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We have used wavelet transform techniques to analyze, model,
and compute turbulent flows. The theory and open questions
encountered in turbulence are presented. The wavelet-based
techniques that we have applied to turbulence problems are
explained and the main results obtained are summarized.

I. INTRODUCTION

We first planned to write an up-to-date review of the use
of wavelets and related multiscale techniques in turbulence
to update previous reviews we have written on this topic
[58], [59], [65]. To prepare this review we collected all the
relevant papers we know of and discovered that there are
more than 150. We then realized that our first goal of writing
an exhaustive review was not realistic. We have decided
instead to focus on the main applications of wavelets and
wavelet packets to analyze, model, and compute turbulent
flows.

We thank everyone who has helped us to gather this large
set of papers on the applications of wavelets to the study of
turbulence. We have listed them in a thematic bibliography,
which is available via anonymous ftp (to ftp.Imd.ens.fr in
the directory MFGA/pub/wavelets). The papers we will
discuss here represent a small subset of this bibliography
and they are for the most part directly related to our own
research on 2-D turbulence. We apologise for this lack of
objectivity, but we felt that it would be more realistic (in the
limited number of pages we have) to focus on the problems
we know best.

Our paper is organized as follows. We first state the
problem of turbulence and the main open questions. We
then focus on how wavelets and wavelet packets can be
used to answer these questions. We present fractal and
multifractal analysis, turbulence analysis and turbulence
modeling, and finally the use of wavelets to numerically
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solve various partial differential equations related to tur-
bulence. In conclusion, we present several perspectives and
point out where new methods need to be developed in order
to improve our understanding of turbulence.

II. OPEN QUESTIONS IN TURBULENCE

A. Definitions

Turbulence is a highly unstable state of fluids, where
by fluids we mean continuous movable and deformable
media. Liquids, gases, and plasmas are considered to be
fluids when the scale of observation is much larger than
the molecular mean free path. Turbulence is characterized
by the Reynolds number, which is the ratio of the nonlinear
convective motions, responsible for the flow instability,
to the linear dissipative damping, which converts Kinetic
energy into thermal energy. We will focus on “fully devel-
oped turbulence,” namely the limit of very large Reynolds
numbers, which corresponds to either very large velocities
(strong convection), and/or very small viscosity (weak
dissipation), and/or very large turbulent scales. For flows
encountered in hydraulics and naval engineering Reynolds
numbers are of the order of 102 to 105, in aeronautics
(engines, airplanes, shuttles) 10° to 108, in meteorology
and oceanography 10% to 102, and in astrophysics larger
than 10'2,

While the dissipation term is optimally represented in
Fourier space because Fourier modes diagonalize the Lapla-
cian operator (for periodic boundary conditions), the non-
linear convective term is very complicated in Fourier space
where it becomes a convolution, i.e., all Fourier modes are
involved. By the very simple argument that fully developed
turbulence corresponds to flows where nonlinear convection
is dominant, i.e., is larger than linear dissipation by a
factor of the order of Reynolds number, it is obvious
that the Fourier representation is inadequate for studying
and computing flows in this large Reynolds limit. We
need to find a mathematical tool to optimally solve the
nonlinear convection term, in the same way as the Fourier
transform is the most economical representation to solve the
linear dissipation term. Surprisingly, however, all classical
methods in turbulence rely on the Fourier representation,
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which is inappropriate for the nonlinear convection term.
See [125] for the statistical theory of 3-D turbulence and
[98] for the statistical theory of 2-D turbulence.

Turbulence remains an unsolved problem because our
present conceptual and technical tools are inadequate. For
instance, Hamiltonian mechanics describes equilibrium
states of conservative systems, but turbulent flows are
nonstationary and dissipative. Classical dynamics only
solves systems with a few degrees of freedom, while fully
developed turbulent flows have a very large, perhaps even
infinite, number of degrees of freedom. Statistical theories
deal with closed reversible systems in thermal equilibrium,
but turbulent flows are open irreversible systems out of
thermal equilibrium. Mathematical methods solve linear
differential equations, but cannot (apart from a very few
cases) integrate analytically the nonlinear partial differential
equations encountered in the study of turbulence. They
are even unable to prove existence and uniqueness of
solutions of the Navier—Stokes equations describing the
fluid motions when nonlinear advection becomes dominant.
We should mention here a recent mathematical result
[31] which gives, using multiscale (Paley-Littlewood)
decomposition, a local existence and uniqueness theorem
for Navier—Stokes equations in R® if initial conditions are
sufficiently oscillating (in a Besov norm sense). Some other
mathematical attempts have been made using divergence
free vector wavelets [67], [17], but in all cases these
proofs are done in an unbounded space. However, physical
fluid flows are bounded either internally or externally,
and we still do not know the optimal functional space for
describing turbulent flows.

In summary, the theory of fully developed turbulence
is in what we call a prescientific phase, because we do
not yet have an equation, nor a set of equations, that
could be used to efficiently compute turbulent flows. The
incompressible Navier-Stokes equations, which are the
fundamental equations of fluid mechanics, are not the right
ones for turbulence because their computational complexity
becomes intractable for large Reynolds flows. However,
in this limit it should then be possible, as it is done in
statistical mechanics, to define averaged quantities which
would be the appropriate variables to describe turbulence
and then find the corresponding transport equations to
compute the evolution of these new quantities. Likewise,
the Navier-Stokes equations can be derived from the Boltz-
mann equation by considering appropriate limits (Knudsen
and Mach numbers tending to zero [9], [10]) and appro-
priate averaging procedures to define new coarse-grained
variables (velocity and pressure) and associated transport
coefficients (viscosity and density). The turbulence equa-
tions should be derived as a further step in this hierarchy of
embedded approximations, but this scientific program may
be impaired by the possible nonuniversality of turbulence,
which remains an essential question to address.

More precisely, it is easier to define the appropriate
parameters to go from Boltzmann to Navier—Stokes than
from Navier-Stokes to turbulence equations [122]. In the
first case only a linear averaging procedure, namely coarse-
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graining, is needed while in the second case we have
to find an appropriate nonlinear procedure, namely some
conditional averaging. For this we should first identify the
dynamically active structures constituting turbulent flows,
classify their elementary interactions, and define the aver-
aging procedures to construct appropriate statistical observ-
ables. Wavelet analysis is a good tool for exploring this
conditional averaging and for seeking an atomic decompo-
sition of phase space, defined in both space and scale. In
1972, Tennekes and Lumley [151] already had the intuition
of such a phase-space decomposition when they proposed
to consider a turbulent flow as a superposition of Gaussian-
shaped wave packets they called eddies; but we know since
Balian’s theorem [8] that we cannot built orthogonal bases
with such functions. This is why we propose to use instead
wavelet or wavelet packet bases to study how phase-space
“atoms” exchange energy, or other important dynamical
quantity, during the flow evolution and possibly combine
to form phase-space “molecules.”

We still hope that there will be enough universality in
the behavior of these phase-space “atoms” so that we can
find a general theory and a set of equations to describe
their evolution, but this could well be an unrealistic goal.
Wavelets may supply new functional bases better adapted
to represent and compute turbulent flows, i.e., to extract
their elementary dynamical entities, perform the appropri-
ate averages on them, and predict the evolution of these
statistical quantities.

B. Navier—Stokes Equations

The fundamental equations of the dynamics of an incom-
pressible (constant density of fluid elements) and Newto-
nian (deformation proportional to velocity gradients) fluid
are the Navier-Stokes equations

8V 4+ (V-V)V+1/pVP =vV?V+F ()
V.V=0 )

plus initial and boundary conditions 3)

where ¢ is the time, V the velocity, P the pressure, F the
resultant of the external forces per unit of mass, p a constant
density, and v a constant kinematic viscosity.

The mathematical difficulty of the Navier-Stokes equa-
tions arises from the fact that the small parameter v, which
tends to zero in the limit of infinite Reynolds numbers,
i.e., for fully developed turbulent flows, appears in the
term containing the highest-order derivative, namely the
dissipation term V2 V. Thus the character of the equations
changes as v tends to zero, since in this limit it is the
nonlinear advection term (V - V)V which dominates. This
singular limit is similar to the semiclassical limit # — 0
encountered in quantum mechanics. When v = 0, i.e., for
infinite Reynolds numbers, the Navier—Stokes equations are
called Euler’s equations.

The physical difficulty of the Navier-Stokes equations
comes from the incompressibility condition, namely the
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divergence-free requirement imposed by (2), which implies
that the speed of sound is infinite. In this case any local
perturbation is instantaneously transmitted throughout the
whole domain. This requirement seems too drastic and quite
unphysical because the speed of sound is large in real flows
but never infinite. In the future we may prefer to consider
instead weakly compressible Navier-Stokes equations to
simplify the computation of turbulent flows and represent
their local behavior more accurately. Moreover, on physical
grounds Eulér’s equations are unrealistic because the limit
v = 0 contradicts the fluid hypothesis, which supposes that
the system is locally close to thermodynamical equilibrium
due to molecular collisions (which implies dissipation).

The pressure can be eliminated by taking the curl of (1)
and (2). This gives the equation of vorticity w, the curl of
velocity

dw+ (V- Vw=(w - V)V+uVw+VxF. 4

If one considers a stationary state of the turbulent flow such
that all the energy (integral of the velocity squared) and
enstrophy (integral of the vorticity squared) injected into
the flow by the external forces are dissipated by viscous
friction, (4) becomes

diw = (w- V)V. 5)

In 3-D this equation shows that vortex tubes may be
stretched by velocity gradients, a mechanism which has
been proposed to explain the transfer of energy toward
the smallest scales of the flow. In 2-D the right-hand side
becomes zero, because the vorticity is then a pseudo-scalar
w = (0,0,w) perpendicular to the velocity gradients. The
vorticity and its infinitely many moments are therefore
Lagrangian invariants of the flow (Helmholtz theorem). In
this case there is no vortex stretching and energy cannot
cascade toward the smallest scales, but tends to accumulate
into the largest scales, the so called inverse energy cascade
[97], [13], while enstrophy instead cascades toward the
smallest scales where it accumulates.

C. Statistical Theories of Turbulence

The first statistical method was proposed in 1894 by
Reynolds [139] who assumed that turbulent flows can
be described by ensemble averages, without considering
the details of each flow realization. He then decomposed
the velocity field V(x) into a mean contribution ; plus
fluctuations u/ and rewrote the Navier—Stokes equations
to predict the evolution of @;, which gives the Reynolds
equations

ot Ja.’Ej

1 8P _ 8 8'[_111 7 =

Py Pl vy (Vazj uiu]) + F;. (6)
To solve the Reynolds equations one should compute the
second order moment of the velocity fluctuations EZu_;
called the Reynolds stress tensor, which in fact depends
on the third order moment uju%u; (z, j, and k are dummy
indexes), which depends on the fourth order moment, and
so on ad infinitum. This is the closure problem: there are
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more unknowns than equations; to solve the hierarchy of
Reynolds equations the traditional strategy is to introduce
another equation, or system of equations, chosen from some
a priori phenomenological hypotheses, to close the set of
Reynolds equations.

For instance, to close the hierarchy of Reynolds equa-
tions, Prandtl introduced a characteristic scale for the ve-
locity fluctuations, called the mixing length, which led
him to rewrite the Reynolds stress tensor as a turbu-
lent diffusion term. Following an hypothesis proposed by
Boussinesq [26], and by analogy with molecular diffusion
which smooths velocity gradients for scales smaller than
the molecular mean free path, Prandtl assumed that there
exists a turbulent diffusion which regularizes the mean
velocity gradients for scales smaller than the mixing length.
Unfortunately this hypothesis is wrong because, contrary
to molecular diffusion, which is decoupled from the large
scale motions and can then be modeled by a linear operator
(Laplacian) with an appropriate transport coefficient (vis-
cosity), turbulent motions interact nonlinearly at all scales
and there is no spectral gap to decouple large scale motions
from small scale motions. This is a major obstacle faced
by all turbulence models and the closure problem remains
open. This is also the reason why renormalization group
techniques [161] and nonlinear Galerkin numerical methods
[117] have not met their promises. An important direction
of research is to find a new representation of turbulent
flows in which there is a gap, decoupling motions out of
equilibrium from well thermalized motions, which can then
be modeled. Such a separation seems only possible with
a nonlinear closure, based on conditional averages which
depend on the local behavior of each flow realization. Non-
linear wavelet or wavelet packet filters are good candidates
for this (see Section V-B).

