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Abstract

We have used wavelets to analyse, model and compute turbulent flows.
The theory and open questions encountered in turbulence are presented. The
wavelet—based techniques that we have developed to study turbulence are
explained and the main results are summarized.
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1 Introduction

In this chapter we will summarize the ten years of research we have done to try
to better understand, model and compute fully—developed turbulent flows using
wavelets and wavelet packets. Fully—developed turbulence is a highly nonlinear
regime (very large Reynolds number tending to infinity) and is distinct from the
transition to turbulence (low Reynolds number). We have chosen to present a
personal point of view concerning the current state of our understanding of fully—
developed turbulence. It may not always coincide with the point of view of other
researchers in this field because many issues we are addressing in this chapter are
still undecided and highly controversial. This paper is a substantially revised and
extended version of: Wavelets and Turbulence by Farge, Kevlahan, Perrier and
Goirand which appeared in Proceedings of the IEEE, vol. 84, no. 4, April 1996,
pp. 639-669.

After more than a century of turbulence study [30],[173], no convincing theoret-
ical explanation has produced a consensus among physicists (for a historical review
of various theories of turbulence see [160], [158], [72], [91]). In fact, a large number of
ad hoc ‘phenomenological’ models exist that are widely used by fluid mechanicians
to interpret experiments and to compute many industrial applications (in aeronau-
tics, combustion, meteorology ...) where turbulence plays a role. For these models
there is no need to suppose the universality of turbulence since they are not de-
rived from first principles. Their predictions are compared with experiments, such
as wind tunnel measurements, in order to tune the parameters necessary to match
the model to the observations. This procedure is done case by case, for a given
type of turbulent flow and for a given geometry of the internal or external bound-
aries. Actually, it is still not known whether fully—developed turbulence has the
universal behaviour (independence from initial and boundary conditions) which is
generally assumed in the limit of small scales. Already in 1979 one of us (M.F. [69])
expressed reservations about our understanding of turbulence and thought that we
did not yet know the pertinent questions to ask in order to guide research in this
field. Nearly twenty years of work on the subject have persuaded her that we have
not yet identified the appropriate objects, by which we mean the structures and



elementary interactions, from which it will be possible to construct a satisfactory
theory of turbulence. Turbulent flows are chaotic, i.e. sensitive to initial conditions,
therefore we are looking for a statistical theory, but the classical averages used at
present do not appear to be adequate. This point has been beautifully discussed in
a conference given in 1956 by Kampé de Fériet [112], where he rightly concluded
that: ‘In order to become really useful to research in turbulence theory, the statistical
definition of the average still requires, we believe, that the theory of the integration
of Navier—Stokes equations should have made substantial progresses’. This remark
is as pertinent today as it was in 1956.

In our opinion, our present ignorance of the elementary physical mechanisms at
work in turbulent flows arises in part from the fact that we perform averages using
point measurements and also because we analyse them in terms of Fourier modes.
This problem has already been pointed out by Zabusky [208] when he wrote: ‘In
the last decade we have experienced a conceptual shift in our view of turbulence. For
flows with strong velocity shear ...or other organizing characteristics, many now
feel that the spectral description has inhibited fundamental progress. The next ‘El
Dorado’ lies in the mathematical understanding of coherent structures in weakly dis-
sipative fluids: the formation, evolution and interaction of meta—stable vortex—like
solutions of nonlinear partial differential equations’. By using point measurements
or the Fourier representation, we probably miss the point, because these classical
methods ignore the presence of the coherent vortices that one observes in physical
space and whose dynamic role seems essential. As Hans Liepmann, successor to
Von Karman as director of the Aeronautical Laboratory of Caltech, likes to com-
ment [142], [141], in turbulence research we are like the drunk man who has lost
his keys in a dark alley, but who finds it easier to search for them under the street
light. Everyone knows that turbulence has to do with vortex production and in-
teraction. This is even embedded in the Latin etymology of the word ’turbulence’:
turba for crowd and turbo for vortex. Namely, a turbulent flow can be described as
‘a crowd of vortices in nonlinear interaction’. However, because we do not have a
good enough theoretical grasp of the structure of these vortices, on the mechanism
of their production by nonlinear instabilities in shear-layers, on their long-range
collective dynamics and their nonlinear interactions, we prefer to forget about them
and content ourselves with studying turbulence as far as possible from regions where
vortices are produced, in particular, as far as possible from solid walls.

This approach has led turbulence research for the last fifty years to explore the
unphysical academic case of statistically stationary, homogeneous and isotropic tur-
bulence, which, under those hypotheses and neglecting the essential effect of walls
in considering periodic boundary conditions, represents turbulent fields in terms of
Fourier modes and predict the scaling properties of ensemble averages. To construct
this theory one needs to suppose that the injection of energy is confined to the low
wavenumbers, and that the dissipation of energy is confined to the high wavenum-
bers. This assumption allows us to define an intermediate range of wavenumbers,
called the inertial range, where the flow behaves in a conservative manner, which
then enables us to predict the scaling of the energy spectrum in this range. Unfor-
tunately these hypotheses are incompatible with the local production of vorticity
in boundary layers or shear layers, due to the duality between physical localization
and spectral localization: if you have one you cannot have the other and vice—versa
(Heisenberg’s uncertainty principle). The same remark holds for the dissipation of
energy. Incidentally, we are convinced that this lack of physical soundness of the
statistical theory proposed in 1941 by Kolmogorov [117], and developed by Batch-
elor [16], explains why G. L. Taylor had never been convinced by this redirection of
turbulence research, where the dynamics of individual turbulent flow realizations,
resulting from vortex interactions, is not taken into account. In fact, as early as
1938 Taylor had already recognized the importance of vortices in turbulence when



he wrote [190]: ‘The fact that small quantities of very high frequency disturbances
appear, and increase as the speed increases, seems to confirm the view frequently put
forward by the author that the dissipation of energy is due chiefly to the formation
of very small regions where the vorticity is very high’.

Nowadays if we want to refocus turbulence research towards a more physical
and dynamical approach valid also for inhomogeneous flows, we should take up the
challenge proposed by Hans Liepmann during a workshop we organized in Febru-
ary 1997 in Santa Barbara: ‘As long as we are not able to predict the drag on a
sphere or the pressure drop in a pipe from first principles (namely from continuous,
Newtonian, incompressible assumptions, without any other complications), we will
not have made it!” [142]. As astonishing as it may seem, these two very ‘simple’
and basic problems are still open and should be taken as a serious challenge. Our
conviction is that the wavelet representation, because it keeps track of both posi-
tion and scale, can help us to address these problems, in combining dynamical and
statistical approaches to improve our understanding of fully—developed turbulence
and propose new turbulence models.

As far as we know, we have been the first to introduce wavelets to analyse turbu-
lence in two [81], [77] and then three dimensions [75], to design orthogonal wavelet
algorithms to solve nonlinear PDEs [165], to use wavelets and wavelet packets to
extract coherent vortices out of turbulent flows [74], to solve the Navier-Stokes
equations in a wavelet basis [96], [41], and to locally force turbulent flows using
wavelets [185]. We apply the wavelet transform to decompose the vorticity field
onto a set of smooth functions with compact (or quasi—-compact) support and thus
permit a representation in both space and scale. The choice of vorticity for both
two and three dimensional turbulent flows, rather than velocity, matters because
vorticity is, from a dynamical point of view (considering Helmholtz’ and Kelvin’s
theorems), the essential field which triggers the evolution of velocity. We share the
views of Chorin [43], [44] who has been advocating for 25 years the importance of
vorticity for the computation of turbulent flows.

We are convinced that the wavelet transform is an appropriate tool, not only for
analysing and interpreting experimental results, but also for attempting to construct
a more satisfactory statistical theory, design new turbulence models and define
new numerical methods to compute fully-developed turbulent flows. Moreover,
the unconditional approximation property of the wavelet representation may help
us to compute high Reynolds number flows presenting a strong intermittency, to
replace periodic boundary conditions by more physical ones, and to simulate the
local production of vortices at the walls or in shear layers, while controlling the
quality (local resolution and smoothness) of the approximation. This is the program
we will expose in this chapter. We will discuss the results we have obtained in the
last ten years, but it is still very much work in progress and ten more years will be
needed before its potential can be confirmed or denied.

Our chapter is organized as follows. We first state the problem of turbulence
and the main open questions. We then focus on how wavelets can be used to answer
these questions. We present fractal and multifractal analysis, turbulence analysis
and turbulence modelling, and finally the use of wavelets to numerically solve the
Navier—Stokes equations. In conclusion, we present several perspectives and point
out where new methods need to be developed in order to improve our understanding
of fully—developed turbulence.



2 Open questions in turbulence

2.1 Definitions

Turbulence is a highly unstable state of fluid flows, where by fluids we mean contin-
uously movable and deformable media. Liquids, gases and plasmas are considered
to be fluids when the scale of observation is much larger than the molecular mean
free path. Turbulence is characterized by the Reynolds number, which is the ratio
of the nonlinear inertial forces, responsible for the flow instability, to the linear dis-
sipative damping, which converts kinetic energy into thermal energy. We will focus
on ‘fully developed turbulence’, namely the limit of very large Reynolds numbers,
which corresponds to, either very large velocities (strong advection), and/or very
small viscosity (weak dissipation, which tends to a constants as the Reynolds num-
ber tends to infinity), and/or very large turbulent scales. For flows encountered
in hydraulics and naval engineering Reynolds numbers are of the order of 102 to
108, in aeronautics (engines, airplanes, shuttles) 10° to 10®, in meteorology and
oceanography 10® to 10'2, and in astrophysics larger than 10'2.

While the dissipation term is optimally represented in Fourier space because
Fourier modes diagonalize the Laplacian operator (for periodic boundary condi-
tions or unbounded domains), the nonlinear convective term is very complicated in
Fourier space where it becomes a convolution, i.e. all Fourier modes are involved
and coupled. As fully developed turbulence corresponds to flows where nonlinear
convection is dominant, i.e. is larger than linear dissipation by a factor of the order
of Reynolds number, it is obvious that the Fourier representation is inadequate for
studying and computing flows in this large Reynolds limit. We need to find a math-
ematical tool to optimally solve the nonlinear convection term, in the same way
as the Fourier transform is the most economical representation to solve the linear
dissipation term for the rather unphysical case of periodic boundary conditions.
Surprisingly, however, all classical methods in turbulence rely on the Fourier rep-
resentation, which is inappropriate for the nonlinear convection term. For a review
of these methods the best references are Monin and Yaglom [158] for the statistical
theory of three—dimensional turbulence and Kraichnan and Montgomery [123] for
the statistical theory of two—dimensional turbulence.

