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Abstract. We analyze vorticity fields obtained from direct numerical simulations
(DNS) of statistically stationary two-dimensional turbulence where the forcing is done
in wavelet space. We introduce a new eduction method for extracting coherent struc-
tures from two-dimensional turbulent flows. Using a nonlinear wavelet technique based
on an objective universal threshold we separate the vorticity field into coherent structures
and background flow. Both components are multi-scale with different scaling laws, and
therefore cannot be separated by Fourier filtering. We find that the coherent structures
have non-Gaussian statistics while the background flow is Gaussian, and we discuss the
implications of this result for turbulence modelling.

1. Introduction

Our aim is the numerical simulation of large Reynolds number flows us-
ing present computers. In this context the key question is: which quanti-
ties should be computed and which quantities can be discarded or mod-
elled? The usual choice, based on the statistical theory of homogeneous
and isotropic turbulence (in three dimensions (Kolmogorov, 1941) and two
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dimensions (Kraichnan, 1967)), is to compute the low-wavenumber modes,
considered to be active, and to model the high-wavenumber modes, con-
sidered to be controlled by the active ones, using an ad hoc subgrid scale
parameterization, for example an eddy-diffusivity. This wavenumber sep-
aration is assumed by most of the numerical methods presently used to
compute turbulent flows, from Reynolds Averaging to Large Eddy Simula-
tion (LES) and Nonlinear Galerkin methods. It is important to understand
that this choice of a wavenumber separation is done a priori, supposing
an hypothetical spectral gap, which has not been observed, and without
reference to the first principles stated in the Navier—Stokes equations.

Statistical theories of homogeneous and isotropic turbulence rely on the
hypothesis that energy (or enstrophy in two dimensions) is injected at low
wavenumbers and is dissipated at high wavenumbers. This separation of
scales, between energy (or enstrophy) production and dissipation, allows for
the existence of an intermediate range of wavenumbers, called the inertial
range, where the nonlinear dynamics is supposed to be conservative. As far
as we know, the existence of such an inertial range has never been demon-
strated from first principles. Moreover, according to Kolmogorov’s theory,
in three-dimensional turbulence energy cascades from low to high wavenum-
bers. Unfortunately this behaviour is only defined for ensemble averages,
and in a single realization of a turbulent flow significant amounts of energy
are transferred in the opposite direction, from high to low wavenumbers
(Domaradzki, 1992), (Meneveau, 1991). This energy ‘back-scatter’ invali-
dates the assumption that the high wavenumber modes are passive. The
back-scatter is due to the presence of organized structures, such as vor-
tex tubes (often called ‘vortex filaments’ although they have nothing to
do with the vortex filaments of two-dimensional turbulent flows) or horse-
shoe vortices, which interact and transfer energy to larger scales. Because
these instabilities are local and intermittent, the Fourier representation is
not able to separate them from the rest of the flow. This back-scattering
problem is even worse in two-dimensional turbulence, for which Kraich-
nan (Kraichnan, 1967) has predicted that even ensemble averages (and not
only individual realization) present an inverse energy cascade, due to the
conservation of both energy and enstrophy in the inertial range.

We believe that the problem of turbulence modelling and subgrid-scale
parameterization has to be reconsidered, for both two-dimensional and
three-dimensional turbulent flows, and we propose that the classical di-
vision between large and small eddies be replaced by a new separation
between coherent structures and background flow.

Since the pioneering paper by McWilliams (McWilliams, 1984) the emer-
gence of coherent structures out of initially random vorticity fields has been
recognized as a generic feature of two-dimensional turbulent flows. The def-
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inition of coherent structures is still rather subjective. Usually one thinks
of coherent structures as localized accumulations of vorticity which concen-
trate most of the enstrophy, Z = 1/2 < w? > (w being the vorticity and
<> the space average) in a small fraction of the spatial domain and which
survive on time-scales much longer than the average eddy turn-over time
T = +/1/Z. A more precise characterization of coherent structures was
proposed in 1981 by Weiss (Weiss, 1992) as elliptical flow regions where
rotation dominates deformation. This definition assumes that the stress
tensor varies slowly, in space and time, compared to vorticity gradients.

