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Summary

In this paper we present results obtained using wavelet methods for the anal-
ysis and simulation of two-dimensional turbulence, and a preliminary study of
a three-dimensional turbulent channel flow. The two-dimensional results show
the efficiency of wavelets for the numerical simulation of turbulence, and suggest
new methods for modelling the flow, based on a decomposition into coherent
and incoherent parts. The three-dimensional study compares different wavelet
type approaches applied to instantaneous velocity, vorticity and pressure fields.
At least for the data and the setting considered in our experiments, i.e. flows
with dominating boundary layer, the results indicate which of the various forms
of the three-dimensional Navier—Stokes Equations (3D-NSE) (primitive vari-
ables, vorticity-streamfunction formulation) and which multiscale approach is
well suited for the numerical integration of the 3D-NSE. In addition, we present
efficient techniques for the implementation and parallelization of an adaptive
wavelet-based 3D-NSE solver.

1 Introduction

In both two and three dimensions turbulence is characterized by localized re-
gions of strong variations in the quantities describing the flow. These coherent
structures take the form of roughly circular patches of strong vorticity in two
dimensions [25] and thin tubes of strong vorticity in three dimensions [23]. The
existence of these tubes has been confirmed many times both in numerical [31],
[34] and laboratory experiments [3]. The tubes have diameters of the order of
the Kolmogorov scale and lengths up to the integral scale. The interest of these
patches or tubes is that they are believed to control the dynamics of the flow.
This is the foundation of the various vortex-based methods [24] in both two and
three dimensions. Furthermore, the localized nature and sometimes complex
internal structure of the vortices suggests the use of multiscale methods. Due to
their localization in scale and space these methods are good candidates to reduce
the complexity of the flow. One example of multiscale methods, wavelets, have
been used for the analysis and simulation of two-dimensional turbulence with
periodic boundary conditions [11], [13], [5]. The results in two dimensions have



been encouraging and suggest new modelling methods (see §3), and it is clear
that the next step is to attempt to apply similar methods to three-dimensional
flows and flows with boundaries.

This paper has four main sections. The first part (§2) briefly describes multi-
scale methods in both two and three dimensions. Starting from three particular
univariate approaches we will explain two constructions for multivariate meth-
ods. One of these approaches is new in the context of wavelets, but gives superior
results in three dimensions.

The second part (§3) describes some new results obtained by the French mem-
bers of our group for the analysis and simulation of two-dimensional turbulence
using wavelets. The goal is to demonstrate that wavelet techniques can be effi-
cient and highly accurate for computing two-dimensional turbulent flows. Fur-
thermore, wavelet analysis shows that the flow may be objectively separated
into a coherent part (with non-Gaussian vorticity statistics) and an incoherent
part (with Gaussian vorticity statistics). This result suggests a new highly effi-
cient modelling method where the coherent part of the flow is calculated using
the wavelet solver, while the incoherent part is modelled statistically or merely
advected by the coherent part.

In the third part (§4) we applied different multiscale methods to a database of
a 3D turbulent channel flow. This work was done in Bonn. By the comparison
of compact representations of the velocity and vorticity we aim to answer the
following questions:

e Do we need to solve the 3D-NSE in terms of vorticity or velocity in order
to exploit the localization of the coherent structures?

o Which of the various multiscale methods yield a good trade-off between
numerical efficiency and suitability for turbulence simulations?

e How can we implement an adaptive method efficiently?

The main, but still preliminary, result of this part is that at least for the flow
under consideration the formulation of the 3D-NSE in primitive variables seems
to be better suited to the integration than the formulation in terms of vorticity.
In part, this is due to the fact that in three dimensions the numerical costs for
the vorticity formulation are much higher. The second result is that simple mul-
tiscale methods (prewavelets) give a very good trade-off between reduction of the
complexity of the flow and numerical efficiency. This analysis will form the foun-
dation for the implementation of a wavelet-based 3D-NSE solver by our group.
Some algorithmic details for efficient data management and parallelization of
the adaptive solver are discussed in §5. Note that the use of such techniques is
crucial for adaptive codes, in order to preserve their advantage of reducing the
complexity of the physical problem by working with a sparse representation.



2 Multiscale Methods

We will briefly describe some topics from the theory of multiscale methods.
These lines are in the spirit of the standard literature, see also the recent intro-
ducing paper of Dahmen [7].

2.1 General Concept of Multiscale Analysis

For a multiscale analysis (MSA) of a class H of functions one considers a sequence
of nested subspaces V; C H, whose union is dense in H, and complementary
spaces W; =V; 1 ©V}.

(o]
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Let V; and Wj resp. have bases {¢] }icr; and {¢] }ics;, where I}, J; are some
index sets. For the following explanations it will be convenient, to write the
bases as (possibly infinite) column vectors ®/ and W/. For the MSA of a given
function u € H one is looking for coefficients u’ := {u] };c s, of the expansion

(o]
u=> (u)" W (2.1)
7=0
With some additional requirements on H and the bases ®/ and W/, the coeffi-
clents w’ decay with increased scale j
|uj|lp -0 s .7 — 00

Further assumptions on H, ®/ and ¥/ then will allow for a good approximation of
u by an expansion similar to (2.1) using only a very limited number of significant
coefficients u]

U= Z U‘M;‘; and  ||u— 4|l is small. (2.2)
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In this equation €(j) is a certain cut-off parameter, which here depends only on
the scale 7, but may be chosen in a more sophisticated manner.
In practical applications usually one has a representation u = (¢/)T - ®/ € V7,
derived from collocation values of uw by, e.g. numerical quadrature methods
[33], and one is looking for the coefficients {u}o<j<s. This corresponds to the
transform 77 : ¢/ — Uj:_ol ul .
Often, besides the sequence V7 of trial spaces, one has explicit knowledge of an
ascending sequence of test spaces V" and their complements W}, such that the
bases ®*7, W*J for a certain dual pairing < .,. > fulfill biorthogonality relations