Turbulence remains an unsolved problem because our traditional conceptual and
technical tools are inadequate. For instance, classical Hamiltonian mechanics de-
scribes steady states of conservative systems, but turbulent flows are non—stationary
and dissipative. Classical dynamics only solves systems with a few degrees of free-
dom, while fully developed turbulent flows have a very large, perhaps even infinite,
number of degrees of freedom. Classical statistical theories deal with closed re-
versible systems in thermal equilibrium, but turbulent flows are open irreversible
systems out of thermal equilibrium. Classical mathematical methods solve linear
differential equations, but cannot integrate analytically the nonlinear partial dif-
ferential equations encountered in the study of turbulence (apart from a very few
cases for which an appropriate transform allows to reformulate the problem as a
linear one, such as Burgers’ equation). In fact, even the existence and uniqueness of
solutions of the Navier—Stokes equations describing the fluid motions is an unsolved
problem when nonlinear advection becomes dominant, i.e. in the fully developed
turbulent regime. We should mention here recent mathematical results which give,
using multi-scale (Paley—Littlewood) decomposition, a global existence theorem [35]
and a global unicity theorem [98] for Navier—Stokes equations in IR® if initial condi-
tions are sufficiently oscillating (in a Besov norm sense). Some other mathematical
attempts have been made using divergence free vector wavelets [86], [19], but in all
cases these proofs are done in an unbounded space. However, physical fluid flows
are bounded either internally or externally, and we still do not know what is the



optimal functional space for describing real turbulent flows.

In summary, the theory of fully developed turbulence is in what we may call
a pre—scientific phase, because we do not yet have an equation, nor a set of equa-
tions, that could be used to efficiently compute turbulent flows. The incompressible
Navier—Stokes equations, which are the fundamental equations of fluid mechanics,
are not the right ones for turbulence because their computational complexity be-
comes intractable for large Reynolds number flows. However, in this limit it should
then be possible, as it is done in statistical mechanics, to define averaged quantities
which would be the appropriate variables to describe turbulence and then find the
corresponding transport equations to compute the evolution of these new quanti-
ties. Likewise, the Navier—Stokes equations can be derived from the Boltzmann
equation by considering appropriate limits (Knudsen and Mach numbers tending to
zero [11], [12]) and appropriate averaging procedures to define new coarse—grained
variables (velocity and pressure) and associated transport coefficients (viscosity and
density). The turbulence equations should be derived as a further step in this hi-
erarchy of embedded approximations, but this scientific program may be impaired
by the possible non—universality of turbulence, which remains an essential question
to address.

More precisely, it is easier to define the appropriate parameters to go from Boltz-
mann to Navier-Stokes than from Navier—Stokes to turbulence equations [155]. In
the first case only a linear averaging procedure is needed, while in the second case
we have to find an appropriate nonlinear procedure, namely some conditional aver-
aging which depends on each flow realization. For this we should first identify the
dynamically active structures constituting turbulent flows, classify their elementary
interactions and define the averaging procedures to construct appropriate statistical
observables. Wavelet analysis is a good tool for exploring this conditional averag-
ing and for seeking an atomic decomposition of phase space, defined in both space
and scale. Tennekes and Lumley in 1972 [191] had already the intuition of such a
phase—space decomposition when they proposed to consider a turbulent flow as a
superposition of Gaussian—shaped wave packets, they were calling ‘eddies’; but we
know since Balian’s theorem [10] that we cannot built orthogonal bases with such
functions. This is why we propose to use instead wavelet or wavelet packet bases
to study how phase—space ‘atoms’ exchange energy, or other important dynami-
cal quantity, during the flow evolution and possibly combine to form phase-space
‘molecules’, such as coherent structures.

Wavelets may supply new functional bases better adapted to represent and com-
pute turbulent flows, i.e. to extract their elementary dynamical entities, perform the
appropriate averages on them, and predict the evolution of these statistical quanti-
ties. We still hope that there will be enough universality in the behaviour of these
phase—space ‘molecules’ so that we can find a general theory and a set of equations
to describe their evolution, but this could well be an unrealistic goal.

2.2 Navier—Stokes equations

The fundamental equations of the dynamics of an incompressible (constant density
of fluid elements) and Newtonian (rate of strain proportional to velocity gradients)
fluid are the Navier—Stokes equations:

Ov 1 _ 9
E+(U-V)U+EVP = vWv+F, (1)
Vv = 0, 2)
3)

plus initial and boundary conditions,



where t is the time, v the velocity, P the pressure, F' the resultant of the external
forces per unit of mass, p a constant density and v a constant kinematic viscosity.

The mathematical difficulty of the Navier—Stokes equations arises from the fact
that the small parameter v, which tends to zero in the limit of infinite Reynolds
numbers, i.e. for fully developed turbulent flows, appears in the term containing the
highest-order derivative, namely the dissipation term vV2?v. Thus the character
of the equations changes as v tends to zero, since in this limit it is the nonlinear
advection term (v - V)v which dominates. This singular limit seems similar to
the semi—classical limit of quantum mechanics when the Planck’s constant tends to
zero; incidentally Planck’s constant has the same dimensions as kinematic viscosity.
When v = 0, i.e. for infinite Reynolds numbers, the Navier—Stokes equations are
called Euler’s equations.

One of the physical difficulties of the Navier—Stokes equations comes from the
incompressibility condition, namely the divergence—free requirement imposed by
equation (2), which implies that the speed of sound is infinite. In this case any local
perturbation is instantaneously transmitted throughout the whole domain. This
requirement seems too drastic and quite unphysical because the speed of sound is
large in real flows but never infinite. In the future we may prefer to consider in-
stead weakly compressible Navier—Stokes equations to simplify the computation of
turbulent flows and represent their local behaviour more accurately. Moreover, on
physical grounds Euler’s equations are unrealistic because the limit ¥ = 0 contra-
dicts the fluid hypothesis, which supposes that the system is locally close to ther-
modynamical equilibrium due to molecular collisions (which implies macroscopic
dissipation).

Taking the curl of equations (1) and (2) gives the equation of vorticity w, the
curl of velocity,

%—L;+(U-V)w:(w-V)v+uV2w+VXF. (4)
In three dimensions this equation shows that vortex tubes may be stretched by
velocity gradients, a mechanism which has been proposed to explain the transfer of
energy towards the smallest scales of the flow. In two dimensions the vortex stretch-
ing term becomes zero, because the vorticity is then a pseudo-scalar w = (0,0,w)
perpendicular to the velocity gradients. The vorticity, and its infinitely many mo-
ments, are therefore Lagrangian invariants of the flow (Helmholtz theorem). In this
case there is no vortex stretching and energy cannot cascade towards the smallest
scales, but tends to accumulate into the largest scales, the so called inverse energy
cascade [121], [15], while enstrophy instead cascades towards the smallest scales
where it accumulates.

2.3 Statistical theories of turbulence

The first statistical method to analyse turbulent flows was proposed in 1894 by
Reynolds [174] who assumed that turbulent flows can be separated into mean fields
and fluctuations. He decomposed the velocity field v () into a mean contribution
¥; plus fluctuations vy and rewrote the Navier—Stokes equations to predict the
evolution of ¥;, which gives the Reynolds equations
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To obtain the time evolution of the mean velocity #; one should compute the second
order moment of the velocity fluctuations ugu;., called the Reynolds stress tensor,

which in fact depends on the third order moment uju/uj (i, j, and k are dummy



indices), which depends on the fourth order moment, and so on ad infinitum. This
is the closure problem: there are more unknowns than equations and, to solve the
hierarchy of Reynolds equations, the traditional strategy is to introduce another
equation, or system of equations, chosen from some a priori phenomenological hy-
potheses, to close the set of equations.

For instance, to close the hierarchy of Reynolds equations, Prandtl introduced
a characteristic length scale for the velocity fluctuations, called the mixing length,
which led him to rewrite the Reynolds stress tensor term as a turbulent diffusion.
Following an hypothesis proposed by Boussinesq [30], and by analogy with molecu-
lar diffusion which smoothes velocity gradients for scales smaller than the molecular
mean free path, Prandtl assumed that there exists a turbulent diffusion which reg-
ularizes the mean velocity gradients for scales smaller than the mixing length. Un-
fortunately this hypothesis is wrong because, contrary to molecular diffusion, which
is decoupled from the large scale motions and can then be modelled by a linear op-
erator (Laplacian) with an appropriate transport coefficient (viscosity), turbulent
motions interact nonlinearly at all scales and there is no spectral gap to decouple
large scale motions from small scale motions. This is a major obstacle faced by all
turbulence models and therefore the closure problem remains open. This is also the
reason why renormalization group techniques [207], nonlinear Galerkin numerical
methods [149] and Large Eddy Simulation (LES) [135] have not yet lived up to
their promises. An important direction of research is to find a new representation
of turbulent flows in which there is a gap, decoupling motions out of equilibrium
from well thermalized motions, which can then be modelled. Such a separation
seems only possible with a nonlinear closure, based on conditional averages which
depend on the local behaviour of each flow realization. We have proposed to use
nonlinear wavelet filters for this (see section 5.2).