Taylor [150], under the influence of Wiener with whom
he was in correspondence [16] since his famous paper on
turbulent diffusion [169], proposed in 1935 characterizing
turbulent fields by their correlation functions, in particular
by the Fourier transform of their two-point correlation
function which gives their energy spectrum. Twenty years
before, Einstein [51] had outlined the same method to
characterize fluctuating data, but he was not followed at
the time [160]. To simplify the computation of correla-
tion functions, Taylor made the hypothesis of statistical
homogeneity and isotropy of turbulent flows, supposing that
the ensemble averages are invariant under both translation
and rotation. In the thirties Gebelein proposed applying
the probability theory of Kolmogorov to hydrodynamics,
a method later developed by Kolmogorov himself and
his student Obukhov [127], who published in 1941 three
key papers on the statistical theory of fully developed
turbulence. Kolmogorov [93]-[95] studied the way in which
Navier—Stokes equations in 3-D distribute energy among
the different scales of the flow. This type of approach is
common in statistical mechanics, but a difficulty arises here
from the fact that turbulent flows are open thermodynamical
systems, due to the injection of energy by external forces
and its dissipation by viscous frictional forces. To resolve
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this difficulty Kolmogorov supposed that external forces act
only on the largest scales while frictional forces act only
on the smallest scales, which, in the limit of very large
Reynolds numbers, leaves an intermediate range of scales,
called the inertial range, in which energy is conserved and
only transferred from large to small scales at a constant
rate e which is supposed to be constant. But this cascade of
energy concerns averages and not individual flow realiza-
tions; moveover it is only phenomenological and has never
been proved from first principles. Kolmogorov also sup-
posed that turbulent flows are statistically homogeneous and
isotropic; he also uses the fact that the skewness, namely
the departure from Gaussianity of the velocity increment
probability distribution, is constant, which implies that the
flow is non intermittent. These hypotheses lead him to the
K41 model which predicts the following energy spectrum
scaling, known as the k=53 law

E(k) = C&2/3k=3/3 (M

where k is the modulus of the wavenumber averaged over
directions, corresponding to the inverse of the scale, and C
is called Kolmogorov’s constant.

Landau criticized Kolmogorov’s hypothesis of a constant
rate of energy transfer ¢ independent of the scale, arguing
that the dissipation field should also be considered random.
Following this remark Kolmogorov proposed to model the
energy transfer as a multiplicative process where only a
fraction 3 of energy is transferred from one scale to another.
Assuming that the probability density of the dissipation
field varies randomly in space and time with a log-normal
law, this lead him to propose the K62 model which predicts
the following energy spectrum scaling

s s (kN
E(k)=Ce3k™3 ln(—) ®
kr
where k; is the wavenumber at which energy is injected
(inverse of the integral length scale).

For 2-D turbulence there is a statistical theory similar
to Kolmogorov’s theory developed by Batchelor [13] and
Kraichnan [93] which takes into account, in addition to
the conservation of energy, the conservation of enstro-
phy (integral of vorticity squared), true only for the 2-D
Euler equations. Making the same kind of hypotheses as
Kolmogorov, they predicted a direct enstrophy cascade,
from large to small scales, giving a k=3 energy spectrum,
and an inverse energy cascade, from small to large scales,
giving a k~5/3 energy spectrum. The problem is that the
energy spectra obtained from numerical simulations are
always steeper than the k=3 law predicted by this theory.
There is another more recent statistical theory proposed
by Polyakov [136] which takes into account, in addition
to the energy conservation, the conservation of infinitely
many moments of vorticity in 2-D, which led him to predict
different scalings depending on the way energy is injected,
thus, Polyakov’s theory is not universal. In fact the same
nonuniversal behavior of 2-D turbulence is also observed
in numerical simulations [103].
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Since the pioneering work of Onsager [129], there have
been several statistical theories for decaying 2-D turbulence
[90], [143], [120], [144], [44], [145], [56] which are not
based on ensemble averages nor spectral information. These
theories, unlike those of Kraichnan’s and Polyakov’s, do
not discard the spatial flow structure. For a recent review
of these theories a good reference is [116]. Onsager’s
theory assumes that all vorticity is concentrated into a
finite number of point vortices and predicts that there
exist negative temperature states; more precisely it predicts
that high energy states can be favored compared to low
energy states, contrary to classical statistical physics. These
negative temperature states correspond to the clustering
of same-sign vortices characteristic of the inverse energy
cascade of 2-D turbulence. But the extension of Onsager’s
approach to describe continuous vorticity fields, involving
infinite number of degrees of freedom, leads to a highly
singular limit which has been overcome only recently
using large deviation probabilities and maximum entropy
techniques. This new theory, due independently to Robert
[144], [145] and Miller [120], predicts final stationary
states (in the absence of external forces) characterized
by a functional relation between coarse-grained vorticity
and stream function. This relation is called the coherence
function and it seems to be verified for strong mixing
situations, such as 2-D shear layers or vortex merging [148].

D. Coherent Structures

Since the beginning of turbulence research there has
been, alongside the statistical approach based on ensem-
ble averages, a tendency to analyze each flow realization
separately. This leads to the recognition that turbulence
contains coherent structures, even at very large Reynolds
[89]. Examples of coherent structures include the Karman
vortices observed by Roshko in 1961 at a Reynolds number
of 107 [146], the horseshoe vortices observed in turbulent
boundary layers and mixing layers [34], and the vortic-
ity tubes (often called filaments) [39], [28] observed in
statistically homogeneous flows. Coherent structures are
defined as local condensations of the vorticity field which
survive for times much longer than the eddy turnover time
characteristic of the energy transfers.

The vorticity field is easy to visualize in numerical
experiments, but very difficult to visualize in laboratory
experiments; therefore, one usually observes the pressure
field instead. Indeed, if we take the divergence of (1) we
obtain

2V2P/p+a2——w2=V-F )

where 0 = 1(8iu; + O;ju;) is the rate of strain which
controls dissipation. This equation shows that vorticity con-
centrations corresponding to coherent structures are sources
of low pressure, while strained regions corresponding to
dissipation, are sources of high pressure. Couder e al. [39],
[28] recently measured the histogram of the probability
distribution function of pressure and showed that for the
large negative pressures it has an exponential behavior,
while for the pressures around zero it has a Gaussian
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behavior. In other words, the coherent structures, which
are characterized by strong depressions, are responsible
for the non-Gaussian behavior of turbulent flows, which
confirms a similar conclusion drawn before by Van Atta and
Antonia [154] from measurements of the spatial gradients
of velocity. This has also been shown by Abry et al. [2]
using wavelet techniques to separate the coherent structures
from the background flow in a 1-D cut of pressure signal.

The mere existence of coherent structures invalidates
the ergodic hypothesis, which is an essential ingredient of
any statistical theory, and which also justifies the Taylor
hypothesis widely used in turbulence analysis. According
to the Taylor hypothesis, ensemble averages can be replaced
by time or space averages, which are easier to obtain in both
laboratory and numerical experiments. As far as we know,
all existing experimental results measuring the turbulence
energy spectrum rely on the Taylor hypothesis and we are
therefore sceptical of their validity as long as the flow is
intermittent. Concerning numerical experiments, we inter-
pret the energy spectrum and its inertial range power-law
form as characteristic of the random processes responsible
for turbulence. In practice, however, we analyze only one
flow realization because in most simulations the correlation
length is the size of the computational periodic domain. In
this case, a power-law behavior should be interpreted as
indicating the presence of some quasi-singular structures in
the flow, and not as a proof of its random dynamics. This
new point of view led Saffman [171] to interpret the energy
power-law behavior as resulting from the presence of
vorticity fronts; later Farge and Holschneider [64] proposed
another interpretation based on the emergence of cusp-like
coherent structures, which correspond to the limit case of
negative temperature states [30]. The wavelet transform,
because it measures the local scaling of a field, is the
appropriate tool for verifying these different interpretations
in relating the power-law scaling of the energy spectrum to
the geometry of coherent structures.

Today we still do not have a complete theory to explain
the formation and persistence of coherent structures, and
we shall have to be content with a qualitative description
of their behavior. This is more evidence that we are still in a
prescientific phase, having as yet only a limited grasp of the
nature of turbulence. The new point of view is to consider
that coherent structures are generic to turbulent flows, even
at very high Reynolds numbers, and that they probably play
an essential role in their intermittency. Indeed, several wind
tunnel experiments [15], [3] have shown that the energy
associated with the smallest scales of turbulent flows is
not distributed densely in space and time. This has led
various authors to conjecture that the support of the set on
which dissipation occurs should be fractal [115], [73], or
multifractal [130]. It is now thought [63], but not proven,
that the time and space intermittency of turbulent flows
is related to the presence of coherent structures. This is
still an open question and wavelet analysis seems to be the
appropriate technique to answer it.

The classical theory of turbulence is blind to the presence
of coherent structures because they are advected by the flow
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in a homogeneous and isotropic random fashion, and hence
they are lost by ensemble averaging. Moreover, the spatial
support of coherent structures becomes smaller and smaller
when Reynolds number increases, whereas in 3-D flows
coherent structures (vorticity tubes often called filaments)
become highly. unstable [39] and therefore their temporal
and spatial support may be very small. Consequently, the
presence of coherent structures only affects the high-order
velocity structure functions (defined as the high-order statis-
tical moments of the velocity increments) which are most
sensitive to unusual or extreme events (large deviations).
The high-order structure functions have been measured only
recently [3], because their calculation requires very long
data sequences. They do not follow Kolmogorov’s theory
which predicts a linear dependence of the scaling exponent
of the velocity structure functions on their order. Van der
Water [156] has observed that there are in fact two distinct
nonlinear dependencies for odd and for even orders, which
may be interpreted in terms of the multispiral model of
Vassilicos [155].

In conclusion, we can say that the presence of coherent
structures is responsible for the non-Gaussian statistics
of fully developed turbulent flows, which contradicts the
Gaussian hypothesis made by Kolmogorov. Due to the
sensitivity to initial conditions of turbulent flows, any
theory of turbulence should be statistical. But before being
able to construct a new statistical theory of turbulence,
we need to find new types of averages able to preserve
the information associated with coherent structures and
therefore take into account the intermittency of turbulent
flows. Wavelets can play a role there in separating the
coherent (non-Gaussian) components from the incoherent
(Gaussian) components of turbulent flows, in order to
devise new conditional averages to replace the classical
ensemble averages.

III. FRACTALS AND SINGULARITIES

A. Introduction

According to the K41 model turbulence in the inertial
range has a power law energy spectrum (7), and thus does
not have a characteristic length scale. Therefore turbulence
in this range of length scales looks similar at any mag-
nification and can be described as self-similar. According
to experimental observations, however, turbulence is also
characterized by quasi-singular structures such as vortices
and is intermittent (quantities such as energy dissipation
vary greatly in time and space). A quasi-singular structure is
one that appears singular until the dissipation scale at which
the smoothing effect of viscosity becomes important.? In
fact the theoretical k=5 inertial range energy spectrum
predicted by Kolmogorov’s theory implies that some sort
of quasi-singular distribution of velocity and vorticity must
be present in turbulent flows [85], [121], [80].

2Note that for simplicity we shall use the terms “singular” instead
of “quasi-singular” and “infinite” instead of “very large” throughout this
section.

643



It remains an open question whether this quasi-singular
behavior is due to the randomness of turbulent motions
resulting from their chaotic dynamics or to the presence of
localized quasi-singular structures resulting from an internal
organization of the turbulent motions. Kolmogorov’s theory
is based on ensemble averages, but in using them we
are unable to disentangle these two hypotheses. Ensemble
averages should be replaced by an analysis of turbulence
for each realization and be based on the local measurement
and statistics of singularities for which we need effective
ways of detecting and characterizing quasisingularities in
turblent signals.

The types of singularities seen in turbulence may be
divided into two classes: cusps (i.e., nonoscillating singular-
ities in which the function or one of its derivatives becomes
infinite at a certain point, e.g., 1/z) and spirals (i.e., oscil-
lating singularities in which the frequency of oscillation
becomes infinite at a certain point, e.g., sin(1/x)). Fig. 6
shows an example of a 2-D flow containing both a cusp (b)
and a spiral (d). (A cut through the spiral is an oscillating
singularity over a certain range of length scales.) Likewise
the distribution of singularities in turbulence may also be
divided into two classes: isolated (singularities at a finite
number of points) and dense (singularities at an infinite
number of points). Dense distributions of singularities are
called fractals and are characterized by one (monofractal)
or more (multifractal) fractal dimensions. Fig. 1(a) shows
a typical fractal signal. Note that fractals may contain both
cusp and spiral type singularities. Turbulence might contain
both fractal and isolated distributions of singularities, and
spiral and cusp types of singularities. Fig. 1(b) shows a
spiral type singularity with fractal noise superimposed; both
the noise and the spiral have the same energy spectrum.

This section is concerned with wavelet-based techniques
for calculating quantities such as energy spectra, structure
functions, singularity spectra and fractal dimensions. These
subjects are connected by the fact that they all measure
the local regularity of the signal (i.e., strength of singu-
larities in the signal). For example, the slope of the usual
Fourier energy spectrum of a signal containing only isolated
cusp singularities is determined by the strongest singularity
[164]. The advantage of the wavelet transform is that it is
able to analyze locally the singular behavior of a signal. One
can then use this local information to construct statistics
describing the distribution and type of singularities (e.g.,
multifractals), or define local or conditionally averaged ver-
sions of traditional measures such as the energy spectrum
and structure functions. We are primarily concerned with
cusp type singularities (either isolated or fractal), although
we also discuss methods for distinguishing between signals
containing isolated spirals and purely fractal signals.

In Section III-B we review the mathematical results on
one of the key properties of wavelet transforms: their
ability to detect and characterize singular structures. We
then describe three related applications which rely on
this property: calculation of local energy spectra, structure
functions (Section III-C) and the singularity spectra which
characterize multifractals (Section III-E). These wavelet
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methods generally require the assumption that the singu-
larities of the signal are cusps. Because isolated spirals are
likely to be present in turbulence it is essential to have a
method of determining which sort of singularity a signal
contains. In Section III-F we review a different wavelet-
based method for distinguishing between signals containing
isolated spirals and purely fractal signals (the two types
of signal most likely to be measured in a turbulent flow).
Each section gives a practical review of the method and
briefly summarizes some results that have been obtained
for turbulence data. Formulating these techniques in terms
of wavelet transforms brings out the connections between
them as well as providing new information, and this point
is emphasized throughout this section.