<Y T >=0; <V, ¢ >=0; <& Y >=10; ; <V U9 >=1],

The nestedness of the spaces V", Wr C V7, leads to the existence of refinement
matrices, such that

(I)*j — 7‘[; . <I)*j-|—1 : \IJ*] — g;s . <I)*j+1



Similar relations hold for the test spaces involving matrices H; and G;. Together
with biorthogonality this implies the following recursive scheme (Fast Wavelet
Transform)

d =< u, ® > cj:H;cj+1 and uj:g;‘cj'l'l for 0<j<J

Hence, T7 is formally given by the chain T%%0..0T”“~! of operators, each 7771
mapping the coefficients Ui;]l uk | Jel to i;jl_l u* | Je/~1. Whenever the
matrices %} and G7 are sparse, uniformly in j, the transform T7 can be applied

very fast. A moments thought yields that the inverse operation (77)~! is given
by the recursive scheme ¢/t = (#;)T¢/ + (G;)Tu! (0 <j < J).

2.2 Univariate Examples

We will briefly introduce three families of univariate biorthogonal systems. From
these we build up the multivariate systems used in our experiments. The three
families have in common, that they are generated by dilates and translates of
‘mother’ functions ¢*), »*). The families are the hierarchical nodal basis, pre-
wavelets and an example for compactly supported orthogonal wavelets. Figure
1 shows some of the trial functions.

Hierachical Basis Symmlets(2) Hierachical Basis

Figure 1: Univariate trial functions

(HB) Hierarchical Nodal Basis for H = L3([0, 1]):
Let ¢(z) = max{0, 1 —|z|} denote the well-known *hat’ function. Then, suitable
basis functions for V; and V" are

(/)‘Z ::(b(?jx—l) and (/)?‘7 ::(5(2‘71‘—1) ; 0§l§2j).

Here § denotes the Dirac functional. Bases of the complementary spaces are
given by

- ' i » 1, . i .
Ut '=¢(2r—20+1) and U’ = 2‘17—1_5(‘/’2‘17—2‘1‘4/’2‘17) P L<I<Y -1



(OW) Compactly Supported Orthogonal Wavelets for H = L3 (R):
In this case ¢ is the solution of the equation

$()=v2 Y ho(2e 1),

l=—L

with some very distinct coefficients h;. Solutions of such equations and the cor-
responding coefficients were first given by Daubechies [8], [9]. The Ly-orthogonal
basis functions are the dilates and translates ¢ = ¢;7 = 2]/2415(231‘ —1l) and ¢} =

1/;;‘j = 2112(27x — 1) for | € Z, where (z) = \/iZlL:-I__lR_I_l(—l)lhl_qu(Qx —1).

In numerical applications one usually deals with bounded domains, intervals
in the simplest case, thus the framework for Ly(R) above is not satisfactory and
one has to modify at least the basis functions ¢, ¢/ near the boundaries. Such
a construction is given by [15], generalizing and improving previous results of
[6], [27] with respect to the numerical stability of the boundary adaptation. In
our experiments we used boundary adapted least asymmetric wavelets of the
Daubechies family with two vanishing moments ( Symmlets(2) ).

(PRW) Lifting Prewavelets:
A simple, but very powerful, method for the construction of biorthogonal sys-
tems has been given by W. Sweldens [32]. In terms of the refinement matrices
biorthogonality reads

T *
iy (=0 (2.3)
gj gj 0 I
These relations are preserved, if we switch to a biorthogonal system with refine-
ment matrices

Hy N_ (1T o\ (N . (H;\N_(1 -KTY\ (%
G, ) \ K I gz ’ [ Lo 1 gz
This allows for the modification of existing biorthogonal systems to custom de-
sign a new one with special desired features. In our case we choose the primal

system corresponding to the hierarchical nodal basis (HB) and K such that the
new system exhibits the following properties,

< P9 >=< P,¥* >=( for each polynomial of degree less than 2

The second condition was also valid for the hierarchical nodal basis, but the
first was not. The purpose of this modification comes from the wish for easy
preconditioning the Laplace or Helmholtz problems, which have to be solved as
part of the integration of the 3D-NSE.

Some properties of these biorthogonal systems are compared in Table 1.



relative num. | preconditioning
work count in 3D
HB 1 No
PRW 2 Yes
ow 5 Yes

Table 1: Work count/preconditioning for biorth. bases

2.3 Multivariate Constructions

In the experiments of the next section, H is a space of functions over the do-
main [21, 23] X [y1,y2] X [z1, 22]. This tensor product structure allows for the
following two multivariate approaches. We restrict the presentation to the two-
dimensional case, since the generalization to higher dimensions is straightfor-
ward.

(ISO) Isotropic approach:
For this construction the bivariate Spaces V; are defined by

VvV, =V,oV;, ; W;= (Vj—l & Wj_l) © (Wj_l & Wj_l) © (Wj_l & Vj—l)

The transform formally is given by T = ()“7»]:_11(71‘7"‘7'_1 @ THi=1.

This means we have to apply at each stage of the transform first the univari-
ate T7J~1 with respect to z for all y, leading to the decomposition V; =
(W1 @V;) & (V21 @ V), and then with respect to y for all columns, lead-
ing to the final decomposition V; = V;_ & W, _;.