Taylor [189], under the influence of Wiener with whom he was in correspon-
dence [18] since his famous paper on turbulent diffusion [188], proposed in 1935
to characterize turbulent fields by their correlation functions, in particular by the
Fourier transform of their two—point correlation function which gives their energy
spectrum. This relies on Wiener—-Khinchin’s theorem, which states that the modu-
lus of the Fourier transform of one realization of a stationary and ergodic random
process in IR" is the same as the Fourier transform of the correlation function of this
process. Twenty years before Einstein [62] had outlined the same method to char-
acterize fluctuating data, but he was not followed at the time [206]. To simplify the
computation of correlation functions, Taylor made the hypothesis of statistical ho-
mogeneity and isotropy of turbulent flows, supposing that the averages are invariant
under both translation and rotation. In the thirties Gebelein proposed applying the
probability theory of Kolmogorov to hydrodynamics, a method later developed by
Kolmogorov himself and his student Obukhov [161], who published in 1941 three
key papers on the statistical theory of fully developed turbulence. Kolmogorov
[117], [118], [119] studied the way in which the energy density of the two—point cor-
relation of a turbulent flow in three dimensions is distributed among the different
wavenumbers. This type of approach is common in statistical mechanics, but a
difficulty arises here from the fact that turbulent flows are open thermodynamical
systems, due to the injection of energy by external forces and its dissipation by vis-
cous frictional forces. To resolve this difficulty Kolmogorov supposed that external
forces act only on the largest scales while frictional forces act only on the smallest
scales, which, in the limit of very large Reynolds numbers, leaves an intermediate
range of scales, called the inertial range, in which energy is conserved and only
transferred from large to small scales at a constant rate e which is supposed to be
constant. But this cascade of energy concerns ensemble averages and not an indi-
vidual flow realization; moreover, this cascade hypothesis is only phenomenological
and has never been proved from first principles. Following Taylor’s hypotheses, Kol-



mogorov supposed that turbulent flows are statistically homogeneous and isotropic;
as a consequence of these two hypotheses and using Navier-Stokes equations, von
Karman and Howarth [113] have shown that the skewness, namely the departure
from Gaussianity of the velocity increment probability distribution, is constant. All
these assumptions lead Kolmogorov to propose the K41 model, which predicts the
following energy spectrum scaling, known as the k~5/3 law

E(k) = C&/Pk5/3 (6)

is the modulus of the wavenumber averaged over directions and C is called Kol-
mogorov’s constant. Classically in turbulence k is interpreted as the inverse of a
scale, but this is only true for statistically homogeneous and isotropic flows.

Landau criticized Kolmogorov’s hypothesis of a constant rate of energy transfer e
independent of the scale, arguing that the dissipation field should also be considered
random. Following this remark, and due to observational evidence of small-scale
intermittency introduced by Townsend in 1951 ([194], [195]), Kolmogorov proposed
to model the energy transfer as a multiplicative process where only a fraction g
of energy is transferred from one scale to another. Assuming that the probability
density of the dissipation field varies randomly in space and time with a log—normal
law, this lead him to propose the K62 model which predicts the following energy
spectrum scaling

A A
E(k) =Ce3k 3 1n (—) (7)
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where k; is the wavenumber at which energy is injected (inverse of the integral
length scale).

Kolmogorov 1962’s paper opened a debate, which is still very lively today, but
which was already very well addressed 24 years ago by Kraichnan [122] when he
wrote in 1974: ‘The 1941 theory is by no means logically disqualified merely be-
cause the dissipation rate fluctuates. On the contrary, we find that at the level of
crude dimensional analysis and eddy—mitosis picture the 1941 theory is as sound a
candidate as the 1962 theory. This does not imply that we espouse the 1941 the-
ory. On the contrary, the theory is made implausible by the basic physics of vortex
stretching. The point is that this question cannot be decided o priori; some kind
of non—trivial use must be made of the Navier—Stokes equation’. Kraichnan claims
that one needs to understand the generic dynamics of Navier—Stokes equation be-
fore constructing a statistical theory able to take into account intermittency: ‘If the
Kolmogorov law E(k) o k=%/37H is asymptotically valid, it is argued that the value
1 depends on the details of the nonlinear interaction embodied in the Navier—Stokes
equations and cannot be deduced from overall symmetries, invariances and dimen-
sionality’[122]. To his criticism of Kolmogorov 62’s theory, Kraichnan added: ‘Once
the 1941 theory is abandoned, a Pandora’s box of possibilities is open. The 1962
theory of Kolmogorov seems arbitrary, from an a priori viewpoint [...]. We make
the point that even in the general framework of some kind of self-similar cascade,
and of intermittency which increases with the number of cascade steps, the 1962
theory is only one of many possibilities’. Kraichnan also commented on the fact
that Kolmogorov 41’s theory has proved to valid even in cases where its hypothe-
ses are not satisfied: ‘Kolmogorov’s 1941 theory has achieved an embarrassment of
success. The -5/3 spectrum has been found not only where it reasonably could be
expected, but also at Reynolds numbers too small for a distinct inertial range to exist
as in boundary layers and shear flows where there are substantial departures from
isotropy, and such strong effects from the mean shearing motion that the stepwise
cascade appealed to by Kolmogorov is dubious’ [122].

For two—dimensional turbulence there is a statistical theory similar to Kol-
mogorov’s theory which has been proposed by Kraichnan in 1967 [121] and then



developed by Batchelor in 1969 [15]. This theory takes into account, in addition
to the conservation of energy in the inertial range, the conservation of enstrophy
(integral of vorticity squared), which is true only for the two—dimensional Euler
equations. Making the same kind of hypotheses as Kolmogorov, they predicted a
direct enstrophy cascade, from large to small scales, giving a k2 energy spectrum,
and an inverse energy cascade, from small to large scales, giving a k~5/3 energy
spectrum. The problem is that the energy spectra obtained from numerical sim-
ulations are in most cases steeper than the predicted k2. There is another more
recent statistical theory proposed by Polyakov [170] which takes into account, in
addition to the energy conservation, the conservation of infinitely many moments of
vorticity in two dimensions, which led him to predict different scaling laws depend-
ing on the way energy is injected; thus, Polyakov’s theory is not universal. In fact
the same non—universal behaviour of two—dimensional turbulence is also observed
in numerical simulations [128].

Since the pioneering works of Onsager [163] and Joyce & Montgomery [111],
there are several statistical theories for decaying two—dimensional turbulence [178],
[152], [179], [54], [180], [67] which are not based on ensemble averages nor Fourier
representation. These theories, unlike those of Kraichnan’s and Polyakov’s, do not
discard the spatial flow structure. For a recent review of these theories a good
reference is [148]. Onsager’s theory assumes that all vorticity is concentrated into a
finite number of point vortices and predicts that there exist negative temperature
states; more precisely it predicts that high energy states can be favoured compared
to low energy states, contrary to classical statistical physics. These negative tem-
perature states correspond to the clustering of same—sign vortices characteristic of
the inverse energy cascade of two—dimensional turbulence. But the extension of On-
sager’s approach to describe continuous vorticity fields, involving infinite number of
degrees of freedom and therefore infinite Liouville measure, leads to a highly singu-
lar limit which has been overcome only recently using large deviation probabilities
and maximum entropy techniques. This new theory, due independently to Robert
[179], [180] and Miller [152], predicts for decaying 2D turbulent flows (i.e. in the
absence of external forces) final stationary states characterized by a functional re-
lation between coarse—grained vorticity and streamfunction. This relation is called
the coherence function and it seems to be verified for strong mixing situations, such
as two—dimensional shear layers or vortex merging [187].

In the case of 3D forced homogeneous turbulent flows Chorin proposed a new
statistical theory [45], [46], which is a generalization to 3D of the 2D vortex equi-
librium theory initiated by Onsager [163]. The small-scale structure is described as
a perturbation of an ensemble of vortices in thermal equilibrium (by ‘equilibrium’
Chorin means ‘Gibbsian equilibrium’ and not ‘statistical steady state’). This theory
recovers the Kolmogorov’s spectrum and proposes an explanation for the origin of
intermittency.

2.4 Coherent structures

Since the beginning of turbulence research there has been, alongside the statistical
approach based on ensemble averages, a tendency to analyse each flow realization
separately. This leads to the recognition that turbulence contains coherent struc-
tures, even at very large Reynolds numbers [110]. Examples of coherent structures
include the rolling-up vortices observed by Roshko in 1961 at a Reynolds number of
107 [182], the horseshoe vortices observed in turbulent boundary layers and mixing
layers [38], [181], and the vorticity tubes (often called filaments) [49], [32] observed
in statistically homogeneous flows. Coherent structures are defined as local con-
densations of the vorticity field which survive for times much longer than the eddy
turnover time characteristic of the turbulent fluctuations.



The vorticity field is easy to visualize in numerical experiments, but very difficult
to visualize in laboratory experiments; therefore, one usually observes the pressure
field instead. Indeed, if we take the divergence of equation (1) we obtain

2V?P/p+s* —w?=V-F, (8)

where s = 1(8;u; + Oju;) is the rate of strain which controls dissipation. This
equation shows that vorticity concentrations, corresponding to coherent structures,
are sources of low pressure, while strained regions, corresponding to dissipation, are
sources of high pressure. Couder et al. [49], [32] recently measured the probability
distribution function (estimated through an histogram) of pressure and showed
that for the large negative pressures it is an exponential, while for the pressures
around zero it is a Gaussian. In other words, the coherent structures, which are
characterized by strong depressions, are responsible for the non—Gaussian behaviour
of turbulent flows, which is consistent with observations made before by Van Atta
and Antonia [197] from measurements of the spatial gradients of velocity. This has
also been shown by Abry et al. [2], [3] using wavelet techniques to separate the
coherent structures from the background flow in a one—dimensional cut of pressure
signal.

The mere existence of finite (and quite small) number of coherent structures
[203] may invalidate the ergodic hypothesis, which is an essential ingredient of any
statistical theory, necessary to replace ensemble averages by space averages. Then,
according to Taylor’s hypothesis, which requires that fluctuating velocities should
be much smaller than the mean velocity, space averages can be replaced by time
averages, which are easier to obtain in laboratory experiments. As far as we know,
almost all existing laboratory results measuring the turbulence energy spectrum
rely on Taylor’s hypothesis. We are therefore sceptical of their validity when the
coherent structures produce rare but intense velocity fluctuations. In this case, even
though the the velocity fluctuation remains in average small compared to the mean
velocity, coherent structures produce bursts which exceed the mean value and it is
dubious that time and space averages can then be interchanged.

Concerning numerical experiments, we interpret the energy spectrum, and its
inertial range power—law form, as characteristic of the random processes responsible
for turbulence. However in practice we analyse only one flow realization because in
most simulations the correlation length is the of the order of the size of the compu-
tational periodic domain. In this case a power—law behaviour could be interpreted
as indicating the presence of some quasi—singular structures in the flow, and not
as a proof of its random dynamics. This new point of view led Saffman [183] to
interpret the energy power—law behaviour as resulting from the presence of vorticity
fronts. Later Farge and Holschneider [76] proposed another interpretation based on
the emergence of cusp-like coherent structures. In the limit of an infinite Reynolds
number, these vorticity cusps will tend to point vortices, which correspond to the
limit case of negative temperature states [34]. The wavelet transform, because it
measures the local scaling of a field, is the appropriate tool for verifying these dif-
ferent interpretations in relating the power—law scaling of the energy spectrum to
the shape

Today we still do not have a complete theory to explain the formation and
persistence of coherent structures, and we shall have to content ourselves with a
qualitative description of their behaviour. This is more evidence that we may still
be in a pre—scientific phase, having as yet only a limited grasp of the nature of
turbulence. The new point of view is to consider that coherent structures are
generic to turbulent flows, even at very high Reynolds numbers, and that they
probably play an essential role in their intermittency. Indeed, several wind tunnel
experiments [17], [5] have shown that the energy associated with the smallest scales
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of turbulent flows is not distributed densely in space and time. This has led various
authors to conjecture that the support of the set on which dissipation occurs should
be fractal [147], [92], or multifractal [164]. It is now thought, but not proven, that
the time and space intermittency of turbulent flows is related to the presence of
coherent structures [75]. This is still an open question and wavelet analysis seems
to be one of the appropriate techniques to answer it.