A key question, which remains open, is the following: do coherent struc-
tures have a generic shape? The answer to this question strongly influences
our analysis of vorticity fields, and in particular our interpretation in terms
of scale, which is intrinsically linked to the generic shape we assume for the
vortices. This hypothetical shape is not clearly defined, the notion of scale,
as well as the notions of vortex size and circulation, are meaningless. This
point has been a source of misunderstanding for years in the study of tur-
bulence due to the identification of scale with the inverse of wavenumber.
In fact, this traditional definition of scale makes sense only if one analyzes
an homogeneous and isotropic velocity or vorticity field, e.g. a wave field,
or an ensemble average of velocity or vorticity fields which is homogeneous
and isotropic due to the translational and rotational invariance of the co-
herent structure motion. However, this definition does not make sense if one
analyzes a given realization containing isolated coherent structures, which
is necessarily inhomogeneous, intermittent and highly phase-correlated. In
this case, to define the notion of scale one should look for the generic shape
of the coherent structures observed in the vorticity field. The vorticity field
should be preferred to the velocity field for dynamical reasons, because
vorticity is Galilean invariant and volume preserving in the inviscid limit.
It should be noted that in statistical analysis a prioris are as essential as
hypotheses are in modelling: we should state them clearly, otherwise our re-
sults will be nonsensical. Once the reference shape has been defined we can
compute the correlation between the vorticity field and this shape, which is
dilated and translated in order to obtain the scale content of the vorticity
field.

In this paper we analyze two-dimensional forced turbulent vorticity
fields using an orthogonal wavelet basis. The mother wavelet is chosen
as the generic shape for coherent structures. Such localized functions are
better suited to analyze turbulent flows than the trigonometric functions
used as basis elements for Fourier decomposition. This analysis allows us
to perform a local spectral analysis of the flow, which is not possible with
the classical Fourier transform. In selecting the analyzing functions we are
limited by the Heisenberg uncertainty principle, which means that we can-
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not have perfect localization in both space and wavenumber. To analyze
two-dimensional turbulent fields the best solution is to use functions whose
shape correspond to our a priori model of an isolated coherent structure,
namely a localized and isotropic distribution of vorticity. We can then use
a self-affine set of such functions in order to generate a multi-scale analysis
of the vorticity field. In order to perform a quantitative analysis, we also
require isometry between the enstrophy computed in physical space and the
enstrophy computed from the inner-product of the vorticity field with the
analyzing functions. All these reasons have led us to use wavelets, which are
well-localized in both physical and Fourier spaces, self-affine (since they are
obtained by dilation from one another), and allow an isometric transform
which conserves energy.

2. Wavelet—forced two—dimensional turbulence

The enstrophy dissipated by the dissipative term has to be re-injected in
order to simulate a statistically stationary flow, i.e. non-decaying fully-
developed turbulence. The usual technique is to inject enstrophy and energy
locally in Fourier space. In this article, however, we employ a new wavelet
forcing technique introduced in (Schneider and Farge, 1997). The forcing is
defined in wavelet space in order to control the smoothness of the vortices
thus excited. Using this method the injection of energy and enstrophy is as
local as possible in both physical and spectral space. For details we refer
the reader to (Schneider and Farge, 1997).

2.1. GOVERNING EQUATIONS

We consider the two-dimensional Navier—Stokes equations written in veloci-
ty—vorticity form with a forcing term F' = V x f. Furthermore we include
an artificial frictional term AW, which acts as an infrared energy sink to
remove the energy that accumulates at large scales due to the inverse energy
cascade. The equations we solve are:

Ow+v-Vw= vVwu+ AU + F | V-v=0, (1)

where the velocity vector v = (u,v), the vorticity w = V x v and the stream
function ¥ = V~2w. Further parameters are the strength of the friction
term A\ and the kinematic viscosity v.