Since the univariate spaces V;, W; are usually spanned by equally dilated ba-
sis functions, the basis of W consists of functions with equal dilation in both
coordinate directions. Simply stated, they are isotropic. This approach is the
classical one in the framework of multivariate MSA.

(ANISO) Anisotropic and isotropic basis functions:
In contrast to the ISO approach the ANISO construction works in the same
way as the multivariate FFT. First we apply the complete decomposition with
respect to x and then with respect to y. Formally this leads to the transform
T7 = T7 @T7. Despite of its easy application, this construction leads to a more
complicated hierarchy of subspaces, which now depend on two parameters.

Vs = V;aVisioa Weo V) e (V; o W)
W;.s o (We @ Wj) & (W) © Wy)

Further information about such multiparametric space splittings are given in
[16], [28]. This approach exchanges the 3 types (corresponding V;_1 ® W;_1,

Wi_1 @ W1, W;_1® Vj_1 ) of equally dilated basis functions of the comple-
mentary spaces with a larger number of different types of basis functions, each
having a characteristic dilation in the first and second coordinate direction. Thus



there are both, isotropic and anisotropic basis functions. In the experiments of
the fourth section it turns out, that this approach is superior compared to ISO,
although for fixed J and fixed underlying univariate MSA the numerical cost is
larger by a factor of % in the three-dimensional case.

2.4 Error Estimation

A simple estimate for the error is

lu— > wfflla< D | lll¥lla (2.4)

A Jull>e(d) Jils lufl<e()

For our examples, except near the boundaries, the basis functions ¢ are trans-

lates of some 1/;270 Hence, for inner functions 1/;‘; the norm ||1/;‘l7 ||zr does not depend
on {. Together with the estimate above this suggests to use the estimators
(L2) e(j) = e/l .
(H1) e(7) = €/Ilv7, |l
Here ¢ is a predefined cut-off value.

For the ANISO construction there is another simple a priori error estimator.
This estimator essentially recovers the idea of so called sparse grids [35], [4].
The three underlying univariate basis functions span the space of polynomials
of degree less than 2. This implies that for functions v with bounded mixed
derivatives ||fﬂil—g@||H7 the following estimate is appropriate

|U‘17|||1/’17||L2 < otz forsomea < 1

This suggests setting
~ 0 5 j1i+j2<L
(SPG) <(7) _{ 0o else
for an integer cut-off parameter I < 2J, which controls the compression rate.
A very similar technique, which essentially uses the same kind of adaptivity in
scale, but in a slightly different manner, has been successfully applied to the
simulation of a turbulent pipe flow [17].

At the present point some remarks are in order. The three univariate ap-
proaches, introduced in this paper, were built by dilation and translation. This
gives rise to some problems when the data is given by collocation values on
nonuniform grids, e.g. this is the case for the database used in the fourth sec-
tion. Of course one could deal with this problem by modifying the quadrature
¢! =< u,®’ >, but this is rather complicated. Thus we use a much cheaper
solution. In a curvilinear NSE solver the data (u,p,...) is given on an equidis-
tant, rectangular grid. We treat the data in the same manner and hence, can
apply the fast transforms for equidistant grids. However, we must change the
error estimator.

Consider data {u;} given on the non-equidistant grid a = 1 < ... < &, = b.
To consider this data as given on an equidistant grid means to identify {u;} with



collocation values of wo z(£), Where z:[0,1] = [a,b] ; & — x(£) is the gradiation
function, which satisfies z := 65 > 0. Applying the transform yields

uox(f):Zu{ Zu oz ,
il

with some implicitly defined basis functions 1/;{ on [a,b]. Clearly we should use
||1/~;}7||H([a,b]) as weights in (L.2) or (H1). Especially for the later we obtain

v 0 w(¢)] ] o z(€)]? 1 ;
|1/k7|Hl (o) = /a de_/o ) d¢ = x,(€{)|¢‘ly|12ql([0,1])

for some ff € supp 1/;‘; In regions of strong gradiation ¢ s very small, hence
€(4,1) will be small. This is exactly what one would expect. Note, in contrary to
modifying the quadrature, this approach is easy to extend to arbitrary curvilinear
transformed domains and thus is well suited for use in adaptive curvilinear codes.

The next issue concerns orthogonal wavelets. For these one has ||¢/]|z, = 1
and equality in the estimate (2.4), which is optimal for the non linear thresh-
olding. However, application of the orthogonal wavelet transform to u o # can
be reinterpreted as application of a non orthogonal transform, i.e. Parseval’s
identity [|ul|3 = POy |u]|* does not hold anymore. Instead of that there are
some constants c(]), C( J), such that

c(Go) D laefIP <1l D wloflP <CGo) D I lllwd I

Ly g2jo L, §23do L, 32jo

The condition number max; CJ(—)Z gives the deviation from Ls-orthogonality. The
point is that the constants behave like

c(H=1-00279) 5  CEH=1+0279) | ie.

for fine scales (large j), where most of the compression happens, the nice features
of orthogonal wavelets are almost recovered by using the weighted cut-off values.

3 Two-dimensional isotropic turbulence

3.1 Goals and methods

In this section we present results obtained using wavelets to analyze and cal-
culate two-dimensional isotropic turbulence with periodic boundary conditions.
These results make use of the 2D-NSE solver developed by Frohlich and Schnei-
der [13] and build on the wavelet analysis techniques developed by Farge et al.
[11]. The goals of the present work were to verify the accuracy and efficiency of
the wavelet based 2D-NSE solver against the usual spectral methods, to develop
new wavelet-based forcing methods that avoid the problems inherent in the tra-
ditional methods, to develop an objective criterion for separating the coherent



and incoherent parts of the flow (based on the different statistical properties of
the two parts), and to show that the incoherent part of the flow is stable near
the coherent vortices.