B. Detection and Characterization of Singularities

The most useful property of the wavelet transform is its
ability to detect and accurately measure the strength (given
by the Holder exponent) of individual singularities in a
signal. A function f(z) has a Holder exponent a(zo) and
is called C*(z¢) if

|f(z) = flzo)| < Clz — zo|*®) asz —zo.  (10)

Note that (10) can hold for large « even if f is not differen-
tiable near zo. The exponent a(z() therefore measures the
smoothness of the function f(z) near zo: the larger a(xo)
is, the smoother or more regular the function f(z) is near
xo while the smaller a(xg) is, the rougher or more singular
the function is. If the Holder exponent is negative there is
an actual singularity of the function at o (or a quasisingular
behavior near o over a certain range of length scales if one
is measuring a physical quantity like velocity). A function
f is C* if (10) is true with the same C for any xy.

It is important to note that (10) does not hold for
oscillating singularities because in this case the Holder
exponent increases by more than one when the function is
integrated. This anomalous behavior is due to the fact that
there are an infinite number of accumulating oscillations in
the neighborhood of the singularity.

Consider the L! norm wavelet transform (which con-
serves the L! norm of a function)

fer =1 /_ - f(z’)'t/)(II - “’)da:'. an

T

The wavelet transform is thus a 2-D function in position
z and scale r. Mallat and Hwang [114] have shown that
singularities in f(z) produce a maximum in the modulus
of the wavelet transform |f(z,7)| and that following the
position of a wavelet modulus maximum as 7 — 0 gives the
position z¢ of the singularity. Furthermore, each singularity
has an associated “influence cone defined by

|z —zo] < Cr (12)

and if the singularity is an isolated cusp then the wavelet
transform modulus for all points within the influence cone is

|f(z,7)] < Areto) (13)
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Fig. 1. Different types and combinations of singularities. (a) A
fractal signal with energy spectrum E(k) x k73, () A spiral
with fractal noise (both noise and spiral have the same energy
spectrum E(k) x A'_%).

provided that the at least the first n > «(xo) moments of
the analyzing wavelet ¢)(x) vanish, where the nth moment
is defined by the integral

+o0
/ x™P(x) dx. (14)
—oC

Equation (13) shows that the Holder regularity a(zo) can
be found from the slope of a straight line that remains
above the graph of log|f(z,r)| versus logr at a position
x satisfying inequality (12). When several singularities
are present only the nonoverlapping parts of the cones
associated with each singularity satisfy (13). Intuitively, it
is the self-similar scaling property of the wavelet which
allows the wavelet transform to measure the rate of self-
similar narrowing with decreasing scale which characterizes
the strength of a cusp singularity.

If the singularity is not isolated and there is only one
zero crossing of the wavelet transform near o, one can
find the regularity in the left and right neighborhoods of zq
by measuring the decay of the wavelet modulus transform
along maxima lines of the wavelet transform to the left and
right of the influence cone of zg.

In practice, such graphs of log| f(z,7)| versus logr
contain oscillations superimposed on the power-law be-
havior which can make it difficult to determine the slope
at larger scales. Vergassola and Frisch [157] showed that
these oscillations are necessarily present for any self-similar
random process whether or not the signal is multifractal
(the lacunarity of multifractal signals should also produce
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oscillations). These oscillations can be reduced by finding
the average decay of the wavelet modulus along many lines
in the influence cone, or by averaging the decay along
vertical lines at many different points (e.g., one may be
interested in the conditionally averaged scaling of points in
regions of irrotational straining). Arnéodo et al. [4] have
suggested that the deviations from a strict power law may
be reduced by measuring the decay of the modulus of the
wavelet transform along the line of maximum modulus
within the influence cone.

The analysis of signals containing spiral singularities
either isolated (e.g., sin 1/|z — z|) or fractal (e.g., the Rie-
mann—Weierstrass function) is more complicated because
the worst singular behavior of a spiral singularity appears
below the cone of influence. In this case one measures the
decay as r — 0 of the modulus of the wavelet transform
along the set of points which are general maxima below
the cone of influence (i.e., maxima in both the position
and scale directions). This gives an upper bound on the
Holder exponent, but in general one has to use lines of
maximum modulus both inside and outside the cone of
influence to fully determine the singular behavior of an
oscillating singularity.

Armnéodo et al. [5] have recently carried out work defining
two wavelet-based exponents that measure the strength of
an oscillating singularity. They find that the faster the
frequency increases, the more irregular its derivative. In
general, oscillating behavior appears in fractal objects that
are self-similar under nonhyperbolic mappings, e.g., the
Riemann—Weierstrass function or the Farey-tree partitioning
of rationals.

C. Ener§y Spectra

The Fourier energy spectrum has been one of the most
popular techniques for turbulence analysis, indeed tradi-
tional turbulence theory was constructed in Fourier space
[14]. The Fourier energy spectrum E (k) of the real function
f(z) is defined by

E(k) = 51;|f(1\:)|2 for k > 0 (15)

where (T) signifies Fourier transform. In traditional tur-
bulence theory the phase infomation is lost and only the
modulus of the Fourier transform is used. This is probably
a major weakness of the traditional way of analyzing
turbulence since it neglects any organization of the turbulent
velocity field.

The wavelet transform extends the concept of energy
spectrum so that one can define a local energy spectrum
E(z,k) using the L? norm wavelet rather than the L
norm used in Section III-B (i.e., the wavelet.transform is
normalized by 1/ 7% rather than by 1/r)

2
for k>0 (16)

. < k
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where kg is the peak wave number of the analyzing wavelet

1 and
+oo |7 2
Cy =/ Mdk (17)
0 k

By measuring F(z, k) at different places in a turbulent flow
one can determine what parts of the flow contribute most
to the overall Fourier energy spectrum and how the energy
spectrum depends on local flow conditions. For example,
one can determine the type of energy spectrum contributed
by coherent structures, such as isolated vortices, and the
type of energy spectrum contributed by the unorganized
part of the flow.

Since the wavelet transform analyzes the flow into
wavelets rather than sine waves it is possible that the mean
wavelet energy spectrum may not always have the same

_slope as the Fourier energy spectrum. Perrier ef al. [132]

have shown, however, that the mean wavelet spectrum
E(k)

+oo
E(k) = / E(z, k)dz (18)
0

gives the correct Fourier exponent for a power-law Fourier
energy spectrum E(k) o k7 provided that the analyzing
wavelet has at least n > (8 — 1)/2 vanishing moments.
This condition is obviously the same as that for detecting
singularities derived in the previous section since [ =
1 4 2« for isolated cusps. Thus, the steeper the energy
spectrum the more vanishing moments of the wavelet we
need. The inertial range in turbulence has a power-law form,
as do the energy spectra of all self-similar processes. The
ability to correctly characterize power-law energy spectra is
therefore a very important property of the wavelet transform
(which is of course related to its ability to detect and
characterize singularities).

Note that if the singularities are all isolated cusps then
the exponent of the Fourier energy spectrum is determined
by the strongest singularity « of the signal

E(k) = Ck~23@+D) (19)

where C is a constant. If the singularities are spirals and/or
are not isolated then the strongest singularity sets a lower
bound on the exponent of the energy spectrum [157]

E(k) < CE™2~, (20)

The way the dense singularities accumulate can make the
signal effectively more singular, decreasing the magnitude
of the exponent of the energy spectrum by up to two.
Because they are both controlled in the same way by
singularities, the wavelet energy spectrum can be thought
of as a sort of local Fourier transform.

The mean wavelet energy spectrum is a smoothed version
of the Fourier energy spectrum. This can be seen from the
following relation between the two spectra

400 2
B = [ Be)p(%)
0

= = )| o @D
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which shows that the mean wavelet spectrum is an av-
erage of the Fourier spectrum weighted by the square
of the Fourier transform of the analyzing wavelet shifted
at wavenumber k. Note that the larger £ is, the larger
the averaging interval. This property of the mean wavelet
energy spectrum is particularly useful for turbulent flows.
The Fourier energy spectrum of a single realization of
a turbulent flow is too spiky to be useful, but one can
measure a well-defined slope from the mean wavelet energy
spectrum.
The Mexican hat wavelet

b(k) = k* exp(—k*/2) (22)

has only two vanishing moments and thus can correctly

measure energy spectrum exponents up to § < 5. Only the

zeroth order moment of the Morlet wavelet
b(k) = 5= exp(—(k — ky)2/2) fork >0
P(k) =0 for k <0

is zero, but the higher nth order moments are very small
(oc k7, exp(—k2/2)) provided that k, is sufficiently large.
Therefore the Morlet wavelet transform should give ac-
curate estimates of the power-law exponent of the energy
spectrum at least for approximately 5 < 7 (if ky = 6).
Perrier ‘and Basdevant [132] present a family of new
wavelets with an infinite number of cancellations

in(k) = an exp(—% (k2 + E%)) n>1 (24)

where «, is chosen for normalization. The wavelets defined
in (24) can therefore correctly measure any power-law
energy spectrum. Furthermore, these wavelets can detect
the difference between a power-law energy spectrum and a
Gaussian energy spectrum (E(k) oc exp(—(k/ko)?)). It is
important to be able to determine at what wavenumber the
Gaussian energy spectrum begins since this wavenumber
defines the end of the inertial range of turbulence and the
beginning of the dissipative range.

One of the first measurements of local energy spectra
in turbulence was reported by Meneveau [118]. Meneveau
used the discrete wavelet transform to measure local energy
spectra in experimental and direct numerical simulation
(DNS) flows and found that the standard deviation of the
local energy (a measure of the spatial fluctuation of energy)
was approximately 100% throughout the inertial range.
Meneveau also calculated the spatial fluctuation of T'(k)
which measures the transfer of energy from all wavenum-
bers to wavenumber k. On average T(k) is negative for
the large scales and positive for the small scales, indicating
that in 3-D turbulence energy is transferred from the large
scales to the small scales where it is eventually dissipated
(in agreement with Richardson’s [141] cascade model of
turbulence). Meneveau found, however, that at many places
in the flow the emergy cascade actually operates in the
opposite direction, from small to large scales, indicating
a local inverse energy cascade (also called backscattering).
This local spectral information, which links the physical and
Fourier space views of turbulence, can only be obtained
using the wavelet transform.

(23)

PROCEEDINGS OF THE IEEE. VOL. 84, NO. 4, APRIL 1996



D. Structure Functions

Another fundamental quantity in the classical theory of
turbulence [89] is the pth order structure function S,(r)

L
S0 =1 [ f@=fe+nPd @3

where L > r is the length of the signal, and L must
be long enough so that S,(r) does not change if L is
increased (and thus the increments of f should be stationary
in z). The velocity signal of a turbulent flow varies in
both space and time and between different realizations of
the flow. Thus the integral in (25) should, in general, be
replaced by a suitably defined ensemble average in order
to calculate the structure function of turbulent velocities.
To justify the use of space or time averages instead of
ensemble averages (over different realizations of the flow)
one supposes that the turbulent flow motions are ergodic,
which is an unvalidated hypothesis and is probably wrong
for 2-D turbulence. If the energy spectrum exponent (3 is in
the range 1 < 3 < 3 (as is usually the case for the inertial
range of turbulence) the velocity increments are a stationary
function even though the velocities themselves are not [41],
this is a good reason to work with velocity increments rather
than the velocities themselves since stationarity is necessary
in order to justify estimating a quantity by averaging over
space. The larger p the more S, () is dominated by extreme
events. Thus the pth order structure function characterizes
more and more extreme events as p increases.

If f(z) is self-similar then, just as in the case of the
energy spectrum, the structure functions will have a power
law dependence on the scale r

Sp(r) = r¢®, (26)

The first order structure function (1) provides a measure
of the smoothness of f(z), and in fact ((1) is related to
the box dimension D of the graph of f(z)

Dp=2-¢(1) 27)

where Dp measures the space-fillingness of f(z). The
second order structure function is related to the energy
spectrum by

B=02)+1 (28)

The Kolmogorov theory [93] showed that the inertial
range of turbulence has § = 5/3, or equivalently that

¢(p) =p/3 (29)

however, recent experiments [3] have shown that the struc-
ture function exponents increase more slowly than linearly
with p for p > 5, contradicting Kolmogorov’s theory.
The cause of this difference is generally thought to be
the fact that the energy dissipation e(z) = (du(x)/dz)?
is intermittent in space, i.e., it varies greatly from place to
place.