The classical theory of turbulence is blind to the presence of coherent structures
because their spatial support is very small in the inertial range, therefore low—order
statistical moments are insensitive to them and characterizes only the background
flow whose spatial support is on the contrary dense in the inertial range. More-
over, in three—dimensional flows coherent structures (vorticity tubes often called
filaments) are highly unstable [49] and therefore their temporal support is also very
small. Consequently, the presence of coherent structures only affects the high—
order statistical moments of the velocity increments which are most sensitive to
rare and extreme events (large deviations). The high—order structure functions
have been measured only recently [5], because their calculation requires very long
data sequences. They do not follow Kolmogorov’s theory which predicts a linear
dependence of the scaling exponent of the velocity structure functions on their or-
der. Van der Water [199] has observed that there are in fact two distinct nonlinear
dependencies for odd and for even orders, which may be interpreted in terms of the
multi-spiral model of Vassilicos [198].

It is important to provide statistical predictions based on coherent structure
models. It has been shown by Min, Mezic and Leonard [153] that a system of sin-
gular vortex elements in two dimensions and three dimensions possesses statistics
that deviate from Gaussian and that the probability density functions (PDF’s) of ve-
locity derivatives are non—Gaussian with a Cauchy distribution. The experimental
evidence of similar findings is contained in the work of Goldburg and collabora-
tors [193] in which the Cauchy distribution, predicted in [153] as a consequence
of 1/r velocity decay of a singular vortex, is seen for the region of small velocity
differences. The results of [153] also indicate that the tails of PDF’s are determined
by the structure of vortex cores.

In conclusion, we have shown [83] that the presence of coherent structures is
responsible for the non—Gaussian statistics of fully developed turbulent flows in
dimension two, and we conjecture that this will still be valid in dimension three.
Due to the sensitivity to initial conditions of turbulent flows, any theory of turbu-
lence should be statistical. But, before being able to construct a new statistical
theory of turbulence, we need to find new types of averages able to preserve the
information associated with coherent structures and therefore take into account the
intermittency of turbulent flows. Wavelets can play a role there in separating the
coherent (non-Gaussian) components from the incoherent (Gaussian) components
of turbulent flows, in order to devise new conditional averages to replace the clas-
sical ensemble averages. This method will lead to new turbulence models based
on the fact that the coherent components, namely the vortices, are out of statisti-
cal equilibrium, while on the contrary we can define a Gaussian equilibrium state
for the incoherent components which correspond to the well-mixed background
flow. Therefore this method to compute turbulent flows combines a determinis-
tic approach, to solve the dynamical system describing the vortex motions, and a
statistical approach, to model the effect of the background flow.
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3 Fractals and singularities

3.1 Introduction

According to the Kolmogorov 41’s model, turbulence in the inertial range has a
power law energy spectrum (6), and thus does not have a characteristic length scale.
Therefore turbulence in this range of length scales looks similar at any magnification
and can be described as self-similar. According to experimental observations, how-
ever, turbulence is also characterized by quasi—singular structures such as vortices
and is intermittent (quantities such as energy dissipation vary greatly in time and
space). A quasi-singular structure is one that appears singular until the dissipation
scale at which the smoothing effect of viscosity becomes important. In fact the
theoretical k3 inertial range energy spectrum predicted by Kolmogorov’s theory
implies that some sort of quasi—singular distribution of velocity and vorticity must
be present in turbulent flows [106], [154], [101]. This quasi-singular distribution
could be the result of a set of quasi-singular structures (e.g. vortices), or due to a
particular statistical distribution of structures (independently of their smoothness).
One of the difficulties in turbulent flow analysis is how to disentangle these different
contributions to the overall statistics.

It remains an open question whether this quasi—singular behaviour is due to
the randomness of turbulent motions resulting from their chaotic dynamics or to
the presence of localized quasi—singular structures resulting from an internal or-
ganization of the turbulent motions. Kolmogorov’s theory is based on ensemble
averages, but in using them we are unable to disentangle these two hypotheses. En-
semble averages should be replaced by an analysis of turbulence for each realization
and be based on the local measurement and statistics of singularities for which we
need effective ways of detecting and characterizing quasi—singularities in turbulent
signals.

The types of possible singularities in the turbulent velocity or vorticity may be
divided into two classes: cusps (i.e. non—oscillating singularities in which the func-
tion or one of its derivatives approaches infinity at a certain point, e.g. 1/z) and
spirals (i.e. oscillating singularities in which the frequency of oscillation approaches
infinity at a certain point, e.g. sin(1/z)). Figure 6 shows an example of a two-
dimensional flow containing both cusps and a spiral (a cut through the spiral is
an oscillating singularity over a certain range of length scales.) Likewise the distri-
bution of singularities in turbulence may also be divided into two classes: isolated
(singularities at a finite number of points) and dense (singularities at an infinite
number of points in a finite area). Dense distributions of singularities are called
fractals and are characterized by one (monofractal) or more (multifractal) fractal
dimensions characterizing their scaling properties. Figure 1(a) shows a typical frac-
tal signal. Note that fractals may contain both cusp and spiral type singularities.
Turbulence might contain both fractal and isolated distributions of singularities,
and spiral and cusp types of singularities. Figure 1(b) shows a spiral type singu-
larity with fractal noise superimposed; both the noise and the spiral have the same
energy spectrum.

This section is concerned with wavelet—based techniques for calculating quan-
tities such as energy spectra, structure functions, singularity spectra and fractal
dimensions. These subjects are connected by the fact that they all measure the
local regularity of the signal (i.e. the strength of singularities in the signal). For
example, the slope of the usual Fourier energy spectrum of a signal containing only
isolated cusp singularities is determined by the strongest singularity [211]. The
advantage of the wavelet transform is that it is able to analyse locally the singular
behaviour of a signal. One can then use this local information to construct statis-
tics describing the distribution and type of singularities (e.g. multifractals), and
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Figure 1: Different types and combinations of singularities. (a) A fractal signal
with energy spectrum E(k) o< k~%. (b) A spiral with fractal noise (both noise and
spiral have the same energy spectrum E(k) o k= %).

define local or conditionally averaged versions of traditional diagnostics such as the
energy spectrum and structure functions. We are primarily concerned with cusp
type singularities (either isolated or fractal), although we also discuss methods for
distinguishing between signals containing isolated spirals and fractal signals.

In subsection 3.2 we review the mathematical results on one of the key properties
of wavelet transforms: their ability to detect and characterize singular structures.
We then describe three related applications which rely on this property: calcula-
tion of local energy spectra, structure functions (subsection 3.3) and the singularity
spectra which characterize multifractals (subsection 3.5). These wavelet methods
generally require the assumption that the singularities of the signal are cusps. Be-
cause isolated spirals are likely to be present in turbulence (see on figure 6 the
production of spiraling vorticity filaments by vortex merging) it is essential to have
a method of determining which sort of singularity a signal contains. In subsection
3.6 we review a different wavelet—based method for distinguishing between signals
containing isolated spirals and purely fractal signals (the two types of signal most
likely to be measured in a turbulent flow). Each section gives a practical review of
the method and briefly summarizes some results that have been obtained for tur-
bulence data. Formulating these techniques in terms of wavelet transforms brings
out the connections between them as well as providing new information, and this
point is emphasized throughout this section.

3.2 Detection and characterization of singularities

The most useful property of the wavelet transform is its ability to detect and accu-
rately measure the strength (given by the Holder exponent) of individual singular-
ities in a signal. We will first give a definition of the Holder exponent.
A function f(z), such that
f:R—-1R 9)

is said to belong to the Holder space C* for a a positive non—integer if there exists
a constant C such that for each zg, there exists a polynomial P of order less than
a such that

|f(z) = P(z — z0)| < Clz — 20|™. (10)

f is said to have the Holder exponent a(zg) at point zg if a(ze) =sup{d > 0/f €
C%(zy)}. The exponent a(zy) therefore measures the smoothness of the function
f(z) near zq: the larger a(xg) is, the smoother or more regular the function f(z) is
near o, while the smaller a(xo) is, the rougher or more singular the function is. If
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the Holder exponent is less than one, there is an actual singularity of the function
at zo (or a quasi-singular behaviour near zo over a certain range of length scales if
one is measuring a physical quantity like vorticity or velocity).

It is important to note that equation (10) does not hold for oscillating singu-
larities because in this case the Holder exponent increases by more than one when
the function is integrated. This anomalous behaviour is due to the fact that there
are an infinite number of accumulating oscillations in the neighbourhood of the
singularity.

Consider the L' norm wavelet transform (which conserves the L' norm of a
function)

' —x

fen =1 [ s Et . (1)

T
The wavelet transform is thus a two—dimensional function in position z and scale
r > 0. Mallat and Hwang [146] have shown that singularities in f(z) produce a
maximum in the modulus of the wavelet transform |f;(z,r)| and that following
the position of a wavelet modulus maximum as r — 0 gives the position zy of the
singularity. Furthermore, each singularity has an associated ‘influence cone’ defined
by

|z — x| < C'r, (12)

and, if the singularity is an isolated cusp, then the wavelet transform modulus for
all points within the influence cone is

|fi(z, )| < Aretmo), (13)

provided that at least the first n > a(z¢) moments of the analysing wavelet ¢(z)
vanish, where the n** moment is defined by the integral

+oo
/ z")(x) dz. (14)

— o0

Equation (13) shows that the Holder regularity a(zg) can be found from the slope
of the graph of log|fi(z,r)| versus logr at a position z satisfying inequality (12).
When several singularities are present only the non—overlapping parts of the cones
associated with each singularity satisfy (13). Intuitively, it is the self-similar scaling
property of the wavelet which allows the wavelet transform to measure the rate of
self-similar narrowing with decreasing scale, characterizing the strength of a cusp
singularity.