3.2 Wavelet simulation

The wavelet transform was first introduced as an analysis technique, but numer-
ical methods have been developed recently which use wavelet bases to actually
solve partial differential equations [11], [13], [56]. These methods are partic-
ularly well-suited to equations, such as the Navier—-Stokes equations at high
Reynolds number, whose solutions contain isolated multi-scale structures or
quasi-singularities. We compared simulations using these wavelet techniques
with standard spectral simulations and nonlinearly filtered spectral simulations
[30]. The evolution of the vorticity field for each of the four simulation methods
is shown in Figure 2. Comparing the four simulations, one notices that the non-
linear Fourier filtering deforms the edge of the vortices and produces spurious
oscillations that quickly spread to fill the whole background flow. The error
in representing the edges of the vortices is due to the poor ability of Fourier
methods to represent localized sharp gradients; this is exacerbated by the fil-
tering. The homogeneous distribution of the error is not surprising since each
Fourier mode is completely de-localized in physical space and thus any error is
immediately spread over all space.

The results showed that the wavelet methods are very accurate, and require
roughly four times fewer active modes than spectral methods. Furthermore, the
number of active wavelet modes is approximately constant in time, even dur-
ing intense nonlinear interactions, whereas the number of active spectral modes
peaks when the interactions are most intense (see Figure 3). It is important to
note that in this investigation the non-active modes were simply thrown away.
If the modes were modelled in some way, the number of wavelet modes actually
calculated would be much smaller (of the order of 1%) and thus the wavelet
method would become even more efficient. This possibility is discussed below.

3.3 Wavelet forcing

In order to obtain a statistically steady state in a pseudo-spectral simulation the
usual method is to force at a few intermediate scale modes. This method is based
on the idea (derived from statistical theories of turbulence) that energy is in-
jected at a particular length-scale (or wavenumber) and then (in two dimensions)
cascades to larger scales. The problem with this technique is that it applies a
statistical idea to the calculation of an individual flow realization. Physically, it
is not reasonable to force by injecting energy at a particular length-scale since
we know that turbulent flows are actually forced by the production of vorticity
by instability at boundaries. This vorticity detaches from the boundary and is
advected into the interior of the flow. In practice, forcing at a single wavenumber
does not even produce approximately constant total energy and enstrophy: the
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Figure 2: Evolution of the vorticity field as a function of time for each of the
four methods. (REF = pseudo-spectral reference simulation, NLFF = nonlinear
Fourier filtering, NLWF = nonlinear wavelet filtering, AWM = adaptive wavelet
method).

energy and enstrophy fluctuate significantly about a mean. If this mean does
not change the flow is said to be statistically stationary. Clearly, this is a rather
weak definition of stationarity.

The large wavelet modes correspond to the coherent vortices of the flow. Based
on this observation we have introduced a new forcing method that directly am-
plifies the vortices of the flow by reinforcing the large wavelet modes [29]. This
forcing method injects energy and enstrophy into the vortices (rather than into
a wavenumber) and thus corresponds more closely to the physical forcing of the
turbulent flows than the usual method described above. By forcing in wavelet
space we can also control the smoothness of the excited vortices. Wavelet forcing
was shown to produce almost constant total enstrophy and energy; a significant
improvement on the wavenumber-based method. We also checked that the prob-
ability distribution functions (PDF) of vorticity and the energy spectrum do not
evolve. This new forcing method should allow the simulation of more realistic
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Figure 3: Evolution of the number of active modes for each method (NLFF =
nonlinear Fourier filtering, NLWF = nonlinear wavelet filtering and adaptive
wavelet simulation).

stationary isotropic two-dimensional turbulent flows, even with periodic bound-
ary conditions.

3.4 Coherent structure eduction

In order to develop effective vortex-based methods for solving or modelling the
2D-NSE it is vital to have an objective and efficient criterion for separating the
coherent vortices from the incoherent part of the flow. The separation should
ideally ensure that the incoherent part has well-defined simple statistical prop-
erties so that it can be easily modelled or calculated.

Recently, Donoho [10] developed a de-noising technique to remove Gaussian
white noise from a signal. He showed that if one applies the following threshold
w7t to the wavelet modes

wy = (210g10(]\7))1/20/]\71/2 (3.5)

where N is the number of points, and o is the variance of the noise, then one
can extract the signal from the Gaussian background noise. We decided to turn
Donoho’s theory around and suppose that the turbulent vorticity contains a
Gaussian component whose variance is simply given by the total variance of the
vorticity [12]. Note that the threshold should be constant for a stationary flow.

We have analyzed vorticity fields obtained from direct numerical simulations
(DNS) of statistically stationary two-dimensional turbulence where the forcing
is done in wavelet space. Using the nonlinear wavelet technique based on an
objective universal threshold we separate the vorticity field into coherent struc-
tures and background flow. Both components are multi-scale with different scal-
ing laws, and therefore cannot be separated by Fourier filtering. We find that
the coherent structures have non-Gaussian statistics (and represent only 1.3%



of the total 1282 modes) while the background flow is Gaussian (and makes
up 98.7% of the modes). This result has important implications for modelling
two-dimensional turbulence since it shows that the flow can be divided into a
component with Gaussian statistics (which can be easily modelled by an equiv-
alent stochastic process), and a component with non-Gaussian statistics (which
will have to be calculated exactly). The fact that the non-Gaussian part can be
represented with only a small number of modes means that this decomposition
should form the basis for a new highly efficient numerical simulation method for
two-dimensional turbulence. The interpretation of the weak wavelet modes as
the incoherent part of the flow was reinforced by noting that the coherence func-
tion (scatter plot of the vorticity versus the streamfunction) is isotropic for the
weak wavelet modes, but has a characteristic sinh profile for the strong modes
corresponding to the coherent structures.