We assume periodic boundary conditions in both directions, i.e. our
domain is the two-dimensional flat torus T with 7' = 27IR/Z. These
boundary conditions have been chosen in order to simulate turbulent flows
far from walls, and thus avoid the treatment of boundary layers.
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2.2. NUMERICAL METHOD

For the numerical solution of the system (1) we employ a classical Fourier
pseudo—spectral method with a semi-implicit time discretization using fi-
nite differences (Euler-backwards for the viscous term and Adams-Bashforth
extrapolation for the nonlinear term, both of second order). The vortic-
ity field and the other variables are represented as Fourier series: w(x) =

2ikj<ny2 @(k) etx,

2.3. WAVELET FORCING

Furthermore at time step n we develop w™ as an orthonormal wavelet series
from the largest scale I = 2° to the smallest scale | = 2/ using a two—
dimensional multi-resolution analysis (MRA) (Daubechies, 1992) (Farge,
1992):
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where ¢;; and 1;; are the 2r—periodic one-dimensional scaling function
and the corresponding wavelet, respectively. Due to the orthogonality the
coefficients are given by cfoo = (W", do00) and dfy ;= (W", ¥}, ;)
where (-,-) denotes the inner product.

The forcing term F' at time step n + 1 is then defined as a function of
w at time step n:

201271

Fn+1($ay) = C Z Z Z Z ,wuk$,ky>¢ﬁkmk,‘u(xay) ’ (4)

Jo<j<Ji ke=0ky=0 u=1,2,3

with 0 < Jy < J; < J, where J denotes the finest scale in the simulation,
C >0 and |[(w"(z,y), wﬁkw,ky” > €. The scale parameters Jy and J; define
the scale range of the forcing. The restriction to wavelet coeflicients above
a given threshold implies that only the dynamically active part of the flow,
i.e. the coherent structures (Farge, 1992), (Farge et al. , 1996), are forced.
The constants C' and A, responsible for the strength of the forcing and the
Rayleigh friction respectively, are adjusted in such a way that we obtain a
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statistically stationary state. For further details on the numerical simulation
we refer the reader to (Schneider and Farge, 1997).

3. Coherent structure eduction

The term ‘eduction’ was introduced by (Hussain, 1986) to describe the ex-
traction of coherent structures out of three-dimensional laboratory turbu-
lent flows. We will keep the same terminology to characterize the technique
we propose to separate the coherent structures from the background flow
in two-dimensional turbulent flows obtained by DNS.

As we have already noted, there is at present no consensus on the precise
definition of coherent structures. The only definition of a coherent structure
which seems objective is that of a locally meta-stable state, such that, in
the reference frame associated with the coherent structure, the nonlinearity
of Navier Stokes equations becomes negligible. In consequence, a coherent
structure can be characterized by a functional relation between the vortic-
ity w and the streamfunction v in the form w = F(1)), where F' is called the
coherence function (Farge and Holschneider, 1990). One possible coherent
structure eduction technique would be to plot the diagram w = F(¢) and
extract the branches which can be fitted by a function F; the points be-
longing to these branches would correspond to locations where the vorticity
field ws is coherent, while the scattered points which do not belong to any
branch would correspond to locations in the incoherent background flow
We.

Other possible eduction techniques are less objective than the one de-
scribed above, because they depend on a threshold value which has to be
defined a priori. The simplest method, already proposed by several au-
thors (McWilliams, 1984) (Babiano et al. , 1987), is to choose a vorticity
threshold, for instance wy = v/Z, and retain as coherent the regions where
|w| > wp, while the background flow corresponds to the regions where
|w| < wp. The drawback of this method is that it does not preserve the
smoothness of w, and both fields, ws and w., will have spurious disconti-
nuities which will affect their Fourier energy spectra. To avoid this problem
we propose to replace the grid-point representation by a wavelet repre-
sentation, which, on the contrary, does not introduce discontinuities and
therefore conserves the spectral properties of w.