The velocity increment Af(z,7) = |f(z) — f(z + 7)]
is equivalent to a wavelet transform with A (z) = 6(z +
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Table 1  Properties of a Signal from the Behavior of the
Exponents of its Structure Function {(p) and the Structure
Function of the Modulus of its Derivative K’ (p)

Value of Structure Function Type of Signal

¢(1)=0 Stationary, Dy = 2
((1)=1 Noiseless, Dy- =1
K(1)=1 weak variability
K'(1)=0 S—function
((p) variable nonstationary multifractal
((p) constant nonstationary monofractal

stationary multifractal
stationary monofractal

K (p) variable
L (p) constant

1) — &(z). In fact Jaffard [86] has shown that the exponent
n(p) is defined by

L
Sp(r) = — / |f(z,7)[Pdz ~ 7P (30)
L Jo
is the same as ((p) provided p > 1 and {(p) < p, no
matter what wavelet is used. The wavelet-based method
of calculating the structure function unifies the analysis of
structure functions with the calculation of energy spectra
and the strength of local singularities. If one uses a wavelet
with a sufficient number of vanishing moments, then the
wavelet-based structure function S,(r) should also be more
sensitive to larger « singularities since the equivalent
wavelet for the structure function, ¥'a(z), has only one
vanishing moment. By changing from an integral to a sum
over wavelet maxima (as in Arnéodo et al.’s [4] wavelet
maximum modulus method discussed in the following
section) one can extend the definition of structure functions
to include negative p’s.

The wavelet-based version of the structure function al-
lows us to see directly how the structure function is
determined by the singular behavior of f(z). From (13)
the wavelet transform modulus is proportional to (o) and
thus, since r < 1, the stronger singularities contribute most
to the higher order structure functions and least to the lower
order structure functions. In other words, the value of ¢(p)
is determined mostly by the stronger singularities for large
p’s and mostly by the weaker singularities for small p’s.

Davis et al. [41] point out that the “dissipation” of a
discrete function f;, €; = |f; — fj—1/, is in fact a measure.
Because ¢ is a measure, the generalized dimension D(p)
of f(z) can be calculated from the exponent K (p) of the
structure function of £(z)

K(p)
D(p)=1 o1 31
The generalized dimension D(p) is the dimension of the
set containing the singularities that contribute most to the
pth order structure function. Because () is a stationary
variable (for 1 < 3 < 3) we have 0 < 3.(zo) < 1 and thus
—1/2 < a(zrg) < 0. Because a(xp) < 0 the dissipation
contains actual singular behavior (the dissipation tends to
infinity). .

In general terms the exponents ((p) characterize the sta-
tionarity of the field, while the exponents K (p) characterize
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the singularity of the field. One can learn a great deal about
the behavior of a signal from the variability of {(p) and
K(p) and from the value of the first structure function
exponents ((1) and K (1). This information is summarized
in Table 1.

Davis et al. [41] introduced the “mean multifractal plane”
defined as the plane with coordinates given by the most
informative exponents 0 < ((1) = 2—Dp < 1l and 0 <
K'(1) = 1—D(1) < 1 (where Dp is the fractal dimension
and D(1) is the information dimension). The position of
a particular flow or model on the mean multifractal plane
is a good indicator of its self-similar characteristics. The
higher the flow’s K'(1) component the more intermittent
and multifractal it is, and the higher the flow’s ((1) com-
ponent, the smoother and less stationary it is. Experimental
turbulent velocity fields lie in the center of the mean
multifractal plane. Turbulence models, however, tend to lie
along the boundaries of the domain: purely multiplicative
cascade models (such as é-functions) lie on the K'(1) axis
and purely additive models (such as fractional Brownian
motion) lie on the ((1) axis! This clearly indicates that the
current turbulence models do not represent correctly the
self-similar structure of turbulent flows.

E. The Singularity Spectrum for Multifractals

In order to characterize a multifractal function it is nec-
essary to calculate its singularity spectrum. The singularity
spectrum D(a) may be defined as the fractal dimension of
the set of points with Holder exponent «

D(a) = Dp{z,a(z) = a}. (32)

Note that this definition is equally valid for multifractal
functions and measures. The singularity spectrum of a
monofractal has only one point, e.g., the singularity spec-
trum of the fractional Brownian signal B;,3(z) which has
a k~3% energy spectrum is D(a = 1/3) = 1 (the function
By 3(x) is singular everywhere with a = 1 /3), while a the
singularity spectrum of a multifractal is a curve.

Frisch and Parisi [72] found a way of estimating the
singularity spectrum from the Legendre transform of the
structure function exponents ¢(p)

D(a) = inf(pa — C(p) + 1) (33

where, as explained in Section III-C, ((p) may be calcu-
lated using the wavelet transform.

Equation (33) can be derived heuristically by noticing
that near a singularity of order o

|f(z,7)| ~ 7P (34)

where we have used (13) and have written o = (o)
for simplicity. Now, if the dimension of the points with
singularity o is D(«) then there are about r~D(@) “boxes”
(in this case wavelets) with the scaling (34) in each interval
r, so that the total contribution to the integral (30) is
rap=D(a)+1 To Jeading order the magnitude of the integral
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Table 2 Analogies between Statistical Thermodynamics and the
Wavelet Transform Modulus Maximum method for Multifractals

Thermodynamic parameter Multifractal parameter

T (temperature) p~!
Z (partition function) S(r)
G (free energy) 7(p)

S (entropy) D(a)

is given by the largest contribution so that
¢(p) = inf(ap ~ D(a) +1). (35)

Since ((p) is concave, formula (33) can be obtained by an
inverse Legendre transform.

Jaffard [86] proved mathematically, however, that struc-
ture function calculations of the singularity spectrum can, in
general, only set a upper bound on D(c) and he gave some
counterexamples where such calculations give completely
misleading answers.

Arnéodo et al. [4] have developed a method for calculat-
ing the singularity spectrum called the wavelet transform
modulus maximum (WTMM) method. This method is
closely related to the calculation of structure functions
by wavelet transforms except that, instead of integrating
(or summing in case of discretely defined functions) the
wavelet transform over all positions, one only sums the
wavelet transforms located at maxima, i.e.,

Sp(r) = > (sup If(x,r’)lp> (36)

1eL(r) (z,r")

where [ is a maxima line of the wavelet transform modulus
on [r,0] and sup, .., means that the supremum is taken
for (z,7') on [ (so that v’ < 7). The wavelets are in fact
playing the role of “generalized boxes” in a new form of
the standard box-counting algorithm used to estimate fractal
dimensions D(a). Summing only over the wavelet modulus
maxima makes sense since, as Mallat and Hwang [114]
showed, most of the information in the wavelet transform is
carried by the wavelet maxima lines. Furthermore, because
one does not sum over places where the wavelet modulus
is zero f),,(r) is also defined for p < 0 as well as for p > 0.
Note that the structure function methods are defined only
for p > 0.

Aréodo et al. draw the analogy with statistical thermo-
dynamics and interpret flp(r) as a “partition function” (see
Table 2). )

If f(z) is a self-similar function then ¥, (r) 77(P) and
the singularity spectrum can be found by calculating the
Legendre transform

D(a) = inf(po - 7(p))- (37

To avoid technical problems associated with calculating the
Legendre transform in (37) Améodo ef al. [4] recommend
an alternative way of finding D(c).

Jaffard [86] proved mathematically that the WTMM
method, unlike the structure function methods, gives the
correct singularity spectrum for all p provided it is slightly
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modified. Indeed a problem might arise if the wavelet
modulus maxima are too close together; in that case the
sum in an interval of width r must be restricted to the
largest maxima. Jaffard also shows that even the modified
WTMM method fails if the function f(z) contains too
many oscillating singularities.

Arnéodo et al. [4] find the relation between 7(p) and
¢(p) from their respective definitions in terms of D(a),
but given the limitations of (33) it is perhaps better (and
more intuitive) to find the connection directly through the
structure functions. In terms of discrete signals, the wavelet
transform-based calculation of the structure function (30)
becomes

S =5 3 If@nPr. (38)

j=1,N

Each cone of influence of width r must contain only
maxima lines with the same scaling (since the scaling r(¥°)
is the same for all points within the influence cone of
point xo) and if the function is everywhere singular all
intervals of size r must contain at least one maxima line.
If one follows Jaffard’s [86] refinement to WTMM, and
only counts one maximum for each interval of length r,
then the number of terms in the sum must be proportional
to N/r. Therefore, if the wavelet moduli are only summed
over their maxima the structure function becomes

. 1 ~ 1 -
S0) =3 2 <(zs‘,‘£’,)|f(zj,r’)l”> = N7 ()
teL(r) \\¥is
39)
We thus find that the relation between the structure function
exponents ((p) and the WTMM “free energy” exponents

7(p) is
C(p)=7(p)+ 1. (40)

Note that (40) only holds if the function f(z) has singular-
ities everywhere and WTMM is modified by only counting
one wavelet modulus maximum for each interval of length
.
Améodo et al. [4] applied the WTMM method to sin-
gle point high Reynolds number (the Taylor scale based
Reynolds number is Ry = 2720) velocity data obtained by
Gagne [78] from the wind tunnel of ONERA at Modane.
The self-similar inertial range follows the Kolmogorov
E(k) ~ k=% law for almost three decades. The WTMM
analysis was carried out for this inertial range of scales on a
section of data 100 integral (energy containing) scales long.

The histogram of singularities a(zo) in the turbulence
data was found to be quite wide and centered about the
Kolmogorov value @ = 1/3. Surprisingly, at some places
in the flow « is negative which implies actual singular
behavior (velocity tending toward infinity). These negative
o values may be spurious or may indicate the (rare)
presence of strong vortices. The function 7(p) is convex
which suggests that the regularity of the flow varies greatly
from place to place. The singularity spectrum is peaked
at the Kolmogorov value amax(p = 0) = 0.335 £ 0.005
with D(apmax) = 1.000 & 0.001. This result indicates that
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the signal is fractal everywhere because the fractal support
of D(amax) is equal to its topological dimension (i.e., the
dimension of the signal, which is one).

Arnéodo et al. [4] come to the conclusion that turbulence
is singular with a multifractal spectrum of singularities
centered around the Kolmogorov value a = 1/3 and is
therefore not homogeneous.

F. Distinguishiné Between Signals Made up
of Isolated and Dense Singularities

Although the inertial range of turbulence has a self-
similar structure, not all self-similar functions are fractal;
in fact one of the most physically plausible turbulence
structures, the spiral vortex, can generate self-similar os-
cillating singularities with a nontrivial box-counting di-
mension. The conclusion drawn by Améodo et al. [4]
that turbulence is everywhere singular with a multifractal
structure may be invalid if the turbulent velocity signal
they analyzed contains oscillating singularities. Because the
WTMM method is only valid for signals that contain dense
distributions of cusp type singularities, one should first
try to determine whether a signal has isolated oscillating
singularities before attempting to use the WTMM method.
Unfortunately, the difference between signals containing
singularities everywhere (“fractals”) and signals containing
a large number of isolated oscillating singularities (isolated
“spirals” in multidimensions or isolated “chirps” in 1-D) is
not obvious: both signals can have nontrivial box-counting
dimensions.

Kevlahan and Vassilicos [91] developed two methods for
distinguishing between isolated spiral and fractal signals
based on the wavelet transform. (In fact their method only
distinguishes between isolated and dense singularities, how-
ever, isolated cusp singularities have a trivial box-counting
dimension and thus can be distinguished from fractal signals
on the basis of box-counting dimension alone.) The first
method takes advantage of the fact that the singularities
in a fractal are dense (there are singularities at all points)
whereas the singularities in an isolated spiral signal are
isolated (the signal contains oscillating singularities only
at the centers of spirals). If one averages the wavelet
transforms of many realizations, or different data segments
together, one can prove that the average wavelet transform
modulus (|f(z,7)|) decays differently for the two types of
singularity as

(1f(@@,r)l) o« N™Y2|f(x0,7)l @n
for fractal signals but as
(|f(z, 7)) o |f(zo,r)lr < L/N “2)

for spiral signals where N is the number of segments
averaged together and L is the length of each segment.
Thus the average wavelet transform of the random phase
fractal signal is N~1/2 times a single realization, while
that of the spiral signal does not depend on the number
of realizations below a certain scale. The difference in
the behavior of (|f(z,r)|) is striking, and provides a
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Fig. 2. Conditional wavelet spectra (this computation was done in collaboration with T.
Philipovitch). (a) Vorticity field. In red: elliptic regions, dominated by rotation, wich correspond
to the coherent vortices. In blue: hyperbolic regions, dominated by deformation, which correspond
to the incoherent background flow. (b) Coherent vortices, (c) shear layers, (d) background flow,
and (e) energy spectra. In black: Fourier energy spectrum, which scales as k2. In dark blue:
wavelet energy spectrum, which is a smooth approximation of the Fourier spectrum and scales as
k5. In red: wavelet energy spectrum of the coherent vortices, which scales as k=% In green:
wavelet energy spectrum of the shear layers, which scales as k=%, In light blue: wavelet energy
spectrum of the background flow, which scales as k=%,
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diagnostic for determining whether a signal contains spiral-
type singularities. This method was applied to the Gagne
[78] turbulence data. The results were inconclusive, perhaps
due to insufficient resolution near expected spiral scales or
rarity of spiral vortices passing near the velocity probe.

The second method for distinguishing between isolated
spiral and fractal singularities derives from the observa-
tion that the spatial fluctuation of wavelet energy E(m, k)
(measured by the standard deviation &(k) of E(z,k)) is
independent of wavenumber for a random phase fractal sig-
nal, but increases with wavenumber for a spiral signal with
the same energy spectrum. Analysis of the turbulent signal
shows that &(k) increases with wavenumber (although at a
slower rate than for the purely spiral test signal), indicating
that turbulence probably contains some sort of isolated
oscillating singularities. This conclusion should be borne in
mind when interpreting the results of multifractal analyses
of turbulence.