If the singularity is not isolated and there is only one zero—crossing of the wavelet
transform near xg, one can find the regularity in the left and right neighbourhoods
of zg by measuring the decay of the wavelet coefficient modulus along maxima lines
of the wavelet transform to the left and right of the influence cone of zo.

In practice, such graphs of log |fi(x,r)| versus logr contain oscillations super-
imposed on the power—law behaviour which can make it difficult to determine the
slope at larger scales. Vergassola and Frisch [200] showed that these oscillations are
necessarily present for any self—similar random process whether or not the signal is
multifractal (the lacunarity of multifractal signals should also produce oscillations).
These oscillations can be reduced by finding the average decay of the wavelet coef-
ficient modulus along many lines in the influence cone, or by averaging the decay
along vertical lines at many different points (e.g. one may be interested in the condi-
tionally averaged scaling of points in regions of irrotational straining, see figure 2).
Arnéodo, Bacry and Muzy [6] have suggested that the deviations from a strict
power—law may be reduced by measuring the decay of the modulus of the wavelet
transform along the line of maximum modulus within the influence cone.
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The analysis of signals containing spiral singularities, either isolated (e.g. sin1/|z—
xg|) or fractal (e.g. the Riemann—Weierstrass function), is more complicated because
the worst singular behaviour of a spiral singularity appears outside the cone of in-
fluence. In this case one measures the decay as r — 0 of the modulus of the wavelet
transform along the set of points which are general maxima outside the cone of
influence (i.e. maxima in both the position and scale directions). This gives an
upper bound on the Holder exponent, but in general one has to use lines of maxi-
mum modulus both inside and outside the cone of influence to fully determine the
singular behaviour of an oscillating singularity.

Arnéodo, Bacry and Muzy [7] have recently carried out work defining two
wavelet—based exponents that measure the strength of an oscillating singularity.
They find that the faster the frequency increases, the more irregular its derivative.
In general, oscillating behaviour appears in fractal objects that are self—similar under
non-hyperbolic mappings, e.g. the Riemann—Weierstrass function or the Farey—tree
partitioning of rationals.

3.3 Energy spectra

The Fourier energy spectrum has been one of the most popular techniques for tur-
bulence analysis, indeed traditional turbulence theory was constructed in Fourier
space [16]. The energy spectrum E(k) of a one—-dimensional function f(z) is the
modulus of the Fourier transform of its two—point correlation, which is equal (Wiener—
Khinchin’s theorem) to

B(F) = o |f 0P for k>0 (15)

where (A) signifies Fourier transform. Note that when analysing turbulence velocity
signals one usually ensemble averages the energy spectra from many realizations.
In practice, one assumes ergodicity and averages only one flow realization split into
many pieces whose lengths are larger than the integral scale (which is the largest
correlated scale in a turbulent signal). This produces a much smoother curve. In
traditional turbulence theory only the modulus of the Fourier transform is used
(e.g. the energy spectrum) and thus the phase information is lost. This is probably
a major weakness of the traditional way of analysing turbulence since it neglects
any spatial organization of the turbulent velocity field.

The wavelet transform extends the concept of energy spectrum so that one can
define a local energy spectrum E‘(a:, k) using the L? norm wavelet transform (which
conserves the L? norm of a function) rather than the L' norm used in subsection
3.2 (i.e. the wavelet transform is normalized by 1/r% rather than by 1/r and the
resulting function is designated by f instead of f)

- ko
f (‘Z) ?)
where kg is the peak wave number of the analysing wavelet 1) and

cy = /0 REE (17)

1 2

2C¢ ko

E(x,k) = for k>0 (16)

k

By measuring E’(x,k) at different places in a turbulent flow one might estimate
what parts of the flow contribute most to the overall Fourier energy spectrum and
how the energy spectrum depends on local flow conditions. For example, one can
determine the type of energy spectrum contributed by coherent structures, such as
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isolated vortices, and the type of energy spectrum contributed by the unorganized
part of the flow.

Since the wavelet transform analyses the flow into wavelets rather than sine
waves it is possible that the mean wavelet energy spectrum may not always have
the same slope as the Fourier energy spectrum. Perrier, Philipovitch and Basde-
vant [166] have shown, however, that the mean wavelet spectrum E(k)

+oo

E(k) = E(z,k)dx (18)
0

gives the correct Fourier exponent for a power—law Fourier energy spectrum E(k) o
k=5 provided that the analysing wavelet has at least n > (8 — 1)/2 vanishing
moments. This condition is obviously the same as that for detecting singularities
derived in the previous section since § = 1 + 2« for isolated cusps. Thus, the
steeper the energy spectrum the more vanishing moments of the wavelet we need.
The inertial range in turbulence has a power—law form. The ability to correctly
characterize power—law energy spectra is therefore a very important property of the
wavelet transform (which is of course related to its ability to detect and characterize

singularities).
Note that if the singularities are all isolated cusps then the exponent of the
Fourier energy spectrum is determined by the strongest singularity « of the signal

E(k) = Ck~2(a+1), (19)

where C' is a constant. If the singularities are spirals and/or are not isolated then
the strongest singularity sets a lower bound on the exponent of the energy spec-
trum [211]

E(k) < Ck™2*. (20)

The way the dense singularities accumulate can make the signal effectively more
singular, decreasing the magnitude of the exponent of the energy spectrum by up
to 2. Because they are both controlled in the same way by singularities, the wavelet
energy spectrum can be thought of as a sort of local Fourier transform.

The mean wavelet energy spectrum E(k) is a smoothed version of the Fourier
energy spectrum FE(k). This can be seen from the following relation between the

two spectra
-~ 1 too ~ ( kok'
Ek) = E(
0= g [ B0 (%)

which shows that the mean wavelet spectrum is an average of the Fourier spectrum
weighted by the square of the Fourier transform of the analysing wavelet shifted
at wavenumber k. Note that the larger k is, the larger the averaging interval,
because wavelets are passband filters at % constant. This property of the mean
wavelet energy spectrum is particularly useful for turbulent flows. The Fourier
energy spectrum of a single realization of a turbulent flow is too spiky to be useful,
but one can measure a well-defined slope from the mean wavelet energy spectrum.

The Mexican hat wavelet

2
dk’ (21)

p(k) = k? exp(—k’/2) (22)

has only two vanishing moments and thus can correctly measure energy spectrum
exponents up to # < 5. Only the zeroth order moment of the Morlet wavelet

<
—~
>
SN—r
|

%exp(—(k—kd,)?/Z) for k>0
O(k) = 0 for k<0 (23)
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is zero, but the higher n** order moments are very small (o ky, exp(—kfp /2)) pro-
vided that ky is sufficiently large. Therefore the Morlet wavelet transform should
give accurate estimates of the power—law exponent of the energy spectrum at least
for approximately 8 < 7 (if ky = 6).

Perrier and Basdevant [166] present a family of new wavelets with an infinite
number of cancellations

1
7tn(k) = anexp <_% <k2 + kQ_n)) , n2>1, (24)

where a,, is chosen for normalization. The wavelets defined in (24) can therefore
correctly measure any power—law energy spectrum. Furthermore, these wavelets
can detect the difference between a power—law energy spectrum and a Gaussian
energy spectrum (E(k) o< exp(—(k/ko)?)). It is important to be able to determine
at what wavenumber the power—law energy spectrum becomes exponential since this
wavenumber defines the end of the inertial range of turbulence and the beginning
of the dissipative range.

The first measurements of local energy spectra in turbulence was reported by
Farge et al. [75] and Meneveau [150]. Meneveau used the discrete wavelet transform
to measure local energy spectra in experimental and Direct Numerical Simulation
(DNS) flows and found that the standard deviation of the local energy (a measure of
the spatial fluctuation of energy) was approximately 100% throughout the inertial
range. Meneveau also calculated the spatial fluctuation of T'(k) which measures
the transfer of energy from all wavenumbers to wavenumber k. On average T'(k)
is negative for the large scales and positive for the small scales, indicating that
in three dimensional turbulence energy is transferred from the large scales to the
small scales where it is eventually dissipated (in agreement with Richardson [176]’s
cascade model of turbulence). Meneveau found, however, that at many places in the
flow the energy cascade actually operates in the opposite direction, from small to
large scales, indicating a local inverse energy cascade (also called back—scattering).
This local spectral information, which links the physical and Fourier space views
of turbulence, can only be obtained using the wavelet transform but not with the
Fourier transform.

3.4 Structure functions

Another fundamental quantity in the classical theory of turbulence [117] is the pt*
order structure function Sy (r)

L
S0 = | 1@ = s+l aa, (25)

where L > r is the length of the signal, and L must be long enough so that S,(r)
does not change if L is increased (and thus the increments of f should be stationary
in z). The velocity signal of a turbulent flow varies in both space and time and
between different realizations of the flow. Thus the integral in (25) should, in
general, be replaced by a suitably defined ensemble average in order to calculate the
structure function of turbulent velocities. To justify the use of space or time averages
instead of ensemble averages (over different realizations of the flow), one supposes
that the turbulent flow motions are ergodic, which is an unvalidated hypothesis and
is probably wrong for two-dimensional turbulence [203]. If the energy spectrum
exponent 8 is in the range 1 < 8 < 3 (as is usually the case for the inertial
range of turbulence) the velocity increments are a stationary function even though
the velocities themselves are not [51], this is a good reason to work with velocity
increments rather than the velocities themselves since stationarity is necessary in
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order to justify estimating a quantity by averaging. The larger p the more Sp(r) is
dominated by extreme events. Thus the pt® order structure function characterizes
more and more extreme events as p increases.