Since the wavelet transform is invertible, it is always possible to select a
subset of the coefficients and reconstruct a filtered version of the field from
them. Using this property we have proposed several coherent structure
eduction techniques (Farge and Philipovitch, 1993), (Farge et al. , 1992).
The first consists of discarding all wavelet coefficients outside the influence
cones, namely the spatial support of the wavelets, attached to the local
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maxima of the vorticity field which correspond to the centers of coherent
structures (Farge and Philipovitch, 1993).

The second technique, introduced here, consists of discarding all wavelet
coefficients which are smaller than a given threshold which depends only on
the variance of the field < w? > and on the number of samples N, such that
the threshold value is: o7 = (2 < w? > log;y N)'/2. This technique is based
on the wavelet shrinkage method of Donoho (Donoho, 1992). Donoho has
shown that this is the optimal denoising technique for a signal containing a
Gaussian white noise of a given variance. However, we are not sure that our
signal actually contains a Gaussian noise, and anyway we do not know its
variance, therefore we will consider instead the variance of the total vorticity
field. This is an overestimate which leads to a higher treshold value and a
stronger compression rate. Anyway we can always a posteriori check that
the discarded components correspond to a Gaussian noise (characterized
by a Gaussian PDF, skewness zero and kurtosis three).

Applying the second nonlinear thresholding technique to the wavelet
packet coefficients of the vorticity field, we have extracted the coherent
structures from the background flow and shown that both components are
multi-scale (Farge et al. , 1992), however they exhibit different scaling laws,
the background having an energy spectra scaling in k~2 compatible with
Kraichnan’s prediction while the coherent structures scale in k=% (Farge et
al. , 1992).

We have also tried (Wickerhauser et al. , 1994) to use adaptive lo-
cal cosines instead of wavelet packets to separate coherent structures from
background flow. We showed that the local cosine representation does not
compress the enstrophy as well as wavelets or wavelet packets. First, it
smoothes the coherent structures and therefore loses enstrophy, and sec-
ondly it introduces spurious oscillations in the background, due to the loss
of the phase information attached to the weak coefficients. These draw-
backs are common to any Fourier or windowed Fourier representation, be-
cause each Fourier component contains non-local information and we need
the phase information of all Fourier components to reconstruct precisely
a given region of the field. Therefore no Fourier technique can properly
educe coherent structures, because as the vorticity field is compressed the
coherent structures disappear and become increasingly mixed up with the
background flow (Wickerhauser et al. , 1994). In this paper we will focus on
the second (variance based) nonlinear wavelet compression as the optimal
solution for coherent structure eduction. We will also work with the wavelet
representation rather than the wavelet packet representation.
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4. Results

The wavelet forced two-dimensional Navier—Stokes equation were solved
using a pseudo-spectral scheme with resolution N = 1282. The dissipation
is modelled by a Laplacian operator with a kinematic viscosity v = 2 X
1073m?/s. We have reached a statistically stationary solution (Schneider
and Farge, 1997) that we have maintained for 16 000 time steps (At =
10 3s), i.e. for 60 eddy-turn over times. We now analyze the vorticity field
obtained at the final time step which corresponds to ¢ = 16s.

We project the vorticity field w onto an orthogonal spline wavelet basis
of Battle-Lemarié type. Figure 1 shows the spatial and spectral support
of the symmetric quintic spline wavelets used in the present analysis. In
figure 2 we plot the retained enstrophy Z- as a function of the number
of retained wavelet coefficients N~. Note that very few wavelet coefficients
retain most of the total enstrophy Z and that after Ny = 216 the rate of
convergence abruptly changes its behaviour and becomes very slow (figure
2b). The optimal compression rate is obtained for N~ = 216, which contain
92.4% of the total enstrophy Z = 9.2s572, although they represent only 1.3%
of the total number of coefficients N = 1282 = 16384. The N. = 16168
remaining weaker wavelet coefficients represent 98.7% of the total number
of wavelet coefficients but retain only 7.6% of the total enstrophy.