3.5 Stability of the background flow

The question of the stability of the background flow is important for any vortex
method that calculates exactly the evolution of the coherent vortices, but only
models the incoherent (or background) part of the flow. If the incoherent part
is unstable it generates new vortices, and this process would correspond to a
significant forcing of the coherent part by the background flow. Clearly, such
an interaction would have to be taken into account in any vortex-based model.
Even if the background remains stable it could still affect the evolution of the
coherent vortices (e.g. by shielding them from the effect of other vortices), and
if this is the case the effect would also have to be included in the model.

We have investigated the stability and effect of the vorticity filaments that are
typical of the background flow [21]. To address these questions we used a high-
resolution pseudo-spectral DNS to study a simplified model of two-dimensional
turbulence: the merging of two vortices accelerated by a third. Vortex merging
is the fundamental interaction of two-dimensional turbulence and is also the
interaction that generates vorticity filaments. The calculation was carried out
on the CRAY C98 of IDRIS (Institut du Développement et des Ressources en
Informatique Scientifique) of the CNRS. A wavelet analysis permitted us to
cleanly separate the vorticity filaments from the coherent vortices. By comparing
the evolution of the filaments with and without the coherent vortices we showed
that the filaments are stabilized by the vortices (this comparison is shown in
Figure 4). The stabilizing role of the coherent vortices had been suggested on the
basis of analytical studies, but had not been verified under realistic conditions. A
linear stability analysis and calculation of strain rates then revealed precisely how
the stabilization takes place. Finally, by using an asymptotic analysis checked
by a DNS we established that the vorticity filaments can protect the vortex they
surround from the deforming effects of the weak strain produced by neighbouring
vortices.

These results suggest that, provided the density of coherent vortices is suffi-
cient, the background flow should not generate any new coherent vortices. Thus
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Figure 4: Dynamical analysis of coherent structures and incoherent background
flow. (a) Total vorticity at ¢ = 10 computed with a resolution 1 024%. (b) Vor-
ticity corresponding to the coherent vortices alone at ¢ = 10. They are made up
of 31 strong wavelet packet coefficients which contain 83% of the total enstrophy.
(¢) Energy spectra at ¢ = 10: —, the total energy spectrum; ———, the coherent
vortices energy spectrum; —- —, the filament energy spectrum. (d) Vorticity cor-
responding to the filaments alone at ¢ = 10. They are made up of 1 048 545 weak
wavelet packet coefficients which contain 17% of the total enstrophy. (e) Inte-
gration of the total vorticity until ¢ = 30. (f) Integration of the coherent vortices
alone until ¢ = 30. (g) Energy spectra at t = 30: —, the total energy spectrum;
———, the coherent vortices energy spectrum; —- —, the filament energy spectrum.
(h) Integration of the filaments alone until ¢ = 30.



the production of coherent vortices by the background should usually be neg-
ligible in any vortex-based model. However, we saw that the background can
have an effect on the coherent vortices by reducing their deformation by distant
vortices. This shielding effect may reduce the minimum distance for merger
and thus change the dynamics of coherent vortex evolution. It remains to be
seen whether this effect is important enough that it needs to be included in
vortex-based models.

4 Multiscale Analysis of a 3D Turbulent
Channel Flow

In order to figure out the potential of multiscale methods for the numerical solu-
tion of the 3D Navier Stokes equations, we applied the different methods of the
second section to some instantaneous fields of velocity components, pressure and
derived quantities of a 3D turbulent channel flow. We choose this flow, because
of the simple geometry of the domain and the presence of very different regimes
in the flow. It is nearly isotropic in the central flow and strongly anisotropic in
the vicinity of the wall. Due to this different behaviour, in general, one uses non
equidistant grids for the simulation. For the multiscale methods we used, this
leads to a lack of Ls-orthogonality, as described at the end of subsection 2.4.
The different flow regimes are representative for most flow configurations with
boundaries. Thus, is should be possible to ’extrapolate’ the results reported here
to other cases of practical interest. However, the case of isotropic turbulence,
where equidistant grids are appropriate and allow for Ls-orthogonal wavelets is
beyond the scope of the present findings.

4.1 Numerical Experiments

The database we used for our experiments was computed with a second order
finite volume code similar to [1] by H.J. Kaltenbach [20], who kindly allowed us
to analyze his database. This DNS was run with the usual geometry of upper and

geometry grid At [Uf[zk] Repuin | Rer Uy
10h x 2h x 4h | 192 x 96 x 192 0.025 2801 178 | 0.063546

Table 2: Parameter of DNS by Kaltenbach

lower walls separated with a distance of 2h, and periodic boundary conditions
in stream- and spanwise directions. Characteristical quantities of this DNS are
given in Table 2. Figure 5 depicts the different flow regimes: long stretched
vortices in the vicinity of the wall and a rather isotropic behavior in the central
part of the channel. To this database we applied the following procedure:



Figure 5: Isosurfaces of modulus of vorticity

transform of X € {uq, ug, us, w1, wa, .., p, Ap} to obtain coefficients X{ with
respect to the multiscale basis

threshold the significant coefficients, i.e. |Xi7| > €(j) in (2.2), with respect

to one of the criteria L2/H1/SPG and for different rates of compression

inverse transform of the compressed coefficients to obtain X

comparison of X and X

(Experiment T) In a first series of experiments we run the above procedure
for the various quantities. For the comparison in the fourth step we considered
mean and r.m.s values of X, X and the error X — X.