If f(z) is self-similar then, just as in the case of the energy spectrum, the
structure functions will have a power law dependence on the scale r

Sp(r) = ), (26)

The first order structure function ((1) provides a measure of the smoothness of
f(z), and in fact (1) is related to the box dimension D of the graph of f(x)

Dr =2-¢(1) (27)

where Dy measures the space—fillingness of f(x). The second order structure func-
tion is related to the energy spectrum by

B=<2)+1. (28)
The Kolmogorov theory [117] showed that the inertial range of turbulence has

B =5/3, or equivalently that
((p) = p/3, (29)

however recent experiments [5] have shown that the structure function exponents
increase more slowly than linearly with p for p > 5, contradicting Kolmogorov’s
1941 theory. The cause of this difference is generally thought to be the fact that the
energy dissipation e(x) = (du(z)/dr)? is intermittent in space, i.e. it varies greatly
from place to place.
The velocity increment Af(z,r) = |f(z)

transform with Haar wavelet ¥a (z) = §(
shown that the exponent 7(p) is defined by

f(z + r)| is equivalent to a wavelet

) —
z + 1) — 6(z). In fact Jaffard [107] has

Sp(r) = % /0 ' |f(z,7)|P dz ~ r"® (30)

is the same as ((p) provided p > 1 and {(p) < p, no matter what wavelet is used.
The wavelet—based method of calculating the structure function unifies the analysis
of structure functions with the calculation of energy spectra and the strength of local
singularities. If one uses a wavelet with a sufficient number of vanishing moments,
then the wavelet-based structure function S,(r) should also be more sensitive to
larger « singularities since the equivalent wavelet for the structure function, which is
Haar wavelet 1A (x), has only one vanishing moment. By changing from an integral
to a sum over wavelet maxima we circumvent the divergence of the integral for
negative p and thus one can extend the definition of structure functions to include
negative p’s (as in Arnéodo, Bacry and Muzy [6]’s Wavelet Maximum Modulus
Method discussed in the following section).

The wavelet—based version of the structure function allows us to see directly
how the structure function is determined by the singular behaviour of f(z). From
equation (13) the wavelet transform modulus is proportional to r*(zo) and thus,
since r < L, the stronger singularities contribute most to the higher order structure
functions and least to the lower order structure functions. In other words, the value
of ¢(p) is determined mostly by the stronger singularities for large p’s and mostly
by the weaker singularities for small p’s.

Davis, Marshak and Wiscombe [51] point out that the ‘dissipation’ of a discrete
function f;, ¢; = |f; — fj=1], is in fact a measure. Because ¢; is a measure, the
generalized dimension D(p) of f(x) can be calculated from the exponent K (p) of
the structure function of &(z),

Dp)=1- —2. (31)



Value of structure function

Type of signal

() =0 stationary, Dp = 2
(=1 noiseless, Dp =1
K1) =0 weak variability
%(1) =1 0 — —function

non—stationary multifractal

non—stationary monofractal
stationary multifractal
stationary monofractal

((p) variable
¢(p) constant
K (p) variable
K (p) constant

Table 1: Properties of a signal from the behaviour of the exponents of its structure
function ((p) and the structure function of the modulus of its derivative K (p).

The generalized dimension D(p) is the dimension of the set containing the sin-
gularities that contribute most to the p** order structure function. Because e(z)
is a homogeneous variable (for 1 < f < 3) we have 0 < f.(z9) < 1 and thus
—1/2 < a(zg) < 0. Because a(zg) < 0 the dissipation contains actual singular
behaviour (the dissipation tends to infinity).

In general terms the exponents ((p) characterize the homogeneity of the field,
while the exponents K (p) characterize the singularity of the field. One can learn
a great deal about the behaviour of a signal from the variability of {(p) and K (p)
and from the value of the first structure function exponents (1) and K (1). This
information is summarized in table 1.

Davis, Marshak and Wiscombe [51] introduced the ‘mean multifractal plane’
defined as the plane with coordinates given by the most informative exponents
0<¢1)=2—-Dp <land0< %(1) =1—-D(1) < 1 (where Dp is the fractal
dimension and D(1) is by definition the information dimension). The position of
a particular flow or model on the mean multifractal plane is a good indicator of
its self-similar characteristics. The higher the flow’s %(1) component the more
intermittent and multifractal it is, and the higher the flow’s (1) component, the
smoother and less stationary it is. Experimental turbulent velocity fields lie in
the centre of the mean multifractal plane. Turbulence models, however, tend to lie
along the boundaries of the multifractal plane: purely multiplicative cascade models
(such as § — —functions) lie on the %(1) axis and purely additive models (such
as fractional Brownian motion) lie on the ((1) axis! This clearly indicates that the
current turbulence models do not represent correctly the self—similar structure of
turbulent flows.

3.5 The singularity spectrum for multifractals

In order to characterize a multifractal function it is necessary to calculate its sin-
gularity spectrum. The singularity spectrum D(a) may be defined as the Hausdorff
(or ‘fractal’) dimension of the set of points with Holder exponent «

D(a) = Dp{z,a(z) = a}. (32)
Note that this definition is equally valid for multifractal functions and measures.
The singularity spectrum of a monofractal has only one point, e.g. Ehe singularity
spectrum of the fractional Brownian signal By /3(z) which has a k™3 energy spec-
trum is D(a = 1/3) = 1 (the function By /3(x) is singular everywhere with a = 1/3),
while the singularity spectrum of a multifractal is a curve.
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Parisi & Frisch [164] found a way of estimating the singularity spectrum from
the Legendre transform of the structure function exponents {(p)

D(a) = inf(pa — ¢(p) +1) (33)

where, as explained in subsection 3.3, {(p) may be calculated using the wavelet
transform.

Equation (33) can be derived heuristically by noticing that near a singularity of
order o

F@,r)] ~ 1, (34)

where we have used equation (13) and have written a = a(x) for simplicity. Now,
if the dimension of the points with singularity « is D(«a) then there are about
r~P(@) ‘boxes’ (in this case wavelets) with the scaling (34) in each interval r, so
that the total contribution to the integral (30) is r®?~P(®)+1 To leading order the
magnitude of the integral is given by the largest contribution so that

((p) = inf(ap - D(a) +1). (35)

Since ¢(p) is concave, formula (33) can be obtained by an inverse Legendre trans-
form.

However, Jaffard [107] proved mathematically that structure function calcula-
tions of the singularity spectrum can, in general, only set an upper bound on D(«)
and he gave some counterexamples where such calculations give completely mis-
leading answers.

Arnéodo, Bacry and Muzy [6] have developed a method for calculating the
singularity spectrum called the Wavelet Transform Modulus Maximum (WTMM)
method. This method is closely related to the calculation of structure functions
by wavelet transforms except that, instead of integrating (or summing in case of
discretely defined functions) the wavelet transform over all positions, one only sums
the wavelet transforms located at maxima, i.e.

MOESS (sup If(w,r')lp), (36)

ten(r) \(®)

where [ is a maxima line of the wavelet transform modulus on [0,7] and sup(, .
means that the supremum is taken for (z,r') on [ (so that ' < r). The wavelets
are in fact playing the role of ‘generalized boxes’ in a new form of the standard
box—counting algorithm used to estimate fractal dimensions D(a). Summing only
over the wavelet modulus maxima makes sense since, as Mallat & Hwang [146]
showed, most of the information in the wavelet transform is carried by the wavelet
maxima lines. Furthermore, because one does not sum over places where the wavelet
modulus is zero, £, (r) is also defined for p < 0 as well as for p > 0. Note that the
structure function methods are defined only for p > 0.

Arnéodo, Bacry and Muzy draw the analogy with statistical thermodynamics
and interpret 3, (r) as a ‘partition function’ (see table 2).

If f(z) is a self-similar function then 3,(r) o< v and the singularity spectrum
can be found by calculating the Legendre transform

D(a) = inf(pa - 7(p)). (37)
To avoid technical problems associated with calculating the Legendre transform in

(37) Arnéodo, Muzy and Bacry [6] recommend an alternative way of finding D(«)
(see their paper for details).
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Thermodynamic parameter Multifractal parameter

T (temperature) p!

Z (partition function) 2 (r)
G (free energy) 7(p)

S (entropy) D(w)

Table 2: Analogies between statistical thermodynamics and the Wavelet Transform
Modulus Maximum method for multifractals.

Jaffard [107] proved mathematically that the WTMM method, unlike the struc-
ture function methods, gives the correct singularity spectrum for all p provided it is
slightly modified. Indeed a problem might arise if the wavelet modulus maxima are
too close together; in that case the sum in an interval of width » must be restricted
to the largest maxima. Jaffard also showed that even the modified WTMM method
fails if the function f(z) contains too many oscillating singularities.

Arnéodo, Bacry and Muzy [6] found the relation between 7(p) and ((p) from
their respective definitions in terms of D(a), but given the limitations of equa-
tion (33), it is perhaps better (and more intuitive) to find the connection directly
through the structure functions. In terms of discrete signals, the wavelet transform—
based calculation of the structure function (30) becomes

S0 = X |ftasm)p. (39)

j=1,N

Each cone of influence of width r» must contain only maxima lines with the same
scaling (since the scaling r*(%0) is the same for all points within the influence cone of
point o) and if the function is everywhere singular all intervals of size r must contain
at least one maxima line. If one follows Jaffard [107]’s refinement to WTMM, and
only counts one maximum for each interval of length r, then the number of terms
in the sum must be proportional to N/r. Therefore, if the wavelet moduli are only
summed over their maxima the structure function becomes

Sp(r) = N > ( sup If(mjar')l’”) = Ni/rip(r)- (39)

1eL(r) (zj,r")

We thus find that the relation between the structure function exponents ((p) and
the WTMM ‘free energy’ exponents 7(p) is

¢(p) =7(p) + 1. (40)

Note that equation (40) only holds if the function f(x) has singularities everywhere
and WTMM is modified by only counting one wavelet modulus maximum for each
interval of length r.

Arnéodo, Bacry & Muzy [6] applied the WTMM method to single point high
Reynolds number (the Taylor scale based Reynolds number is Ry = 2720) velocity
data obtained by Gagne [99] from the wind tunnel of ONERA at Modane. The
self-similar inertial range follows the Kolmogorov E(k) ~ k=3 law for almost three
decades. The WIMM analysis was carried out for this inertial range of scales on a
section of data 100 integral (energy containing) scales long.

The histogram of singularities a(zg) in the turbulence data was found to be
quite wide and centred about the Kolmogorov value o = 1/3. Surprisingly, at some
places in the flow « is negative which implies actual singular behaviour (velocity
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tending towards infinity). These negative « values may be spurious or may indicate
the (rare) presence of strong vortices. The function 7(p) is convex which suggests
that the regularity of the flow varies greatly from place to place. The singularity
spectrum is peaked at the Kolmogorov value amax(p = 0) = 0.335 £ 0.005 with
D(amax) = 1.000+0.001. This result indicates that the signal is fractal everywhere
because the fractal support of D(amax) is equal to its topological dimension (i.e.
the dimension of the signal, which is 1).