IV. TURBULENCE ANALYSIS

A. New Diagnostics Using Wavelets

It is impossible to define a local Fourier spectrum,
because Fourier modes are nonlocal, but it is possible to
define a local wavelet spectrum, since wavelets are localized
functions. Actually, due to the inherent limitation of the
uncertainty principle stating that there is a duality between
spectral and spatial information, we should be aware that
the spectral accuracy will be poor in the small scales and
that the spatial accuracy will be poor in the large scales.

Since turbulent flows are either 2-D or 3-D, in the
following section we will use the 2-D wavelet transform.
Let us consider a 2-D scalar field f(x) and a 2-D real
isotropic wavelet 1(x). We generate the family ¥ ,(x’)
of wavelets, translated by position parameter x € R?, and
dilated by scale parameter 7 € R™T, all having the same
L? norm

(%) = 7719 (xl - x). 43)
The 2-D wavelet transform of f(x) is
fxr) = / FxX) o (x) d7%. (44)
RQ

The local wavelet spectrum of f(x) is defined as

E(x,r) = M. (45)

r

A characterization of the local “activity” of f(x) is given
by its wavelet intermittency I(x,r), which measures local
deviations from the mean spectrum of f at every position
x and scale 7, defined as follows

el
[ F )P

Another measure qf interest for turbulence is the wavelet
Reynolds number Re(x,r), given by

I(x,r) = (46)

Re(x,r) = ﬂ(x,r)g

47
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where 7 is the scale parameter, v the kinetic viscosity of
the fluid, and @ the root-mean-square (rms) value of the
velocity field contribution at position x and scale r defined
as

3

1/2
1
a(x,r) = (@Zmi(x,r)]?) : (48)

i=1
with the constant

N d?k
Cy = / 9 (k)|* . (49)
R2 k|

The expectation is that at large scales r ~ L, the wavelet
Reynolds number should coincide with the usual large-scale
Reynolds number Re = uL /v, where u is the rms turbulent
velocity and L is some integral scale of the flow. In the
smallest scales (say r ~ 7, where 7 is the Kolmogorov scale
of the flow), one expects this wavelet Reynolds number to
be close to unity when averaged spatially. The question we
want to address here is the variability of such a wavelet
Reynolds number defined for space and scale: are there
locations where such a Reynolds number at some small
scale is much larger than in others, and how do such regions
correlate with regions of small-scale activity in the flow? If
so, then Re(x,r) gives an unambiguous measure of the
activity at small scales (or at any desired scale). Such
regions of high wavelet Reynolds number could then be
interpreted as regions of strong nonlinearity.

Concerning the computation of energy and enstrophy
transfers and fluxes, we should be aware that the results
depend on the functional basis we consider. Indeed, due
to Heisenberg’s uncertainty principle, each representation
measures different types of transfers and fluxes. In Fourier
space one computes transfers between different independent
wavenumber bands, which detect the modulations and
resonances excited under the flow dynamics. In wavelet
space one computes exchanges between different locations
and different scales, which detect instead advections and
scalings. But one should never forget that in wavelet space
spatial resolution is bad in the large scales while scale
resolution is bad in the small scales. In an orthogonal
wavelet basis, although all wavelets are independent in
space and scale, they are not independent in wavenumber.
In an orthogonal wavelet packet basis all wavelet packets
are independent in space, scale, and wavenumber, but their
spectrum presents several peaks at distant wavenumbers and
they are no longer local in wavenumber space; therefore
wavelet packets are unable to precisely measure transfers
between different wavenumber bands. This is the reason
why a comparison between transfers computed in wavelets,
in wavelet packets, and in Fourier modes is misleading:
these three diagnostics do not measure the same quantities!

B. Two-Dimensional Turbulence Analysis

Unlike the velocity field, the vorticity field is invariant
with respect to uniform rectilinear translations of the inertial
frame (Galilean invariance). The dependence of streamlines
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Fig. 3. (a) The uncompressed vorticity field and its Fourier spectrum which scales as k., (b) The
vorticity field reconstructed from the 5% strongest wavelet packet coefticients, which contains 89%
of the total enstrophy, and its Fourier energy spectrum which scales as k5. (c)(d) The vorticity
field reconstructed from rest of the flow (95% of wavelet packet coefficients) which contain 11%

of the total enstrophy, and its Fourier energy spectrum which scales as k3.

and streaklines on the reference frame causes consider-
able difficulties in the study of fluid flows, particularly
in observing and defining vortices. In fact due to its
Galilean invariance, vorticity is the most suitable field for
tracking the dynamics of turbulent flows, in both two and
three dimensions. The vorticity field is directly accessible
from numerical simulations, but is difficult to obtain from
laboratory experiments. This is why we will now focus on
vorticity fields obtained from DNS results. The drawback
with DNS, i.e., the integration of Navier—Stokes equations
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without any ad hoc turbulence modeling, is that current
supercomputers are only able to compute low Reynolds
number flows (up to a few thousand).

Let us show an example of a wavelet analysis of
an instantaneous vorticity field computed using the
Navier—Stokes equations [134], [60]. We segment it into
three regions using the Weiss criterion [158], [52], namely
into rotational regions corresponding to the coherent
structures, strongly strained regions corresponding to
the shear layers surrounding the coherent structures, and
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Fig. 4. Comparison between wavelet packet and adapted local cosine compression (this computa-
tion was done in collaboration with Echeyde Cubillo). (a) The uncompressed vorticity field. (b) The
vorticity field reconstructed from the 70 strongest wavelet packet coefficients. which contain 90%
of the enstrophy. (c) The vorticity field reconstructed from the 425 strongest adapted local cosine
coefficients, which contain 90% of the total enstrophy. (d) Enstrophy contained in the retained
coefficients versus their number. We observe, for instance, that 70 wavelet packet coefficients retain
90% of the total enstrophy, while 70 adapted local cosine coefficients retain only 50% of the

total enstrophy.

weakly strained regions corresponding to the background
flow made of vorticity filaments (these vorticity filaments
encountered in 2-D turbulence are not the same dynamical
objects as the vorticity tubes encountered in 3-D turbulence
and often called filaments). We then decompose the
vorticity field into a continuous wavelet representation
using an isotropic (Hermite) wavelet to integrate in space
the wavelet coefficients for each type of region. This
decomposition is in fact a conditional statistical analysis
because the energy spectrum is computed separately for
each type of region.

FARGE et al.. WAVELETS AND TURBULENCE

The energy spectrum of the coherent structure regions
tends to scale as k~6, the sheared regions as k—* and
the background regions as k=3 (Fig. 2). We found that
each region has energy throughout the inertial range and
therefore there is no scale separation [134], [60]. This is
why the Fourier representation cannot disentangle these dif-
ferent regions. The scaling of the coherent structures seems
compatible with the cusp-like model proposed by Farge and
Holschneider [64], the scaling of the shear layers seems
compatible with the k~=* spectrum predicted by Saffman
[147] and only the scaling of the homogeneous background
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regions seems to verify the Batchelor—Kraichnan prediction
of a k3 spectrum. From this analysis we confirm that there
is no universal power-law scaling for 2-D turbulent flows;
the slope of the Fourier energy spectrum varies with the
density of coherent structures (their number per unit area in
2-D and per unit volume in 3-D), which depends on initial
conditions and forcing (energy injection by external forces).
We then conjecture that there may be a universal scaling for
each region of the flow considered separately, but this has
not yet been proven. Extensive wavelet analysis of very
different types of turbulent flows would be necessary to
check this conjecture.

The new approach we propose is to decompose turbu-
lent flows into organized (and therefore inhomogeneous)
components and random (and therefore homogeneous) com-
ponents, which will have different scalings and different
statistical properties; namely the former would be Gaussian
while the latter would be non-Gaussian. If this point of
view is confirmed, then only conditional averaging will
make sense. There is still some hope of finding an universal
behavior for each component taken separately, and we may
then be able to design a new statistical theory of 2-D
turbulence based on this property.

A key question, which remains open, is the following: is
there a generic shape (namely a typical vorticity distribu-
tion) for coherent structures? The answer to this question
influences our analysis, in particular our interpretation in
terms of scale, because the notion of scale is intrinsically
linked to the generic shape we assume for the coherent
structures. A prioris are as essential in statistical analysis
as hypotheses are in modeling: we should state them
clearly, otherwise our results will be nonsensical. For
instance, without a definition of vortex shape the notion of
vortex size and vortex circulation would be meaningless.
A misunderstanding has persisted for years in the field of
turbulence due to the identification of scale with the inverse
wavenumber, which is true only if one assumes a wavelike
shape for the vorticity field. Conversely, in other papers one
encounters different implicit models of coherent structures
(vortex patches, Gaussian vortices, or cusplike vortices),
which indeed condition our statistical analysis. Therefore

one first needs a method to extract coherent structures

out of turbulent flows in order to study them individually.
The classical method consists of thresholding the vorticity
field and identify as coherent vortices all regions where
vorticity is larger than this threshold. However, the spectral
information is then lost due to the discontinuity introduced
by the threshold. We have proposed instead [66] two new
methods based on the continuous wavelet representation,
which preserves the regularity of the vorticity field and
therefore its spectrum.

These methods depend on the choice of the analyzing
wavelet and ideally we should use a wavelet which is a local
solution of the linearized Navier—Stokes equations, namely
a solution of the heat equation, such as any isotropic and
smooth distribution of vorticity. This is why we use 2-D
Hermite wavelets (derivatives of the Gaussian), which are
solutions of the heat equation. The higher the derivative,
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the better the cancellations and the more sensitive the
wavelet will be to quasi-singular vortices, however its
spatial selectivity will not be as good as for low order
derivative wavelets. In the example shown in this paper
we use Marr’s wavelet which is the Laplacian of the
Gaussian.

The first method is to retain only the wavelet coefficients
inside the influence cones (namely the spatial support of
the wavelets) attached to the local maxima of the vorticity
field corresponding to the centers of coherent structures;
wavelet coefficients outside the influence cones are then
discarded before reconstructing the vorticity field. The
second method is to retain only the wavelet coefficients
which are larger than a given threshold and to discard all
other coefficients before reconstructing the vorticity field.

" We thus extract the coherent structures, and substracting

the original vorticity field gives us the background field.
By computing the Fourier spectrum of these two fields we
have confirmed our previous analysis: the energy spectrum
of coherent structures tends to scale as k=% and that of
the background field as k~2 (Fig. 3). With our first method
we can also extract just one coherent structure, analyze
its shape, and compute its coherence function, namely the
pointwise relation between vorticity and streamfunction, to
check if it corresponds to the stationary states predicted by
Montgomery’s [90] or by Robert’s [143]-[145] statistical
theories. We are presently working in this direction, but
have not yet published any result.

Another application of the wavelet representation in
turbulence should be to design new types of forcing for
numerical simulations. The method would consist of inject
energy and enstrophy at each time step, but only into the
wavelet coefficients inside the influence cone corresponding
to a given location. Depending on the type of forcing
we want, we could either excite the same vortices or
randomly select new vortices at each time step. Forcing
is currently done in Fourier space and is rather unphysical,
while wavelet-based forcing could simulate the production
of vorticity in boundary layers or mixing layers, which
is a local process. This is another promising, but as yet
untried, application of wavelet techniques for turbulent flow
simulation.

C. Three-Dimensional Turbulence Analysis

We have analyzed different flow fields resulting from
DNS of 3-D turbulent flows [63], using the complex-
valued Morlet wavelet, which plays the role of a numerical
polarizor due to its angular selectivity, and whose com-
plex modulus directly measures the energy density. We
have first studied the temperature, velocity, and pressure
fields of a channel flow near the wall and have used the
wavelet intermittency to pinpoint the regions of the flow
dominated by strong nonlinear dynamics. It appears that
the most intermittent regions are correlated with those of
large vertical velocity, corresponding to ejections from the
boundary layer. We have found that temperature behaves
as a passive scalar almost everywhere, except in these very
localized regions. We have also observed that there is no
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Fig. 5. Wavelet
Philipovitch). (a) Velocity field computed with resolution 1282 (Azx =
two grid points).

return to isotropy in the small scales, contradicting one of
the hypotheses of the statistical theory of turbulence, which
supposes that turbulent flows become homogeneous and
isotropic at small scales.