In addition to these experiments we run a modified type of experiment, where
we handle and compress the velocity or vorticity components simultaneously, i.e.
we apply the following procedure:

transform of X € {u = (uy, uz, u3), rot u} to obtain coefficients

X(l)‘lj, ey X(g)‘lj with respect to the multiscale basis

threshold in each component X(l)‘lj, ey X(g)j simultaneously the important
coefficients, i.e. \/|X(1)‘Z|2 +..+ |X(3)‘Z|2 > €(j) in the 3-component
analogue of (2.2), with respect to one of the criteria L2/H1/SPG and

for different rates of compression

inverse transform of the compressed coefficients to obtain X

comparison of X and X

(Experiment IT) Now, we applied the procedure for the three velocity com-
ponents. Then, for the comparison we took into account not only mean and



r.m.s values of u and u but also mean and r.m.s values of the derived quantities
w = rot u and rot u.

(Experiment ITI) Then, we run the above procedure for the three components
of the vorticity. For the comparison in the fourth step we considered mean and
r.m.s values of rot u and rof u.

From these experiments we will identify multiscale transforms with a good
trade-off between work count and compression properties and good criteria for
adaptivity. In addition we will see, whether a direct compression of w (exper-
iment IIT) or single components of it (experiment I) allows for much higher
compression rates (CR) than the evaluation of the vorticity from a compressed
velocity field (experiment IT). At least for the flow configuration under consider-
ation this tells, whether a formulation of the NSE in primitive variables u, p is
well suited for numerical algorithms and how much we loose by a simultaneous
compression of the three components of u or w.

In the following the compression rate (CR) denotes

number of all coefficients

CR =

number of retained coefficients ’

i.e. CR=50 means that only 2% of the coefficients are significant.

4.2 Results of Multiscale Experiments

Before we go into detail, some general remarks are in order. For all multiscale
methods we could observe the following effect. Comparing mean and r.m.s values
of the error e := X — X with mean and r.m.s values of the original quantity
mean(X), rms(X), it turns out that the usual Ly-norm of the error

||e||(2):/62dxdydz ,

is of the same order of magnitude than the total turbulent energy of the flow.
This seems to indicate that we can not expect a good agreement of rms(X) and
rms(X). But, in fact the contrary is the case. Even for quite large compression

rates CR > 50, we find good agreement of rms(X) and rms(X) .

[|X — )~(||0 = O(||X — mean(X)l||o) but rms(X) = rms(X)
The analogue observations were also obtained for the 3-component fields, i.e. for
X and X. An example for this behavior is given in Figures 6, where r.m.s. values
of the streamwise velocity component are compared with those of the compressed
data and the compression error. As usual the r.m.s values are scaled by the shear
velocity u, and the wall distance y is scaled by v/u,. From this observation
we conclude that Ly-norms of the error X — X may be misleading, to judge
from the quality of the approximation X. For a compression rate of CR=63

we obtain in Figure 8 a very good coincidence of e.g rms(ug) and rms(uz),
[lua—@2lo

Maallo in this case is 31 %, which normally is

although the relative error
absolutely unacceptable.
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Figure 6: Exp. I /ANISO/PRW/L2 ; CR=48

This phenomenon is due to the property of multiscale basis functions to rep-
resent with only a small number of significant coefficients most of the coherent
structures in the flow, which seem to govern these statistical quantities (mean,
r.m.s). But this is good news, since then the property of compact representa-
tion of these important parts should be preserved during the temporal evolution
governed by the NSE. However, only experiments with an adaptive NSE solver
can give the right answer.

Now we present some more detailed results of our experiments. The most

important single parameter for the multiscale transforms was the choice of the
multivariate approach ISO or ANISO. As a main result, for all univariate ap-
proaches the second construction yielded much better results. One example is
given in Figures 7 and 8, which compare the different behavior for prewavelets
and the HI1 error estimator. For a quite low compression rate of CR=20 the
comparison shows, that the isotropic construction ISO is not able to capture the
dynamic structures (especially ujus,) in the buffer and log-law layer, whereas the
second construction ANISO gives very good results even for CR=63.
The analogue result was obtained for the experiment I setting. Of course one
might argue, that this is due to the flow regime, with its streaky structures
near the wall, which is disadvantageous for the ISO approach. But also in the
more central region y* = 40 to y© = 110 the r.m.s values of the streamwise
velocity component are not recovered. This indicates that the ISO approach
performs poorly for physical flows. Hence, in the following comparisons we will
only consider results obtained with the ANISO construction.

Another important parameter is the correct error estimation. For modified
Symmlets (see the remarks at the end of subsection 2.4) L2 resulted in better
approximations, by means of mean and r.m.s. values, than H1. However, for the
hierarchical nodal basis and prewavelets in experiments I and III the results for
L2 and H1 were similar, while in experiment II the criterion H1 was the best. For
both criteria the quality of approximation decreases near the wall. This effect of
course is more pronounced for r.m.s values of the vorticity in experiment IT (right



Figure 8). Despite of these detractions, mean values are captured satisfactorily
(Figure 9). The sparse grid criterion SPG performs not such well. This is the
case especially in the buffer and log-law layer. In this region rather coarse and
smooth structures generated close to the wall decay to much smaller vortices
(Figure 5), which result in significant coefficients in scales, which are simply cut
off.