3.6 Distinguishing between signals made up of isolated and
dense singularities

Although the inertial range of turbulence has a self—similar structure, not all self—
similar functions are fractal; in fact some of the most physically plausible turbulence
structures, the spiral vortices, can generate self—similar oscillating singularities with
a non-trivial box—counting dimension (a technique to estimate the Hausdorff or
fractal dimension). The conclusion drawn by Arnéodo, Bacry and Muzy [6] that
turbulence is everywhere singular with a multifractal structure may be invalid if the
turbulent velocity signal they analysed contains oscillating singularities. Because
the WTI'MM method is only valid for signals that contain dense distributions of cusp
type singularities, one should first try to determine whether a signal has isolated os-
cillating singularities before attempting to use the WTMM method. Unfortunately,
the difference between signals containing singularities everywhere (‘fractals’) and
signals containing a large number of isolated oscillating singularities (isolated ‘spi-
rals’ in multi-dimensions or isolated ‘chirps’ in one dimension, see figure 1) is not
obvious: both signals can have non—trivial box—counting dimensions.

Kevlahan and Vassilicos [115] developed two methods for distinguishing between
isolated spiral and fractal signals based on the wavelet transform. (In fact their
method only distinguishes between isolated and dense singularities, however iso-
lated cusp singularities have a trivial box—counting dimension and thus can be dis-
tinguished from fractal signals on the basis of box—counting dimension alone.) The
first method takes advantage of the fact that the singularities in a fractal are dense
(there are singularities at an infinite number of points, see figure 1), whereas the
singularities in an isolated spiral signal are isolated (the signal contains oscillating
singularities only at the centres of spirals). If one averages the wavelet transforms of
many realizations, or different data segments (separated by more than one integral
scale L in order to be decorrelated) together, one can prove that the average wavelet

transform modulus <| f(z, r)|> decays differently for the two types of singularity

as <|f(x, r)|> « N7Y2|f(xo,7)| for fractal signals, (41)

but,
as (If(,n)) < |f(z0,7)l, r<L/N forspiral signals, (42)

where N is the number of realizations or of decorrelated segments averaged together
and L is the length of each segment. Thus, the average wavelet transform of the
random phase fractal signal is N1/ times a single realization, while that of the
spiral signal does not depend, below a certain scale, on the number of realizations.

The difference in the behaviour of <| f (:c,r)|> is striking, and provides a diagnos-

tic for determining whether a signal contains spiral-type singularities or not. This
method was applied to the Gagne [99] turbulence data. The results were inconclu-
sive, perhaps due to insufficient resolution near expected spiral scales or rarity of
spiral vortices passing near the pointwise velocity probe.
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The second method for distinguishing between isolated spiral and fractal singu-
larities derives from the observation that the spatial fluctuation of wavelet energy
E(x,k) (measured by the standard deviation 6(k) of E(x,k)) is independent of
wavenumber for a random phase fractal signal, but increases with wavenumber for
a spiral signal with the same energy spectrum. Analysis of the turbulent signal
shows that & (k) increases with wavenumber (although at a slower rate than for the
purely spiral test signal), indicating that turbulence probably contains some sort
of isolated oscillating singularities. This conclusion should be borne in mind when
interpreting the results of multifractal analyses of turbulence.

4 Turbulence analysis

4.1 New diagnostics using wavelets

It is impossible to define a local Fourier spectrum, because Fourier modes are non—
local, but it is possible to define a local wavelet spectrum, since wavelets are localized
functions. Actually, due to the inherent limitation of the uncertainty principle
stating that there is a duality between spectral and spatial selectivity, we should
be aware that the spectral accuracy will be poor in the small scales and that the
spatial accuracy will be poor in the large scales.

Since turbulent flows are either two—dimensional or three—dimensional, in the
following section we will use the two—dimensional continuous wavelet transform. Let
us consider a two—dimensional scalar field f(x) and a two—dimensional real isotropic
wavelet ¢(z). We generate the family 1z .(2") of wavelets, translated by position
parameter x € IR?, and dilated by scale parameter r € IR", all having the same L2

norm ,
r—x

'l/}w,r(m) = 7’71%/1(

The two—dimensional wavelet transform of f(x) is

). (43)

fen = [ 1@ ie(a)da (4)
IR2
The local wavelet spectrum of f(x) is defined as
" _ F 2
B@.r) = 5ol @)l (45)

A characterization of the local ‘activity’ of f(x) is given by its wavelet intermittency

I(x,r), which measures local deviations from the mean spectrum of f at each
position  and scale r, defined as follows

T |f(11:,7‘)|2
I ) = ~ b
@0 = fanP Pa

Another measure of interest for turbulence is the wavelet Reynolds number Re(z,r),
given by

(46)

Re(z,r) = M, (47)

where r is the scale parameter, v the kinematic viscosity of the fluid, and @ the
root mean square value of the velocity field contribution at position & and scale r

defined as
E 1/2
~ _ ~ 2
u(a:,r) - (@ Z |’U,Z($,’I“)| ) ) (48)

i=1
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with the constant
s o dPk
Co= [ 100 (49)
R ||

The expectation is that at large scales r ~ L, the wavelet Reynolds number
should coincide with the usual large-scale Reynolds number Re = uL/v, where
u is the r.m.s. turbulent velocity and L is the integral scale, which is the energy
containing scale of the flow. In the smallest scales (say r ~ 7, where n is the
Kolmogorov scale of the flow which characterizes the high wavenumber limit of
the inertial range where dissipation becomes significant), one expects this wavelet
Reynolds number to be close to unity when averaged spatially. The question we
want to address here is the variability of such a wavelet Reynolds number defined in
space and scale: are there locations where such Reynolds number in the small scales
is much larger than elsewhere, and how do such regions correlate with regions of
small-scale activity in the flow? Actually Re(z,r) gives an unambiguous measure
of the nonlinear activity at small scales (or at any desired scale), because regions of
high wavelet Reynolds number correspond to regions of strong nonlinearity.

Concerning the computation of energy and enstrophy transfers and fluxes, we
should be aware that the results depend on the functional basis we consider. Indeed,
due to Heisenberg’s uncertainty principle, each representation measures different
types of transfers and fluxes. In Fourier space one computes transfers between
different independent wavenumber bands, which detect the modulations and reso-
nances excited under the flow dynamics. In wavelet space one computes exchanges
between different locations and different scales, which detect instead advections and
scalings. But one should never forget that in wavelet space spatial resolution is bad
in the large scales and good in the small scales, while, by duality, space resolution is
good in the small scales but bad in the large scales. In an orthogonal wavelet basis,
although all wavelets are independent in space and scale, they are not necesserily in-
dependent in wavenumber. In an orthogonal wavelet packet basis all wavelet packets
are independent in space, scale and wavenumber, but their Fourier spectrum may
present several peaks at distant wavenumbers and they may be quite delocalized
in wavenumber space; therefore wavelet packets are not appropriate to precisely
measure transfers between different wavenumber bands. This is the reason why a
comparison between transfers computed in wavelets, wavelet packets and Fourier
modes is misleading: these three diagnostics do not measure the same quantities!

4.2 Two—dimensional turbulence analysis

Unlike the velocity field, the vorticity field is invariant with respect to uniform
rectilinear translations of the inertial frame (Galilean invariance). The dependence
of streamlines and streaklines on the reference frame causes considerable difficulties
in the study of fluid flows, particularly in observing and defining vortices. In fact,
due to its Galilean invariance, vorticity is the most suitable field for tracking the
dynamics of turbulent flows, in both two and three dimensions. Moreover, due to
Helmholtz’s theorem stating the Lagrangian conservation of vorticity in 2D and of
vortex tubes in 3D, we are convinced that vorticity is, for both 2D and 3D flows, the
fundamental field whose evolution controls all other relevant fields; the importance
of vorticity has been advocated for years by Saffman [184] and Chorin [44]. We
think that turbulence analysis, modelling and computing should be based on a
segmentation of the vorticity field into coherent vortices (or vortex tubes in 3D)
and random background of vorticity filaments (namely 1D structures embedded in
2D or 3D) produced by the nonlinearly interactions between the coherent vortices.
The vorticity field is directly accessible from numerical simulations, but is difficult
to obtain from laboratory experiments. This is why we will now focus on vorticity
fields obtained from direct numerical simulations (DNS) results. The drawback with
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DNS, i.e. the integration of Navier—Stokes equations without any ad hoc turbulence
modelling, is that current supercomputers are only able to compute low Reynolds
number flows (up to a few thousand).

Let us show an example of a wavelet analysis of an instantaneous vorticity
field computed using the Navier-Stokes equations [168], [71]. We segment it into
three regions using the Weiss criterion [202], [63], namely into rotational regions
corresponding to the coherent structures, strongly strained regions corresponding
to the shear layers surrounding the coherent structures, and weakly strained regions
corresponding to the background flow made of vorticity filaments (these vorticity
filaments encountered in two—dimensional turbulence are not the same dynamical
objects as the vorticity tubes encountered in three—dimensional turbulence and often
called filaments). We then decompose the vorticity field into a continuous wavelet
representation using an isotropic (Hermite) wavelet to integrate in space the wavelet
coefficients for each type of region. This decomposition is in fact a conditional
statistical analysis because the energy spectrum is computed separately for each
type of region. The energy spectrum of the coherent structure regions tends to scale
as k=%, the sheared regions as k=% and the background regions as k=3 (figure 2).
We found [80], [168], [73] that each region has energy throughout the inertial range
and therefore there is no scale separation. This is why the Fourier representation
cannot disentangle these different regions.

The scaling of the coherent structures seems compatible with the cusp-like
model for vortices proposed by Farge and Holschneider [76], the scaling of the
shear layers seems compatible with the vorticity fronts model proposed by Saffman
[183] and only the scaling of the homogeneous background regions seems to ver-
ify the Batchelor—Kraichnan prediction for 2D homogeneous isotropic turbulence.
From this analysis we confirm that there is no universal power—law scaling for two—
dimensional turbulent flows; the slope of the Fourier energy spectrum varies with
the density of coherent structures (their number per unit area in 2D and per unit
volume in 3D), which depends on initial conditions and forcing (energy injection by
external forces). We have then conjectured that there may be a universal scaling for
each region of the flow considered separately, but this has not yet been proven. Ex-
tensive wavelet analysis of very different types of turbulent flows would be necessary
to check this conjecture.