We have then analyzed the vorticity, velocity and a
passive scalar in a temporal mixing layer after the mixing
transition. We have found that wavelet intermittency is
very strong—up to 120—in the collapsing regions where
the ribs (streamwise vorticity tubes produced by a 3-D
instability) are stretched and engulfed into the primary
spanwise vortex (produced by a 2-D Kelvin—Helmholtz
instability). On the other hand, the wavelet intermittency in
the braids, i.e., outside the spanwise vortex, remains very
low, not exceeding five. We have also noticed a return to
isotropy in the small scales. From the local spectrum of
the vertical vorticity we have observed that the collapsing
regions have a spectral slope much shallower than one of
the braid regions; this departure from the space average
wavelet spectrum increases with the scale and confirms the
strong intermittency of the mixing layer. If we extrapolate
the observed slopes, we conjecture that intermittency should
increase with Reynolds number. We have then visualized
the iso-surfaces of the wavelet Reynolds number, which can
be interpreted as surfaces of iso-nonlinearity in the flow.
The peaks on these iso-surfaces, which are associated with
the most unstable regions, are located in the primary vortex
core; this confirms our previous conclusions concerning
the concentration of small-scale nonlinear activity there
due to the stretching of the ribs rolled around the primary
vortex. We have also shown that the Kolmogorov scale,
corresponding to the iso-surface Re(Z,r7) ~ 1 where
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Reynolds number (this computation was done in collaboration with T.
1 unit length between

linear dissipation balances nonlinear advection, varies with
location, being at much smaller scale in the vortex core
than in the braids, with a scale variation of four octaves.
This means that there should be some (spatially local-
ized) dissipation for scales belonging to the inertial range.
This observation contradicts Kolmogorov’s hypothesis of
nondissipative energy transfers in the inertial range; but
is in agreement with Castaing’s theory of turbulence [32],
[33], with Frisch and Vergassola’s [76] multifractal model
and with Benzi et al.’s [19] extended self-similar model,
which assume a weak dissipation in the inertial range.

For shear flows, such as the channel flow or the mix-
ing layer we have studied, there is a clear correlation
between large-scale events and small-scale activity, due
to the presence of coherent structures. Wavelet analysis
has been an essential tool for identifying them as phase-
space regions correlated in both space and scale, where
intermittency increases with scale [63]. We conjecture that
for large Reynolds numbers these regions may become
more and more localized and very intense in small-scale
enstrophy. Therefore they are susceptible to develop sin-
gularities at very large Reynolds numbers. For the mixing
layer these quasi-singular regions correspond to collapsing
events, where the ribs are stretched and accumulated inside
the primary vortex core, while for the channel flow these
regions correspond to the tip of the horseshoe vortices
ejected from the wall boundary layer. According to the
Cafarelli-Kohn—Nirenberg theorem [29], singularities, if
they exist, should be at most a set of Hausdorf measure zero
for any (in particular arbitrarily large) Reynolds numbers.
Therefore if we want to look for quasi-singularities in

655



(d)

Fig. 5. (Continued). (b) Wavelet Reynolds number at scale 64Ax, which fluctuates between 148
and 2700 with a mean value of 1713. (c) Wavelet Reynolds number at scale 20 Az, which fluctuates
between 31 and 578 with a mean value of 365. (d) Wavelet Reynolds number at scale 8 Ax, which
fluctuates between one and 27 with a mean value of 17. (e) Wavelet Reynolds number at scale 2A:,

which fluctuates between zero and three with a mean value of two.

3-D turbulent flows it would be better to use a space-
time continuous wavelet transform, whose theory is being
developed by Duval-Destin and Murenzi [50].

V. TURBULENCE MODELING

We will now reconsider the closure problem mentioned
in Section II-C, taking advantage of the new observations
we have made of turbulent flows, and in particular the

dynamical role of coherent structures, using the wavelet

analysis.

A. Two-Dimensional Turbulence Modeling

To compute turbulent flows we must separate the ac-
tive components, responsible for their chaotic behavior
(namely sensitivity to initial conditions), from the passive
components, which are advected by the velocity field re-
sulting from the overall coherent structure motion. The
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active components are not in thermal equilibrium, while
the passive components are well thermalized. Therefore the
active components should be computed explicitly, while
the passive components can be modeled by some ad hoc
parametrization.

Classical numerical techniques (Galerkin methods [82],
large eddy simulation [107], [109], [140], and nonlinear
Galerkin methods [117]) assume that the active components
are the low-wavenumber Fourier modes, or the scales
resolved by the computational grid, while the passive
components are the high-wavenumber Fourier modes, or
the subgrid scales. This scale separability of the turbulent
dynamics is assumed to be true in both 2-D and 3-D.

We have shown [159] that a compression in the wavelet
packet representation extracts the coherent structures out
of the background flow, while the same amount of com-
pression done in the adapted local cosine (Malvar) repre-
sentation, which is a type of windowed Fourier basis, does
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Fig. 6. Dynamical analysis of coherent structures and incoherent background flow. Green is the total energy spectrum, red is the coherent vortices
energy spectrum, and blue is the filament energy spectrum. (a) Total vorticity at £ = 30 computed with a resolution 10242. (b) Vorticity corresponding
to the coherent vortices alone at t = 30. They consist of 928 strang wavelet packet coefficients which contain 95% of the total enstrophy. (c) Energy

d) Vorticity corresponding to the filaments alone at + = 30. They consist of 937 573 weak wavelet packet coefficients which

spectra at t = 30. (
nt vortices alone until ¥ = 120.

contain 5% of the total enstrophy. (e) Integration of the total vorticity until + = 120. (f) Integration of the cohere
(g) Encrgy spectra at t = 120. (h) Integration of the filaments alone until t = 120.
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not have this property (Fig. 4). Indeed, the more you com-
press in Fourier or windowed Fourier representations, the
more you smooth the coherent structures and consequently
lose their enstrophy, destroy their phase information, and
introduce parasitic wiggles in the background. Indeed, the
more you compress, the larger the effect of the analyzing
function. Therefore wavelets and wavelet packets, being lo-
calized functions, tend to separate coherent structures from
the background flow (Fig. 4(b)), while Fourier and win-
dowed Fourier, being nonlocalized functions, tend to smear
coherent structures into the background flow (Fig. 4(c)).

We have shown by using nonlinear wavelet packet com-
pression, that there is no scale separability in 2-D turbulence
[62]. To prove this we have computed the time evo-
lution of a 2-D turbulent flow which we use as our
high-resolution reference flow. We have then compressed
the initial vorticity field in two ways: either by retaining
only the lower wavenumber Fourier modes, or by selecting
the strongest (in L2-norm) wavelet packet coefficients. We
found that for a compression ratio of 200 the wavelet packet
representation preserves, in a statistical sense (namely the
energy spectrum is well predicted), the reference flow
evolution while the Fourier representation leads to a statis-
tically different solution. This conclusion is not surprising,
considering the existence of an inverse energy cascade in
2-D turbulence, which implies that the high-wavenumber
Fourier modes remain active and affect the evolution of the
low-wavenumber modes. The implication of this behavior
has not been implemented in turbulence models because
there were not yet any alternative methods to replace
gridpoint and Fourier representations.

In the same paper [62] we showed that there is a
possible separability between active modes, namely the
coherent structures corresponding to the strong wavelet
packet coefficients, and passive modes, namely the vorticity
filaments of the background flow corresponding to the
weak wavelet packet coefficients. Both components are
multiscale, which is why the Fourier representation is not
able to disentangle them and a fortiori to model them.
According to Weiss analysis [158] the coherent structures
correspond to elliptic regions (nearby fluid trajectories re-
main nearby) where rotation w? dominates strain o2, while
the background flow corresponds to hyperbolic regions
(nearby fluid trajectories separate exponentially) where
strain 02> dominates rotation w?. In the very small scales,
for elliptic regions the local Reynolds number Re(x,r) is
larger than one, while for the hyperbolic regions it is smaller
than one, which indicates that the only background flow
is laminar and dissipative (Fig. 5). Coherent structures are
local quasistationary solutions of Navier-Stokes equations.
The probability distribution of the velocity field associated
to the coherent structures is out of thermal equilibrium
and varies depending on their configuration in space. On
the contrary the background flow has already thermalized
due to the very strong mixing resulting from the straining
imposed by the coherent structures. Therefore the proba-
bility distribution of the velocity field of the background
flow is stationary and no longer depends on the spatial
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configuration of the coherent structures. We should then
be able to model this background flow by an ad hoc
stochastic process having the same enstrophy and the same
statistics, in particular the same spectral slope, whereas the
coherent structures should be explicitly computed in phase
space. A possible direction would be to construct a wavelet
or wave packet frame (namely a quasi-orthogonal basis)
made of local solutions of the linearized Navier—Stokes
equations (nainely any isotropic smooth function). We do
not yet know neither to construct it, nor how to compute
Navier—Stokes equations in it, but preliminary steps in this
direction will be discussed in Section VI.

In an unpublished work [61] we have also shown that the
presence of coherent structures inhibits the nonlinear insta-
bility of the background flow, namely the formation of new
coherent structures. Using the wavelet packet representation
to extract the coherent structures, we then computed the
evolution of the remaining background flow in the absence
of coherent structures, and observed the emergence of new
ones out of it (Fig. 6). Actually when coherent structures are
present, they impose a strain on the background flow which
then inhibits the formation of new coherent structures. Due
to this strain there is no energy or enstrophy backscatter
from the incoherent to the coherent components of 2-D
flows. The next step to validate this observation will be
to compute the different transfers between coherent and
incoherent structures components of the flow (namely from
coherent structures to coherent structures, from coherent
structures to background, from background to coherent
structures, and from background to background) and check
that there is no transfer from background to coherent
structures. If this is confirmed, there will be a possible
wavelet separability between the coherent and incoherent
flow components and we may then be able to propose new
parametrizations based on this gap.

B. Three-Dimensional Turbulence Modeling

The assumption that the high-wavenumber Fourier modes
are slaved to the active low-wavenumber Fourier modes
[158] is probably also wrong for 3-D turbulence due to
the recent evidence of energy backscattering [44]-[46],
[104], [135], i.e., inverse energy transfer from small to large
scales, resulting from the presence of organized structures
which locally interact and transfer energy to larger scales.
We should take this observation with caution knowing that
the amount of backscattering observed depends sensitively
on the sharpness of the spectral filter used. There are two
other reasons to explain why this assumption is not valid
and should be revised.

The first reason comes from the fact that we do not have
any universal theory of turbulence aside from the statis-
tical theory which deals with homogeneous and isotropic
ensemble averages, while a numerical simulation computes
one flow realization at a time (at the highest resolution
possible with present supercomputers) and not ensemble
averages (which requires too many computations of the
same turbulent flow). Actually, each flow realization is,
unlike an ensemble average, highly inhomogeneous due
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to the presence of coherent structures. As we have shown
in performing wavelet analyses of 2-D and 3-D turbulent
flows, coherent structures are multiscale and, through their
mutual nonlinear interactions, are responsible for inverse
energy transfers. If the computational grid is too coarse,
its resolution is insufficient to accurately compute these
transfers. Likewise subgrid-scale parametrization is only
able to model direct transfers and inverse transfers in a
statistical sense, assuming homogeneity, but not for the
indivisual inhomogeneous flow realization one computes.
In fact backscattering is a major unresolved drawback of
current numerical methods, which will last as long as we
will be unable to separate the coherent structures from the
background flow and take into account the parametrization
of homogeneous turbulent components separately from the
inhomogeneous components.

The second reason comes from the fact that our current
numerical methods are defined, either in grid-point, finite el-
ement, or Fourier representation, and are unable to compute
multiscale objects with a small number of coefficients. This
would be possible using either adapted multigrid or wavelet
numerical methods. Multigrid techniques were proposed 20
years ago by Achi Brandt [27] for solving elliptic problems,
such as the diffusion equation; they were then adapted
to quasistationary problems, but do not yet seem optimal
to solve time-dependent problems. Actually, the multigrid
approach is very similar to a wavelet approach using a hat
scaling function, which is very well localized in physical
space and corresponds to a set of embedded grids, but which
is too delocalized in spectral space and tends to produce
large errors in the higher order derivatives of the solution.
As far as we know, locally refined multigrid techniques
have been tried for the Navier—Stokes equations, but not
yet in the turbulent regime.

One possible approach is to use the wavelet Reynolds
number to split the Navier-Stokes equations at each time
step into advection and diffusion operators, which will
be solved separately using the most appropriate numerical
method and turbulence parameterization for each operator.
Namely, the advection term is computed where Re(x, r) >
1, and the diffusion term where f{e(x, r) < 1. This method
makes sense only if the flow is represented either in a
multigrid or in a wavelet representation (see Section VD).
We could for instance built an appropriate wavelet frame
(namely a quasi-orthogonal basis) made of local solutions
of the linearized Navier-Stokes equations (same in this
case as the heat equation), which could be any isotropic
smooth function such as a circular Gaussian vortex (e.g.,
the Burger’s vortex).

Actually, as we have already said, the Navier—Stokes
equations are computationally intractable for the large
Reynolds number limit which corresponds to fully
developed turbulent flows. Although the use of wavelets
may improve current numerical methods for solving
the Navier-Stokes equations (see Section VI), a more
promising direction may be to look for a new set of
equations specific to the turbulent regime. Such equations
would be written in terms of a small number of new
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variables corresponding to the degrees of freedom attached
to the coherent structures. As a consequence they will break
some of the symmetries of Navier-Stokes, in particular its
translational invariance. This is analagous to the way in
which Boltzmann’s equation, describing the macroscopic
level, breaks the time reversibility of Newton’s equation,
describing the microscopic level. For modeling turbulent
flows we ought to go one step further in this hierarchy of
embedded equations and define a new “organized” level
emerging out of the thermalized background flow.

C. Stochastic Models

The idea is to find models of turbulence that mimic the
behavior of Navier—Stokes equations at high Reynolds num-
bers, but which would be easier to solve numerically and
perhaps even analytically. These models could then be used
to study some properties of turbulent flows, such as energy
cascade, probability distribution functions, intermittency,
and departure from Kolmogorov’s scaling.