If the multivariate construction is chosen, the main contribution to the nu-
merical costs comes from the underlying univariate approach. Qur compression
experiments clearly show, that prewavelets perform much better than the hier-
archical basis. The additional property of cheap preconditioning Laplace and
Helmholtz equations makes them a very promising multiscale technique. Or-
thogonal wavelets on one hand performed very well in experiments I and III,
but in experiment II we could observe significant artifacts near the wall - de-
spite a careful boundary treatment of the transform. If we could solve these
problems it might be possible that orthogonal wavelets become an alternative
to prewavelets. Experiments, we made with orthogonal wavelets of a higher
number of vanishing moments and ignoring the boundary artifacts, seem to in-
dicate this for moderate numbers ( 2...4 ) of vanishing moments. At the present
state orthogonal wavelets could be applied to the simulation of 3D isotropic tur-
bulence, where equidistant grids allow to completely preserve the advantage of
Ly-orthogonality and where boundary artifacts should not be present.

We finish this section with the comparison of the compressed vorticity rot u
and the vorticity of a compressed velocity field rot u. As expected the approx-
imation of rot u is somewhat better for 7ot u than for rot (Figures 8, 9 and
12). In particular this holds for r.m.s values immediately near the wall. But
the results there are not so much better, to make the vorticity formulation of
the NSE competitive to the one in primitive variables, at least from the point
of numerical costs. A comparison of the results of experiment I and III, e.g. for
w3z, shows that the simultaneous treatment of all three components is reasonably
and does not diminish accuracy (Figures 12, 13).

5 Algorithmical Aspects

From the previous experiments we learned that a relatively small number of
coefficients X] (with respect to the multiscale basis and the given quantity X €
{u, p}) is sufficient for a reasonable good approximation of X. Thus it is an
appealing idea to exploit this for the fast approximative solution of the NSE.
Such a spatially adaptive NSE solver computes the approximations ua, pa of
u, p using only the coefficients {(u,p)] | (j,{) € A}. Here, A denotes the
set indices (j,{) with significant coefficients X;, which fulfill one of the criteria
L2/H1. The basic steps of this approach are given in Table 3.

The locality in space or scale of coherent structures, e.g. vortex tubes, induces
the locality of active coefficients. This is caused by the multiresolution approach,
where Xj 1] represents the difference of X from the present level to the next
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coarser level j — 1.

5.1 Hash Table Data Structures

The scattered distribution of active coefficients and their small number com-
pared to all coefficients forbid the use of ordinary arrays for storage. There have
to be found other methods. The problem of efficient storage of scattered data is
known in computer sciences for decades and there are some well established tech-
niques, which provide more or less efficient storage and fast access/insert/delete
of data. The atoms access/insert/delete are exactly what we require in Table 3.
Some of these common techniques are lists, tree data structures or hash table
data structures [22]. Until recently, state-of-the-art numerical codes used tree
data structures only. Instead of that, in [18], [19] the use of hash tables was
proposed. Let N be the number of indices in A,,, which in applications will be of
order 10%...10% then tree data structures have a O(log(N)) worst/average case
complexity of the atoms access/insert/delete. Especially for often used opera-
tions, as the addition of two functions by means of adding their coefficients, the
overhead for accessing the data is considerable or even dominating compared to
the actual numerical operation.

Hash tables solve this problem. In comparison to the tree approach hash table
addressing gives more or less direct access to the data stored, i.e. it is proven to
possess a O(1) complexity with a low constant if a statistical data distribution



given the approximation us,, pa, of (u,p)(to =0)

n+1 n+1 n n
ALy DAl from uj , py.

mark indices (j,!) of important coefficients (u”"’l,p”"'l)‘lj and

compute u

their neighbours in space and scale for retaining or insertion

and mark small coefficients for deletion to obtain new index set A, 41

n+1 n+1
Angr’ pAn+1

insert/delete coefficients to obtain u

n=n+1

Table 3: Basic spatial adaptive algorithm

is assumed. Furthermore lower additional storage overhead for logical connec-
tivities are required. Let us briefly describe this appealing idea.

Each index (j,!) is mapped by a certain hash function h to a hash key, which
is used as an address in the hash table. The hash table is an m-element array
of pointers to m different lists, in which all the required data (7,1, X7) is stored.
This basic approach is depicted in Figure 14. The lists are necessary, since the

index set hash function hash table

Figure 14: Hashing

number of admissible indices (7,{) is much larger than the number N of active
coefficients. Thus A can not be injective. Usually m is of order N to provide
short lists and fast average access to the data. As an example we have stored the
coefficients with respect to the hierarchical nodal basis of the function shown in
Figure 15 with a hash table. Figure 16 depicts the distribution of the lengths
of the lists. Apparently the hash function used in this example leads to a very
broad distribution of the hash keys and the lists are almost of optimal length.
It seems that hash tables first have been used in adaptive PDE solvers and in
the context of adaptive multigrid solvers by [18].
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5.2  Parallelization with Space-filling Curves

Besides the reduction of the complexity of the physical problem, e.g. by multi-
scale methods, nowadays one has the opportunity to distribute large problems
onto several processors. This speeds up the computations. Another reason might
be the huge amount of memory required for the solution, which is not present
on a single processor machine. To tackle a new class of problems (think of a
great challenge project) it is necessary to combine both approaches.

Since the scatteredness of the data in our case rules out the use of 3D array data
structures, the usual domain decomposition technique is no longer advisable. A
moving region of strong variations in the flow, for a fixed domain decomposi-
tion, would cause a very high load for some processors, while others are waiting
and wasting precious computing time. Thus we have to find other load balanc-
ing techniques, which hopefully fit to the hash table storage technique. A very
promising approach has been introduced in [18], [19]. We shall briefly describe
this idea for the bivariate case.