Next we compute the threshold proposed by (Donoho, 1992), (Donoho
et al. , 1995) for denoising. This criterion depends only on the total number
of samples N and on the variance of the vorticity field < w? >= 165 2.
Since we have reached a statistically stationary state < w? > remains con-
stant, therefore we compute the unique threshold value: wp = (2 < w? >
log;y N)'/? = 125~'. The coherent structures are then extracted by pro-
jecting only the wavelet coefficients having an absolute value larger than
wr back onto grid-points, which gives the coherent vorticity field ws. The
background flow is found similarly by selecting those wavelet coefficients
with absolute value smaller or equal to wr and then reconstructing the
vorticity field w.

In table 1 we compare the first moments up to the 6th order, the skew-
ness and the kurtosis of the uncompressed vorticity w, the coherent vortic-
ity ws and the background vorticity w<. Note that all fields have skewness
S = 0 and that both the uncompressed vorticity and the coherent vorticity
have kurtosis K = 17, characteristic of a non-Gaussian probability distri-
bution, while the background vorticity has kurtosis K = 3, characteristic
of a Gaussian probability distribution. These results are confirmed in figure
6 where we plot the probability distribution functions (PDF) for the three
vorticity fields. The uncompressed vorticity and the coherent vorticity have
nearly identical PDFs, with heavy tails (extremal values: —37/ + 28) and
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TABLE 1. Statistical properties of the vorticity field at t = 16s.

quantity definition w w> W<
total coherent background

# of coefficients N 16384 216 16128
% of coefficients 100 % 1.3 % 98.7 %
1st moment (mean) M =o=+ ;V:l w; 0.0 0.0 0.0
2nd moment (variance) M =< w? >= L3V w? 184 17.0 1.4
3rd moment Ms=L3N WP -29.6 31.7 0.8
4th moment My=+3" w? 5763.7 4966.0 5.8
5th moment Ms=L137 Wf -55956.0  -50716.3 0.1
6th moment Mg = % Zf;l wf 3879905.5 3258826.2  39.2
Enstrophy z=1 9.2 8.5 0.7
% total enstrophy 100 % 92.4 % 7.6 %
Skewness S =M -0.4 -0.4 0.0

M7
Kurtosis K =2 17.1 17.2 3.0

2

seem close to a Cauchy distribution. Such a Cauchy distribution has been
predicted for the velocity gradients (a quantity similar to the vorticity we
consider here) of a system of point-vortices in two and three dimensions
(Min et al. , 1996). On the contrary, the PDF of the background flow is a
parabola (in lin-log coordinates) and does not present heavy tails (extremal
values: —5/ + 5), which is characteristic of a Gaussian distribution.

Figures 3 and 4 show that the coherent components retain the precise
shape of each coherent structure, and therefore is inhomogeneous, while the
incoherent components correspond to the homogeneous background flow.

In figure 5 we show that both components have a broad band en-
ergy spectrum, although the coherent components dominate in the low
wavenumbers while the incoherent components dominate in the high wave-
numbers. This is due to the fact that the spatial support of the coher-
ent structures decreases with scale and therefore their weight in the high
wavenumbers of the energy spectrum becomes negligible. However, since
the background flow is homogeneous, the spatial support of the incoherent
components is dense in space and therefore the background flow conditions
the high wavenumber range of the energy spectrum, where we observe a
k~* scaling for the energy and therefore a k=2 (pink noise) scaling for the
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enstrophy. The fact that there is a break in the power-law spectra of both
the coherent and incoherent components at kK = 16 is due to the wavelet-
forcing which has been limited to scales smaller than L = 32 = 2% which
corresponds to k = 16.

