name

2Xmax fyy 2Ymax jg the size of the matrix C
2Xmax ig the size of the vector D

so 2Ymax is the size of the vector E

wh=2Xmaxjp and ht=2Ymaxip

A/ In parallel, using all the processes
We decompose C in all the 2D-wavelet packets,
We select the best basis for C

B/ On each process,
We decompose D in all the 1D-wavelet packets

C/ We do the multiplication when a packet is
shared by more than one process

FOR j =0 TO jp-1
f= p | 4iri
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IF (Y IC/ exists) THEN
IF(YICc! =KEPT)THEN

Status

1/ We set the signal shifts
base,_x=cx(p,jp,2xm )—cx{f.j.me )

base_y:vy(p'jp-f”‘“‘ )—cy(f.j.Z""““ )

2/ We set the frequencies among the x- and y- axis

fx= i‘:zf'ﬁ“‘ -(‘41__{}4] mod 2)

Ii=0
[[_s
=1 . |:4I‘Lf“|
fr=3 202 — 2| mod 2
i=0 2

3/ We keep the local vector

f B :
a IDD..wh—-l =5 Db{m.'_x+0..m—l

4/ We perform the smaller matrix-vector multiplication
BIET = =) ciy K pi

5/ We insert P IE 7 into P E/

Rl Mg
Eb&ueﬁ.y+0,h‘r—lh E§ oy

6/ Weset YE) = KEPT
ENDIF
ENDIF
ENDFOR j

D/ We do the multiplication when a packet belongs to a process
FORj=jpT0nma:bc' N
FOR f=4)Jp * p TO 459P * (p+1) -1
IF (Y C/ exists) THEN
IF(‘c!  =KEPT)THEN

Status
1/ We perform the smaller
matrix-vector multiplication
NEI=T=rM iy fipi
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2/ Weset "E! =KEPT

Stafus
ENDIF
ENDIF
ENDFOR f
ENDFOR j

E/ On each process,

We Reconstruct from all the kept wavelet packets * E i
Each process has its own part of the partial vector E

F/ We exchange and combine the partial vectors E to have the whole
vector E

E= locaiarraytransfer( p,4% ,0,1,E, 2" )

G/ The multiplication is finished,
Each process has the whole vector E.

8.9.5. Annex 5 : Compression

Here is first the function doing the merge of the local sorted list of wavelet
packet coefficients :

Function Merge local list has the following parameters :
p is the name of the current process
np is the number of processes doing the transfer
p_base is the pivot process
p_shift is the shift of processes to do the transfer
local_list, is the list of the process p to transfer
size_list 1s the size of the local list

1t contains the following local variables :
test=np
stepsize=p_shift
plist[i] = local_list [i] for 0<i< size_list

It then does these transfers :
WHILE (test > p_shift)
IF (((p - p_base) mod (2*stepsize)) < stepsize)
p2=p+stepsize
start=1
ELSE
p2=p-stepsize
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start=0
ENDIF
IF (start = 1)

Send size_list to process p2

Send list plist to process p2

Receive size_list2 to process p2

Receive list p2list from process p2
ELSE

Receive size_list2 to process p2

Receive list p2list from process p2

Send size_list to process p2

Send list plist to process p2
ENDIF

/l We perform a merge sort in order that pvalue be the sorted
list corresponding to plist and p2list

plist = merge(plist, p2list)

size_list = size_list + size_list2

test = test/2
stepsize = stepsize * 2
ENDWHILE

total_list[i] =plist[i] for 0<i<size_ list

Merge local list returns total_list.

Then here is the pseudo-code for the compression algorithm :

p is the process name

4ip is the number of processes

2Xmax y 2¥Ymax is the size of the field at scale 0

max_energy if the sum of the square of the coefficients that we would
like to keep. (For example, a certain percentage of the initial field
energy).

1/ First, the process groups all its wavelet packet coefficients and sort
them such as their squares be in a decreasing order. The process has now

alist L1 = (% (oS o PO Lo o/ N ) such that all the

coefficients verify (% e ) >(A ¢, ) > i, ).

kpers by
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2/ It exchanges its list with other processes until it has the entire sorted
list.

TL= Merge local h'sr(p.4j" 1 Ll,nl)

)

3/ It selects only the coefficients needed to have the specified
max_energy.

sum =0

nc=0

WHILE ( (sum < max_energy) AND (nc <tn))

TL = (!n TC kin - hi TCI:{I‘ A finr TC,S"‘"

=1+ *m-l

. 2
sum = sum + (J'" C™, )

nc=nc+1
ENDWHILE

4/ It keeps only the coefficients that belong to itself

FOR i=0TO nc-1
IF (fiC ¥ exists)
IE(ficl, . =KEPT)

1/ We create * CC ¥ to the null vector if it does
not exist

2/ We set the coefficient to keep
nech, = ek,
ENDIF
ENDIF
ENDFOR

5/ The new set of wavelet packets / CC J represent the compressed
version of the initial field /C .