In a first step the indices (4,{) = ((j1,J2), ({1,(2)) are mapped to unique
nodes (z,y) € [0,1]* of a certain finest grid. Usually this will be something
like (/12771,152792). Hence, the node is located within the support of ¢/, which
nicely corresponds to the localization of the basis functions. Then, in a sec-
ond step the values (x,y) are mapped to a value s € [0,1]. This is done by
a space-filling curve, which provides us with an injective, continuous mapping
F:[0,12°NQ x Q — [0,1]. Here, @ is the set of numbers with finite binary
expansion.

g (injective) f (injective)
— —

(4, 1) (z,y) €0, 1]2 s €[0,1]

The evaluation of both mappings g and f requires only some cheap operations
and is fast. After applying these two steps for each (j,1) € Ay, we have a set



{s5(4,0) | (4,1) € Ap}. These values are increasingly ordered.
s1<..<sy N =H#HA,

For the load balancing the indices (j,/), and the data associated to them, are
distributed among the p processors in the following way.

Pl {0 [ s <s( ) < snpp-at

Pp: {(]71) | Sp-1)N/p < S(jal) < sy}

Figure 17 shows an example of a space-filling curve and the distribution of the
nodes onto three processors in the non adaptive case.

| |
proc. O ‘ proc. 1 ‘ proc. 2

Figure 17: Load balancing using space-filling curves

Clearly this technique leads to an optimal load balancing, while the volume of

communication depends on the boundaries of the partitions. These boundaries
may sometimes be kinky, depending on the data, and are certainly not optimal,
but are of reasonable size. In total, the load balancing is very cheap, parallelizes
well and thus can be applied in each cycle of algorithm 3.
In addition there are great similarities between this load balancing technique and
hash table storage. Both techniques lead to, in some sense, linear ordered data.
E.g. simple modifications of f are good candidates for the local hash function
on each processor.

6 Conclusion

The goal of this paper has been two-fold: first to test and extend the wavelet
techniques that have been developed for isotropic two-dimensional turbulence,
and secondly to evaluate the possibility of using a similar approach for three-
dimensional turbulence with boundaries. The results of the first investigation
suggest a new way of modelling high Reynolds number two-dimensional turbu-
lence, while the second investigation has helped to clarify the general properties



of a multiscale adaptive wavelet-based method for solving the three-dimensional
Navier-Stokes equations (3D-NSE) at high Reynolds number.

The adaptive wavelet technique for the turbulent 2D-NSE was found to be
highly accurate and to use far fewer active modes than standard or nonlinearly
filtered pseudo-spectral techniques. Furthermore, the number of active modes
remains constant, even during periods of intensely nonlinear interaction with
strong gradients. This suggests that the wavelet representation is well-suited to
the dynamics of the 2D-NSE at high Reynolds number.

A new, more physical, forcing technique based on the wavelet representation
was proposed and tested. In this method the strongest wavelet coefficients (cor-
responding to the coherent vortices) are reinforced at each time step. The forcing
models the way turbulence is generated in real flows by vorticity production via
an instability at the boundaries. This method produces stationary statistics,
and can be used to provide a more realistic forcing in simulations of turbulent
flows. The method should also work in three dimensions.

Wavelet analysis of two-dimensional turbulence showed that the flow may be
divided into a coherent part (the vortices) with non-Gaussian one-point vorticity
statistics and an incoherent part (the background flow) with Gaussian one-point
statistics. The threshold, dividing the weak and strong wavelet modes, is based
on the variance of the vorticity field and the number of points and is thus ob-
jective (and constant if the simulation is stationary). The coherent part of the
flow represents only 1% of the total number of modes for a resolution of 1282
and will decrease for higher resolution.

The fact that the background has Gaussian statistics suggests that it could be
easily modelled, and in this case the adaptive wavelet method would only used
for the coherent vortices. A study of the vorticity filaments which make up the
background showed that they should be stabilized by the coherent vortices they
are associated with, provided the density of vortices is not too low. However, the
filaments do have an effect on the flow since they shield the vortex they surround
from the deformation induced by the strain of neighbouring vortices. It remains
to be seen whether this effect significantly alters the turbulence dynamics.

In summary, these investigations have established the usefulness and accuracy
of wavelet techniques for analyzing and solving the 2D-NSE at high Reynolds
numbers. The results also suggest a new way of modelling two-dimensional
turbulence. The dynamics of the coherent vortices could be found by directly
solving the 2D-NSE using an adaptive wavelet technique, while the effect of
the background could be modelled using a simple statistical model (since the
background vorticity field has Gaussian one-point statistics).

The second goal of the paper was to evaluate the potential of various multi-
scale methods for the solution of the three-dimensional 3D-NSE. We showed
that, even with some simple error estimators and simple prewavelets, reasonable
approximations of the original turbulence data are possible for relatively high
compression rates of about 60 at resolution 192 x 96 x 192.

Furthermore, it turned out that for the solution of the 3D-NSE, at least for
flows which are governed by boundaries, the formulation in primitives variables



seems to be more efficient compared to the formulation in terms of vorticity.
In the fifth section we presented efficient methods for the implementation of an
fully adaptive solver. These methods produce very efficient data storage and a
cheap, but reasonably effective, load balancing technique.

The results presented here have demonstrated the usefulness of adaptive wavelet
techniques for the 2D-NSE at high Reynolds numbers, and have laid the foun-
dations of an equivalent technique for the 3D-NSE. The next stages in two and
three dimensions are, respectively, the development of a highly efficient turbu-
lence model (where only the coherent vortices are calculated exactly) and the
implementation of a solver for the 3D-NSE.
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