In figure 7 we show that the coherence function of the coherent compo-
nents w-~ is similar to that of the uncompressed vorticity field w. The coher-
ence function is a superposition of functions ws = F(V¥s) (corresponding
to the lines drawn on figure 7), each one corresponding to a coherent struc-
ture. In contrast, the background flow does not exhibit such a correlation
between w. and V. and is therefore incoherent. This is further proof that
the nonlinear wavelet thresholding technique is appropriate for coherent
structures eduction in turbulent flows.

5. Conclusion

The goal for modelling or computing the evolution of turbulent flows is to
take a coarse-graining point of view, namely to keep the essential informa-
tion and discard the details then considered as noise. For two-dimensional
turbulent flows we propose dividing the relevant dynamical field, i.e. the
vorticity field w, into its inhomogeneous, intermittent and organized compo-
nents ws, which correspond to the coherent vortices and are characterized
by non-Gaussian statistics, and its homogeneous, non-intermittent and ran-
dom components w., which correspond to the well-mixed background flow
and are characterized by Gaussian statistics. Both components are multi-
scale and this is why the Fourier transform, whose modulus loses the spatial
information, is not the optimal functional basis to study turbulence. The
grid-point representation is not suitable either, because we want to be able
to detect the characteristic scaling of the two regions and therefore must
avoid introducing spurious discontinuities.

By applying such an eduction technique to wavelet-forced two-dimen-
sional turbulent flow, we have shown that the coherent vorticity is highly
non-Gaussian while the background vorticity is Gaussian. This result has
strong implications for two-dimensional turbulence modelling. The coher-
ent vorticity corresponds to the dynamical components which are out of
statistical equilibrium and have a very large variance characteristic of non-
Gaussian behaviour. Therefore we are unable to model the coherent vor-
ticity by a simple stochastic process. The number of degrees of freedom in
the coherent vorticity is less than 2% of the total number of degrees of free-
dom required for a full direct numerical simulation (DNS). Therefore we
suggest using a pseudo-wavelet scheme (Schneider et al. , 1997) to compute
only these few coherent modes. The remaining degrees of freedom represent
more than 98% of the total and correspond to the incoherent components
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having Gaussian statistics. The incoherent part may therefore be modelled
by any standard statistical turbulence model, such as Reynolds averaged
or k — e models (Mohammadi and Pironneau, 1993).

In this paper we have proposed using orthogonal wavelets, which play
the role of phase-space atoms independently defined in space and scale, to
extract coherent structures from the vorticity field. This eduction method
uses an objectively defined, universal threshold. The Navier—Stokes dy-
namics combines these “phase-space atoms” into “phase-space molecules”
which correspond to the coherent structures, whose formation is observed
during the flow evolution. Thus each vortex can be computed as the su-
perposition of well-localized functions, namely wavelets, which describe its
internal degrees of freedom. This method may allow us to drastically reduce
the number of degrees of freedom necessary to compute the turbulent flow
evolution (Frohlich and Schneider, 1996), (Schueider et al. , 1997). We have
already shown that this approach (Farge et al. , 1990) may be extended to
the case of three-dimensional turbulent flows where vorticity tubes, often
called vorticity filaments, play the role of coherent structures moving in an
homogeneous random background flow. We believe that turbulence, both
two-dimensional and three-dimensional, is a random superposition of a set
of meta-stable vortices whose interactions give rise to its characteristic un-
predictable behaviour, therefore the statistical tools we use in turbulence
should be based on the recognition of vortices as the basis elements of
turbulent flows.
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Figure 1. Quintic spline wavelet psiz,o in physical and in Fourier space.

Figure 2. Compression rate: enstrophy versus the number of wavelet coefficients.

Figure 8. Surface plots of the vorticity fields w, ws and wc.

Figure 4. Cuts of the vorticity fields w, ws and w¢ at y = 2777/128.

Figure 5. Energy spectra of the vorticity fields w, w> and wc.

Figure 6. Probability density functions (histograms using 100 bins) of the vorticity fields
w, w> and we<.

Figure 7. Scatter plots of the vorticity fields w, ws and w« versus the corresponding
stream functions ¥, ¥s and P..