8.9.6. Annex 6 : Local extraction

First, here is the pseudo-code for the function doing the sequential extraction on
the interval [aI 5 az] X [bl ; bz] (We consider the extraction at a point by setting
a,toa andbytob)):

Function Extract_local_Coefficients has the following parameters :
j is the scale and
f is the frequency defining the wavelet packet to consider
ShiftX and ShiftY are the x- and y- shifts at scale j-1 and frequency
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f/4.

First, we compute the x- and y- shifts for the considered packet
ShiftX =2+ ShifiX + F(f mod4,f/4)

ShiftY =2*ShiftY + F(f mod4, f [ 4)

xshift

yshift

Then, if the wavelet packet is part of the best basis, we extract its local
coefficients
IF (f C/ exists)
IF(‘/c] |, =KEPT)
1/ We initialize / CL’ to the null vector
2/ We set its status to KEPT
I'erl  =KEPT
3/ We set the boundaries for the local extraction
/! Round(x) returns the nearest integer to x
a,-27"" - ShiftX
2
a,+277' - ShifiX
2/
b -2/ —Sh:jfr}’]

ipx1= Round (

ipx2= Round [

2}
b, +277' — Shifty
2/
4/ We keep only the local coefficients
FOR ipx = ipx1 TO ipx2
FOR ipy = ipyl TO ipy2

ipyl= Round [

ipy2= Round [

! CL;u mod 2% ipy mod 27met-/ =7 ;rx mod 2%~/ ipy mod 27me-/
ENDFOR
ENDFOR
ENDIF
ENDIF
In a last part, we recursively extract the local coefficients in the child
packets
IF (j #nmax)
FORd=0TO3
Extract_ Local _ Coefficients(j+1,4* f +d, ShiftX , ShiftY)
ENDFOR

ENDIF
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The result is the new set of wavelet packets / CL/

Then, here is the pseudo-code algorithm for extracting the interval
[.a1 i az] X [bl ; bz] (@, < a, and b, <b,) on each processor (We consider the
extraction at a point by setting a, toa, and b, to b;) :

p is the process name
4¥P is the number of processes
2Xmax x 2Ymax ig the size of the field at scale 0

First, we consider the case when j < jp
IF ((’IC0 exists)
IF (°ICY),,.. =KEPT)
1/ We initialize °ICL® to the null vector
2%eL? . =KEPT

3/ We compute the base coordinates
bx=cx(p,jp.2x”'“)

by=cy(p. jp.2")

4/ We set the boundaries of the local extraction
OK =1
ipx1=max(a, —bx,0)
IF (ipx1 2 2*"~IPy OK =0
ipyl=max(b, —by,0)
IF (ipyl 2 2=~y OK=0
ipx2=min(a, —bx,2 X" —1)
IF (ipx2 < 0) OK=0
ipy2=min(b, —by, 2" 1)
IF (ipy2 < 0) OK=0

5/ We extract the local coefficients
IF (OK=1)

FOR ipx = ipx]1 TO ipx2
FOR ipy = ipyl TO ipy2

d !CL:PX iy T Tic ;,.W vipy
ENDFOR
ENDFOR
ENDIF
ENDIF

ENDIF
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ShiftX =0
ShiftY =0
IF (°ICL° does not exist)
FOR j =1 TO jp-1
f=p/ 4iv
ShiftX =2+ ShiftX + F( f mod 4.f/4)w,
Shifty =2+ ShiftY + F(f mod4, f/ 4)Wr
IF (Y IC/ exists)
IF(ic},.=KEPT)
1/ We initialize 7 ICL’ to the null vector
2 ficL! . =KEPT
3/ We compute the base coordinates
br=cx(p, jp.2"™) - ex(f, j, 22

by=cy(p. jp.2") - Cy(f-i’zr"'“’)

4/ We set the boundaries of the local extraction
OK=1

a1 _ .
frim Rmd[w
2
ipxl:max((ipx] mod ZX""“'j) = bx,O)
IF (ipx1 > 2Xm=iry 0K =0
b, —2/7" - Shifty
2
ipyl=max((fpyl mod 2“"‘““3) - by,())
IF (ipyl 2 2"~y 0K =0
a, +2/7' - ShiftiX
2/
ipx2=min((ipx2 mod 2Xmx~1 ) _ py 2 Xmax-ip)
IF (ipx2 < 0) OK=0
b, +2/' - ShiftY
2/
ipy2 =min((ipy2 mod 2“’""“‘1) - by,2 "M-JP)
IF (ipy2 < 0) OK=0
5/ We extract the local coefficients

ipyl= Round [

ipx2= Round[

ipy2= Round (
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IF (OK=1)
FOR ipx = ipx1 TO ipx2
FOR ipy = ipyl TO ipy2

! ICLipy iy = Tic =y
ENDFOR
ENDFOR
ENDIF
ENDIF
ENDIF
ENDFOR
ENDIF
Then, the case when j 2 jp

Extract _ Local _ Coefficients( jp, p, ShiftX , ShiftY)

The result is the new set of wavelet packets / CL’ and / ICL/