The first attempt was done in 1974 by Desjanski and
Novikov [42] who devised a so called shell model where
the Navier—Stokes equations were represented on a discrete
set of wavenumbers in Fourier space, each Fourier shell
corresponding to one octave. The coupling between dif-
ferent octaves was supposed to be local in Fourier space
and energy was transferred only from large to small scales.
Such shell models, sometimes called cascade models, are
still popular because with them it is easy to obtain very
large inertial range, up to Reynolds numbers 10, at a
limited computational cost. The number of degrees of
freedom needed to compute 3-D Navier—Stokes equations
by standard direct simulations scale as Re%/4, whereas it
scales as Re for shell models. The weak point of shell
models is that the vectorial structure of Navier—Stokes
equations is lost, the incompressibility condition is not
satisfied and they do not give accurate information on the
spatial structure of the flow.

In 1981, Zimin [71], [163], [162] proposed another
model, called the hierarchical model, defined in both space
and scale. He projected the 3-D Navier—Stokes equations
onto a Paley-Littlewood basis and dicretized them by
octaves, considering a limited number of vortices for each
octave, few in the large scales and more in the small scales
in accordance to the uncertainty principle. He then assumed
that each vortex is advected by the velocity field of the
larger vortices, which lead him to propose a set of semi-
Lagrangian wavelets to compute the flow evolution. This
impressive work foreshadowed the wavelet decomposition,
and has since been developed by Frick [69], [70], [6].
Hierarchical models are more physical than shell models
because they also take into account the vortex motions, but
they are still not very realistic from a physical standpoint
because they neglect the vortex deformation which is
responsible for energy transfers and subsequent dissipation.
Recently Eyink [57], in an unpublished paper, criticized
this approach by showing that semi-Lagrangian wavelets
do not remove the effect of large-scale convection to the
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energy transfers and therefore do not guarantee their locality
(in wavenumber space). This is again due to Heisenberg’s
uncertainty principle and is related to the fact that it is
impossible to compare transfers between wave numbers
and transfers between wavelets, this point has already been
discussed in Section IV.

Ideas on turbulence evolve at a very slow pace. As
example of this, let us quote what Liepmann wrote in the
Proceedings of the Turbulence Conference held in Marseille
in 1961 [111].

The success of the spectral representation of turbu-

lent fields is due, after all, not to the belief in the

existence of definite waves but to the possibility of
representing quite general functions as Fourier integrals.

In the application to stochastic problems the usefulness

of the Fourier representation stems essentially from

their translational invariance. Consequently, really suc-
cessful models for representing turbulent shear flows
will require far broader invariance considerations. It
is clear that the essence of turbulent motion is vor-
tex interaction. In the particular case of homogeneous
isotropic turbulence this fact is largely masked, since
the vorticity fluctuations appear as simple derivatives
of the velocity fluctuations. In general this is not the
case, and a Fourier representation is probably not the
ultimate answer. The proposed detailed models of an
eddy structure represent, I believe, a groping for an
eventual representation of a stochastic rotational field,
but none of the models proposed so far has proven useful
except in the description of a single process.

These remarks, written 35 years ago, are still very pertinent

and define the direction we should take for future research

in turbulence.

Nowadays, using continuous wavelets we can construct
more elaborate stochastic processes. As Liepmann has per-
ceived we should be able to synthesize stochastic rotational
fields, built from a set of randomly translated, rotated and
dilated elementary vortices, which should have the same
non-Gaussian statistics as those observed for two and 3-
D turbulent flows. Recently Eliott and Majda [53], [54]
have used wavelets to build a Gaussian, stationary and
self-similar stochastic process for synthetizing turbulent
velocities fields satisfying Taylor’s hypothesis and display-
ing Kolmogorov’s energy spectrum. Using these synthetic
velocity fields they recover Richardson’s law for scalar pair
dispersion [55]. Their method may be useful to model the
background flow which, contrary to coherent structures,
does have Gaussian statistics.

VI. TURBULENCE COMPUTATION

A. Direct Numerical Simulations

The numerical simulation of turbulent flows, based on the
direct integration of the Navier—Stokes equations at high
Reynolds number, requires a very large number of degrees
of freedom which increases like Re in two dimensions
and like Re®/* in three dimensions. Among the numerous
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Eulerian and Lagrangian numerical schemes, one may
identify two different points of view: the spectral and
the physical ones. Historically the most important for
fundamental studies, the spectral point of view is based on
the scale invariance of the Euler equations which leads to
the cascade concept; indeed, the vorticity (1) creates more
and more scales of motion from the injection scales, linked
to external force F, to the dissipation scales, which are
inversely proportional to the Reynolds number, and even-
tually generates a continuous Fourier spectrum. The first
long-time simulations of 2-D turbulent flows [12], [112],
[20] based on spectral methods, i.e., Fourier decomposition,
could not attain realistic Reynolds numbers, because their
resolution was not exceeding 5122. On the other hand,
the physical point of view relies on the visual analysis
of numerical and laboratory experiments, which lead to
the recognition of the important dynamical role played by
the coherent structures. This resulted in the development
of Lagrangian methods ([1], e.g., vortex methods [108] or
contour dynamics methods [102]) which follow the motion
of each vortex, but which are imprecise concerning the
background flow between the vortices. Finite element or
finite difference methods allow mesh refinement in regions
of the flow where small structures appear, for instance in
the boundary layer of an obstacle; unfortunately, automatic
adaptive refinements requires postprocessing to follow these
small structures.

Wavelet bases, in the context of PDE’s numerical simu-
lation, appear to be a good compromise between spectral
methods (precise, but expensive), vortex methods (which
automatically follow coherent structures, but not the back-
ground flow), and finite element or finite difference meth-
ods (local in space, but not precise). Wavelet numerical
methods have already been used to solve Burgers’ equa-
tion in 1-D [7], [83], and 2-D [23], Stokes’ equation in
2-D [153], Kuramoto—Sivashinsky equation [126], Ben-
jamin-Davis—Ono-Burgers’ equation [68], the heat equa-
tion in 2-D [36], some flame equation in 1-D and 2-D [75],
the nonlinear Schrodinger equation [79], Euler’s equation
[138], and Navier-Stokes’ equation in 2-D [37], [77].

B. Wavelet Based Numerical Schemes

The localization of wavelet bases, both in space and
scale, leads to an effective nonlinear compression of the
solution as well as a sparse representation of the operators
involved in (1). This can be justified by theoretical results
and verified by numerical experiments.

The sparsity of the wavelet expansion of a given function
is linked to its local smoothness: where the function is
regular, the corresponding wavelet coefficients decrease
with scale. This fact is related to the characterization of
pointwise Holder spaces [87], [84], and is illustrated in
Fig. 3 in the Mathematical Background in this issue. Recall
that for Fourier decomposition, the decay of the coefficients
depends on the global regularity of the function [157].
Another important property of wavelets is given by the
nonlinear approximation of functions: the approximation
error between a function and its wavelet series taken as the
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Fig. 7. Nonlinear compression of a vorticity field in Fourier basis
versus compression in a wavelet packet basis. (a) Vorticity field
computed with a resolution of 1282. (b) Nonlinear compression
in Fourier basis (dotted line) and in wavelet packet basis (dashed
line).

N largest coefficients (in a given norm) can be estimated,
in some Lebesgue space, by a (negative) power of N
which depends on the smoothness or nonsmoothness of this
function. This result follows from the characterization of
Sobolev and Besov spaces by mean of wavelet coefficients
[119], [43], [47]. Note that the nonlinear wavelet approx-
imation of a given function is associated with a grid in
physical space which is refined where there are singularities
of this function [76].

A comparison of Fourier versus wavelet and wavelet
packet nonlinear compression for a numerical vorticity field
is shown on Fig. 7. We observe that the wavelet packet
compression is more efficient and that the nonlinear wavelet
compression is better behaved than the nonlinear Fourier
one.

Another important consequence of the double localiza-
tion (in space and scale) of wavelet bases is that some
pseudo-differential operators become almost diagonal when
decomposed into these bases. This is the case for the
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Fig. 8. Discretization matrix of the heat operator (1-
10~%V2)~1, The gray code is a logarithmic scale from white to
black, the significant values being black. (a) In finite differences
of fourth order. (b) In a wavelet basis with the same precision.

gradient operators and the heat kernel (decomposition of
Calderon—Zygmund operators [119]). As an example the
discretized heat kernel (on a 10242 grid) is projected onto
a wavelet basis (Fig. 8(b)) and we observe that only 9.5%
of the coefficients are greater than 1078, absolute value to
be compared to the largest eigenvalue which is order one,
instead of 21% for a finite difference projection (Fig. 8(a)).
These two fundamental properties (field compression and
operator compression) allow us to define adaptive wavelet-
based numerical schemes for solving PDE’s. By neglecting
small coefficients in the solution and/or in the operator’s
wavelet representation, each step of the algorithm is based
on approximate but fast matrix-vector products computed
in wavelet space. Note that the schemes based on scaling
functions (often deliberately confused with wavelets) [81],
[99], [68] instead of wavelet functions are no more efficient
than classical finite element methods on a regular grid!
Theoretical error and stability estimates for some particular
wavelet schemes may also be derived [22], [40], [24].
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C. Solving Navier-Stokes Equations in Wavelet Bases

The first wavelet adaptive schemes for the Navier—Stokes
equations were derived by Charton [35] and Frohlich and
Schneider [77]. An equivalent scaling function scheme for
solving the Euler equations has already been developed by
Qian and Weiss [138]. Many approaches can be used to
solve the 2-D Navier—Stokes equations. We will focus on
the most developed (because the most commonly used)
wavelet methods for solving PDE’s: the Galerkin and
Petrov—Galerkin schemes based on the discrete wavelet
transform. Another way would be to develop Lagrangian-
type wavelet methods, based on the continuous wavelet
transform. An example is the traveling wavelet method
[11] in which wavelets behave like particles evolving in
phase-space coordinates.

The traveling wavelet method looks for an approximate
solution of the above (51) which is a finite sum of wavelets
evolving in phase-space

Z t)z/;(—)(t)>, a; >0 (50)

=1

where ¢ is the base-wavelet and c¢;, a;, b;, are respec-
tively the time dependent amplitude, scale, and position
parameters.

This method works well for linear equations such as
the convection-diffusion equation, the Korteveg—deVries
equation, and very recently was applied to the study of
the formation of galaxies [18]. However, in the nonlinear
case, the method encounters technical difficulties, which
have not yet been completly overcome: these difficulties
happen when two wavelets approach each other in phase
space. This effect is also called “atom’s collision.”

Now, let us consider the 2-D Navier—Stokes equations
written in terms of vorticity and stream function

{%—‘2’+v-vw:uv2w+f, ze[0,1]%, >0

20 — — (2% _9¥
VU = w, V_(ay’ 5

(5D

w = voricity, v =, velocity, V = kinematic viscosity, f =
external force, and ¥ = stream funcion and periodic or
Dirichlet or Neumann boundary conditions.

By introducing a time step ¢ and a classical semi-implicit
time discretization and setting w"(z) = w(z,ndt) to be
the approximate solution at time ndt, (51) is replaced,
for example (we take here the simpliest but instable time
scheme for sake of clarity) by

{ (1 —v6tV2)w™t = ™ + §t(f" — o™
V2q,n+1 — wn+17 ,Un+1 — ay lII"'H,

-Vw™)

_a \I,‘n-[»l (52)

The spatial discretization is then performed by approximat-
ing, at time ndt, w™ by a function w7 belonging to a finite
dimensional subspace V; obtained from a multiresolution
analysis (V;);j>o0 of the space L2(]0,1]?) (see the Mathe-
matical Background). This spatial approximation can be of
collocation type, i.e., grid point values or of Galerkin type,
i.e., a projection onto a basis. The transformation between
collocation and Galerkin representations uses an orthogonal
wavelet transform. However, problems arise with adaptive
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schemes because it is difficult to take advantage of the
sparsity of the wavelet decomposition, when going back
and forth from gridpoints to wavelet representations. Let
us be more precise and consider the 1-D case. Suppose that
dim V; = 27. Then the function w”} can be expanded onto
the scaling function basis (¢ )r=027_1 of Vs

271
Whz) =Y chresr(z) (53)
k=0
or onto a wavelet basis (¥ r)o<j<Jr=0,21—1 of Vs
J—127-1
WHz) =Y Y dl (@) + o (54)
=0 k=0

In the collocation method, the function w7 is naturally
associated with a regular grid (zp = k277)g—g 971 of
[0, 1] and its corresponding collocation values w’(zy).
Often, by using properties of scaling functions ¢ one
can identify

wh(ar) & 277k, (55)

The wavelet Galerkin method is based on the wavelet
coefficients d7,, and in practice uses only the few (non-
negligible) coefﬁc1ents larger than a given threshold e:
{d?);1d7 | > e}. Mallat’s fast wavelet algorithm works
well for regular grids, but is no more efficient for irregular
grids composed with the irregular grid points x; corre-
sponding to the “centers” of wavelets ), x, for which the
coefficients of wf(zy) satisfy |d} | > e.

To avoid the problem, one can introduce, when it exists,
an interpolating function of V; and adapt Mallat’s fast
wavelet algorithm [76]. Another way is to directly contruct
interpolating scaling functions ¢ and the corresponding
interpolating wavelet basis ;; [23], which avoids the
problem. Last, one can construct an adaptive multiresolu-
tion analysis [137], but the algorithm is not yet effective.

The algorithm (52) for solving the 2-D Navier—Stokes
equations can now be split into four steps which we will
then discuss: 1) time stepping the heat equation, 2) solving
a Poisson equation, 3) computing the nonlinear term, and
4) imposing the boundary conditions.

1) The Heat Equation Solution: Let us consider the dis-
cretised heat equation

(1 = vtV = w™ + 6t (56)

The biorthogonal approach introduced in [110], [101], [76]
consists of building a biorthogonal system from a classical
wavelet basis 1; ;. setting first,

i = (1 —vétV)leh; 57

with suitable hypotheses on . Then a system éj’ « biorthog-
onal to §; ;. is constructed, and (56) is reduced to the change
of bases

<wn+1 1 w]k> = (w"' l GJ;L) + (5t(fn I oj,k) (58)
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where the notation (|) means scalar product. This approach
avoids inverting the operator and is simply a collocation
problem, as we must return to grid values at each time step.

The Galerkin approach is to project (56) onto a classical,
orthogonal, or biorthogonal wavelet basis (1;1) of the
space V;. We can write

(Wit 1 95e)) 5 = KW +8tf [%5k)) ;4 (59)

where
Kk, (rkry = (1= v8tV2) "1 0 | hje k) (60)

is the heat kernel, which is almost diagonal, as explained in
Section VI-B, Fig. 8(b). This step is based on approximated
but fast matrix-vector products. An easy way to reduce the
previous 2-D system to several 1-D systems is to use a
tensor wavelet basis (¥; () - ¥/ & (y)) and to split the
2-D heat kernel into two one-dimensional operators

21 2\ 92\
(1 -vétVe) ' = (1 - V(Stﬁ> (1 - ”6t5y_2)
61)
as in the alternating direction implicit (ADI) method [36],
[37].
2) The Poisson Equation: The solution to the Poisson
equation

v?qln+l — wn-’rl (62)

can be obtained as the steady state soluticn of the heat
equation, which, as in ADI methods, is reached in only a
few iterations by considering iterated powers K™ of the heat
kernel K (60) which become sparser with n [36].

An alternative approach, proposed by Jaffard [87], is to
consider the well-conditioned system

PAPP_1(<\I’7}+1 | ¢j1k>)(j,k) = P((“’;H ‘ 1/)jvk>)(j,(k6)3)

where A is the Galerkin matrix of the Laplacian in a wavelet
basis: A(j,k),(jr,kl) = (V2¢j,k|1/)jf’k/) and P is the diagonal
preconditioning matrix: P; sy jr k) = 277 85 Ok ks in
1-D (in 2-D this should be modified according to the
chosen 2-D wavelet basis). Jaffard proved that the condition
number of PAP does not depend on the order of the system.
Then the solution of (63) can be reached in a few iterations
by a classical conjugate gradient method.

3) The Nonlinear Term: The nonlinear term v™ - Vw"
can be computed either by a collocation or by a Galerkin
method. The collocation (also called pseudo-spectral)
method can be sketched as follows: starting from the
wavelet coefficients of v and w™, compute the wavelet
coefficients of Vw". Then, through an inverse wavelet
transform, obtain the grid point values of v™ and Vw™
on the associated grid, as above. Then the products are
calculated at each grid point, and finally the wavelet
coefficients of the nonlinear term are obtained through a
direct wavelet transform. This collocation method requires
a fast wavelet transform between grid points and sparse
coefficients sets. This problem was edvocated in the
previous Section VI-C. Recently, Frohlich and Schneider
[76] have developed a wavelet transform for lacunary bases.
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Fig. 9. Comparison of a pseudo-spectral and a pseudo-wavelet
computation of 2-D Navier-Stokes equations (this computation
was done in collaboration with Philippe Charton). (a) Vorticity
evolution from ¢ = 10 to ¢ = 40 and the energy spectrum
at t = 40 computed with a pseudo-spectral code. (b) Vorticity
evolution from t = 10 to ¢ = 40 and the energy spectrum at
t = 40 computed with a pseudo-wavelet code.

On the other hand, a Galerkin method works only in
the wavelet coefficient space, avoiding transforms between
physical and wavelet space. The nonlinear term is then
written as convolutions between the wavelet coefficients
of v and Vw™; these convolutions involve triple wavelet
connection coefficients of the form (¥, k, ¥}, x, | Yis,ks)-
A priori the complexity of such a calculation is very large,
but the method can be competitive for two reasons. 1) Since
the wavelets are localized both in space and scale, connec-
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tion coefficients vanish when two of the three wavelets are
separated either in scale or space. Hence, only a limited
small number of terms remains in the convolution. 2) The
method can, more easily than collocation, handle adaptive
description of the fields, i.e., the convolution can be re-
stricted to only the significant components of the flow [133].

4) The Boundary Conditions: Boundary conditions are in
general included in the definition of the spaces (V})jcz
when constructing the multiresolution analysis. The sim-
plest and most popular (due to the development of Fourier
spectral methods) are periodic boundary conditions for
which periodic wavelets, in one or several dimensions,
can be easily constructed [131]. For Dirichlet or Neumann
boundary conditions, compactly supported bases have re-
cently been constructed in 1-D [38], [123], [124], and
these bases are also associated to fast orthogonal wavelet
transforms, like for the periodic case. They can easily be
included in the previous algorithms, since the extension to
cubic domains in several dimensions is trivial using tensor
products of wavelets (in practice all 2-D orthogonal wavelet
bases are tensor products, which raises the problem of
anisotropy).

One should also mention the existence of divergence-
free wavelet bases [106], [105], which can be used for
the velocity-pressure formulation of Navier-Stokes (1) and
automatically take into account the incompressibility con-
dition [153].

Charton [35] has recently developed a code for solving
2-D periodic Navier-Stokes equations. It uses a “pseudo-
wavelet” (by comparison with pseudo-spectral) method.
The time discretization is a second order semi-implicit
scheme and the space discretization is performed by a fourth
order wavelet approximation. As explained in (59)-(61),
the algorithm is based on a splitting of the 2-D heat kernel,
associated to a tensor product wavelet basis. The Poisson
solution is given by the steady state solution of the heat
equation. All these steps use the lacunarity of the wavelet
representation for the operators and for the solution. The
nonlinear term is computed by a collocation method on a
regular grid, and this point should be improved.

The first results at low resolution (1282) are shown on
Fig. 9. This work is actually in progress, the lastest tests
validate the method by comparison with a pseudo-spectral
code. Note that a global simulation at resolution 10242 can
be run on a workstation.

VII. CONCLUSION

The main factor limiting our understanding of turbulent
flows is that we have not yet identified the structures respon-
sible for its chaotic and therefore unpredictible behavior.
Based on laboratory and numerical experiments, we think
that vortices (or coherent structures) are these elementary
objects, from which we may be able to construct a new
statistical mechanics and define equations appropriate for
computing fully developed turbulent flows.

The quasi-singular vortices encountered in turbulent
flows are, by their nature, very rare. In fact, the Ca-
farelli-Kohn—Nirenberg theorem shows that singular
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structures, if they exist, must be of Hausdorf measure zero
in space and time. The present statistical diagnostics are
low order and thus insensitive to rare events, i.e., coherent
structure, because their effect appears only in the higher
order statistics. An example of this is the fact that the low
order structure functions follow Kolmogorov’s law (which
assumes a homogeneous structureless and nonintermittent
flow), while the higher order structure functions depart
strongly from this law (because turbulent flows are actually
highly intermittent). To efficiently analyze the coherent
structures of turbulence one requires either a high order
statistical method or some conditional averaging.

Using a wavelet representation instead of a Fourier repre-
sentation minimizes the restrictions on the basis functions,
enlarging them to Sobolev, Holder, and Besov spaces.
Moreover, the Fourier basis used by the present statistical
theory of turbulence is not the appropriate functional rep-
resentation space for analyzing the physical structure of a
flow because it averages over space and thus loses all spatial
information. Furthermore, the Fourier energy spectrum is
sensitive to only the strongest isolated singularity in the
flow, and even then can give no information about the
form or location of this singularity. In short, Fourier space
analysis is unable to disentangle coherent structures from
the rest of the flow.

The complementary simultaneous space and scale infor-
mation provided by the wavelet representation makes it
an appropriate tool for identifying and analyzing coherent
structures in turbulent flows. The wavelet transform can
be used to segment the vorticity field into coherent and
incoherent components as the first stage in a conditional
sampling algorithm. Such a segmentation method respects
Galilean invariance because it is performed on the vorticity
field and not on the velocity field, which loses Galilean
invariance. A local wavelet analysis can also give the
strength and form of any quasi-singular isolated structures,
which correspond to the coherent components, and separate
them from the background flow, which corresponds to the
incoherent components.

Different wavelet techniques must be used depending
on whether the flow contains oscillating (e.g., spiral) or
nonoscillating (e.g., cusp) type singularities, and whether it
contains isolated (e.g., a single cusp or spiral) or dense
(e.g., fractal) distributions of singularities. For example,
the current wavelet-based methods for determining the
singularity spectrum of a multifractal work only if the signal
does not contain oscillating singularities. Turbulence may
contain both types of singularities in either dense or isolated
distributions. It is therefore important to determine from
the beginning whether a given turbulence signal contains
oscillating singularities and how these singularities are
distributed. This classification is possible using a wavelet-
based diagnostic.

In Section III-E we reviewed the wavelet-based methods
for detecting and analyzing the singular structure of a
signal. We saw that these methods are useful, not only
because they provide new information which cannot be ob-
tained using other methods, but also because they formally
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unify a wide range of previously disparate approaches.
For instance the wavelet-based method of calculating the
structure functions unifies their analysis with the calculation
of energy spectra and the strength of local singularities.
Furthermore, wavelets play the role of “generalized boxes”
in a new form of the standard box-counting algorithm
used to estimate fractal dimensions. This algorithm brings
out the intimate relationship between structure functions
and multifractals. The application of these methods to
turbulence is still in its first stages, although they have
already produced interesting and stimulating new results.

In Section IV we showed that wavelet analysis has been
an essential tool for identifying coherent structures as
phase-space regions correlated in both space and scale, and
for studying their scaling properties. Wavelet analysis has
helped to relate the intermittency of turbulent flows to the
presence of organized coherent structures, and explained
why the predictions of the statistical theory of turbulence
are not verified for high-order statistics. The wavelet rep-
resentation may also be used to compute the transfers of
energy and of enstrophy between coherent and incoherent
components of turbulent flows.

In Section V we reviewed several applications of
wavelets and wavelet packets to turbulence modeling. In
particular, we showed that the wavelet packet representa-
tion, associated with a maximum entropy statistical method
and a nonlinear filtering procedure, extracts the coherent
structures in a computationally efficient way. Turbulent
motions are nonseparable in the Fourier representation,
while a wavelet representation may be able to provide such
separability. We have reasons to expect a gap in wavelet
coordinates between organized structures to be explicitly
computed and random background flow to be modeled
by an appropriate stochastic process. This decomposition
may be the basis for a new way of numerically simulating
turbulent flows and possibly other kind of intermittent
behaviors having similar statistics.

In Section VI we summarized the progresses that has
been made in actually computing partial differential equa-
tions in wavelet space. Numerous promising experiments
have been carried out using wavelets on Burgers’ equation
in 1-D or 2-D, heat equation or Stokes equation in 2-D and
Navier-Stokes equations in 2-D. All these experiments have
shown that wavelet approaches are valid and sometimes
superior to existing numerical methods.

In conclusion, we think that the wavelet functional rep-
resentation may be the proper tool for building a statistical
mechanics of turbulence based on the identification of
elementary dynamical structures from the observational
data we have. This theory will replace the present Fourier-
space statistical theory of turbulence which is based on the
symmetries of the Navier-Stokes equations. We are now
convinced that Navier-Stokes equations are not the appro-
priate model equations to compute large Reynolds flows.
Indeed in this limit, there is probably some symmetry break-
ing associated with the production of coherent structures out
of the random background flow. This is precisely the differ-
ence between a statistical theory and a statistical mechanics!
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Turbulence research is a kind of tragicomedy—tragic
due to its military (atomic bomb, missiles, reentry vehi-
cles) applications—and comic because at each generation
we seem fated to rediscover old ideas. For instance, our
understanding of dissipation and turbulence modeling is
the same as what Richardson was suggesting when he
wrote: “Diffusion is a compensation for neglect of detail.
By anarbitrary choice we try to divide motions into two
classes: (a) Those which we treat in detail. (b) Those which
we smooth away by some process of averaging,” [142] and
the program we develop corresponds to the prescription
for turbulence research proposed 47 years ago by Dryden
when he wrote:

It is necessary to separate the random processes from

the nonrandom element [49].

Wavelets, as a new mathematical tool, will certainly bring
new insights to assert present methods and hopefully to
help understanding turbulent flows. But knowing the past
difficulties encountered in this field, we should not be too
optimistic, nor should we oversell wavelets. As Sadourny,
director of our laboratory, likes to say quite ironically:

“Wavelets? You mean this new approach which will

waste another 20 years of turbulence research!”
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