A key question, which remains open, is the following: is there a generic shape
(namely a typical vorticity distribution) for coherent structures? The answer to
this question influences our analysis, in particular our interpretation in terms of
scale, because the notion of scale is intrinsically linked to the generic shape we
assume for the coherent structures. A prioris are as essential in statistical analysis
as hypotheses are in modelling: we should state them clearly, otherwise our results
would be nonsensical. For instance, without a definition of vortex shape the notion
of vortex size and vortex circulation would be meaningless. A misunderstanding
has persisted for years in the field of turbulence due to the identification of scale
with the inverse wavenumber, which is true only if one assumes a wave-like shape
for the vorticity field. Conversely, in other papers one encounters different implicit
models of coherent structures (point vortices [203], vortex patches [127], Gaussian
vortices [144], or cusp-like vortices [76]), which indeed condition our statistical
analysis. Therefore one first needs a method to extract coherent structures out of
turbulent flows in order to study them individually. The classical method consists
of thresholding the vorticity field and identify as coherent vortices all regions where
vorticity is larger than this threshold. However, the spectral information is then
lost due to the discontinuity introduced by the threshold. We have proposed instead
[74], [80] two new methods based on the continuous wavelet representation, which
preserves the regularity of the vorticity field and therefore its spectrum.

These methods depend on the choice of the analysing wavelet (although this
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Plate 4.2 Conditional wavelet spectra (this computation was done in collaboration with Thierry
Philipovitch). (a) Vorticity field. In red: elliptic regions, dominated by rotation (antisymmetric part
of the stress tensor V), which correspond to the coherent vortices. In blue: hyperbolic regions,
dominated by strain (symmetric part of the stress tensor Vv), which correspond to the incoherent
background flow. (b) Coherent vortices where rotation dominates. (c) Shear layers where strain
and strong velocity dominate. (d) Background flow where strain and weak velocity dominate.

(e) Energy spectrum. In black: Fourier energy spectrum, which tends to scale as k~** in the inertial
range. In dark blue: wavelet energy spectrum, which is a smooth approximation of the Fourier
spectrum and tends to scale as k~**. In red: wavelet energy spectrum of the coherent vortices, which
tends to scale as k. In green: wavelet energy spectrum of the shear layers, which tends to scale as
k-*. In light blue: wavelet energy spectrum of the background flow, which tends to scale as k.



dependance is weak) and ideally we should use a wavelet which is a local solution of
the linearized Navier—Stokes equations, namely a solution of the heat equation, such
as any isotropic and smooth distribution of vorticity. This is why we propose to use
two—dimensional Hermite wavelets (derivatives of the Gaussian), which are solutions
of the heat equation. The higher the derivative, the better the cancellations and
the more sensitive the wavelet will be to quasi-singular vortices, however its spatial
selectivity will not be as good as for low order derivative wavelets. In two examples
shown in this chapter (figures 2 and 5) we use Marr’s wavelet which is the Laplacian
of the Gaussian.

The new approach we have proposed is to decompose turbulent flows into co-
herent and inhomogeneous components versus incoherent and homogeneous com-
ponents. This decomposition should be performed for each flow realization before
averaging, because these two classes of components correspond to different statis-
tical distributions and present different scaling laws. The first method to perform
this decomposition consists of extracting the coherent structures by retaining only
the wavelet coefficients inside the influence cones (namely the spatial support of
the wavelets) attached to the local maxima of the vorticity field corresponding to
the centers of the coherent structures; the wavelet coefficients outside the influence
cones are discarded before reconstructing the coherent components of the vorticity
field [80]. We can also extract just one coherent structure, analyse its shape, and
compute its coherence function, namely the pointwise relation between vorticity
and streamfunction, to check if it corresponds to the stationary states predicted
by Montgomery’s [111] or Robert’s [178],[179],[180] statistical theories. The second
method to split the flow into coherent and incoherent components consists to retain
only the wavelet coefficients which are larger than a given threshold and to discard
all other coefficients before reconstructing the coherent vorticity field. We have thus
extracted the coherent structures (corresponding to the wavelet coefficients larger
than the threshold) from the background flow (corresponding to the weaker wavelet
coefficients). By computing the Fourier spectrum of these two fields we have con-
firmed our previous analysis: the energy spectrum of coherent structures tends to
scale as k~° and that of the background field as k3 [74], [80], thus recovering the
scaling predicted by the statistical theory of homogeneous 2D turbulence [121]. This
confirms the conjecture stating that the coherent structures are responsible for the
intermittency of 2D turbulent flows. We think this conjecture is also true for 3D
turbulent flows.

Inspired by Donoho’s theorem for optimal denoising [58], we have recently pro-
posed [83] the threshold &7 = (2 < w? > log;y N)~'/? to select the wavelet coeffi-
cients to be retained to extract coherent structures. This threshold depends only on
the variance of the vorticity field < w? > and on the number of grid-point samples
of the vorticity field N, without any adjustable parameter. For statistically steady
turbulent flows, whose variance is by definition stationary, this threshold remains
constant during the whole time evolution. Using this method we have analysed
decaying [82], wavelet forced [83] and Fourier forced 2D turbulent flows [84] (see
figure 3). For these three different types of turbulent flows we have observed that
the coherent components, obtained from the wavelet coefficients of vorticity larger
than the threshold wr, have non—Gaussian vorticity and velocity PDFs, while the
incoherent components, obtained from the wavelet coefficients of vorticity smaller
than the threshold wr, have Gaussian PDFs [83], [82], [84] (see figures 3.f and
11(d)). There is still some hope of finding universal statistical distributions for
each component taken separately, and we may be able statistical distribution for
each turbulence models based on this property. Even if such a universal distribution
exists for the coherent structures, we would still need to calculate the dynamics of
these structures in detail because they remain out of equilibrium (unlike the back-
ground).
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Using the wavelet segmentation technique we have just described, we analyzed
a 2D forced turbulent flow computed with 2562 Fourier modes, and found that only
0.7% of the wavelet modes retain 94.3% of the total enstrophy and 99.2% of the total
energy. These modes correspond precisely to the coherent structures as exhibited
on the coherence scatter plot (figure 3.d). These coherent modes are responsible for
the PDF's of the total vorticity and velocity fields, while the incoherent modes (cor-
responding to the 99.3% remaining wavelet coefficients) have a Gaussian PDF, with
a flatness 3 and a much smaller variance than that of the total fields (figure 3.f). On
the contrary the incoherent background flow is responsible for the energy spectrum
scaling in the high-wavenumbers (figure 3.g), because the contribution of the coher-
ent modes are events too rare to be detected by the two-point correlation (whose
Fourier transform gives the energy spectrum). We have also shown that the co-
herent modes are responsible for the total flow dynamics because they trigger the
total velocity field. The incoherent modes are passively advected by the coherent
velocity, because the incoherent velocity field generated by the background flow is
nearly zero (figure 3.b). For all these reasons we think that the coherent modes
are essential, and that analysing of turbulent flows in terms of energy spectrum
scaling in the high-wavenumbers alone is misleading, and one should also consider
the PDF's of vorticity and velocity.

Another application of the wavelet representation in turbulence is be to design
new types of forcing for numerical simulations. The method, proposed by Schneider
and Farge [185] consists of injecting energy and enstrophy at each time step, but
only into the wavelet coeflicients inside the influence cone corresponding to a given
location. Depending on the type of forcing we want, we could either excite the same
vortices or randomly select new vortices at each time step. Forcing is currently
done in Fourier space and is rather unphysical, while wavelet—based forcing could
simulate the production of vorticity in boundary layers or mixing layers, which is
a local process. This is another promising application of wavelet techniques for
turbulent flow simulation (the results obtained with this wavelet forcing method
are discussed in section 6.4.3 and shown on figure 11).

4.3 Three—dimensional turbulence analysis

We have analysed different flow fields resulting from direct numerical simulations of
three—dimensional turbulent flows [75], using the complex—valued Morlet wavelet,
which plays the role of a numerical polarizer due to its angular selectivity, and whose
complex modulus directly measures the energy density. We have first studied the
temperature, velocity and pressure fields of a channel flow near the wall and have
used the wavelet intermittency to pinpoint the regions of the flow dominated by
strong nonlinear dynamics, corresponding to locally stronger Reynolds numbers. It
appears that the most intermittent regions are correlated with those of large vertical
velocity, corresponding to ejections from the boundary layer. We have found that
temperature behaves as a passive scalar almost everywhere, except in these very
localized ejection regions. We have also observed that there is no return to isotropy
in the small scales, contradicting one of the hypotheses of the statistical theory of
turbulence, which supposes that turbulent flows become homogeneous and isotropic
at small scales.

We have then analysed the vorticity, velocity and a passive scalar in a temporal
mixing layer after the mixing transition. We have found that wavelet intermit-
tency is very strong, up to 120, in the collapsing regions where the ribs (streamwise
vorticity tubes produced by a three—dimensional instability) are stretched and en-
gulfed into the primary spanwise vortex (produced by a two—dimensional Kelvin—
Helmholtz instability). On the other hand, the wavelet intermittency in the braids,
i.e. outside the spanwise vortex, remains very low, not exceeding 5. We have also
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noticed a return to isotropy in the small scales. From the local spectrum of the
vertical vorticity we have observed that the collapsing regions have a spectral slope
much shallower than the one of the braid regions; this departure from the space
average wavelet spectrum increases with the scale and confirms the strong inter-
mittency of the mixing layer. If we extrapolate the observed slopes, we conjecture
that intermittency should increase with Reynolds number. We have then visual-
ized the iso—surfaces of the wavelet Reynolds number, which can be interpreted as
surfaces of isononlinearity in the flow. The peaks on these iso—surfaces, which
are associated with the most unstable regions, are located in the primary vortex
core; this confirms our previous conclusions concerning the concentration of small-
scale nonlinear activity there, due to the stretching of the ribs rolled around the
primary vortex. We have also shown that the Kolmogorov scale, corresponding to
the iso—surface Re(x,r) ~ 1 where linear dissipation balances nonlinear advection,
varies with location, being at much smaller scale in the vortex core than in the
braids, with a scale variation of four octaves. This means that there may be some
(spatially localized) dissipation at scales belonging to the inertial range. This ob-
servation contradicts Kolmogorov’s hypothesis of non—dissipative energy transfers
in the inertial range, but is in agreement with Castaing’s theory of turbulence [36],
[37], with Frisch and Vergassola[93]’s multi-fractal model and with Benzi et al’s [21]
extended self-similar model, which assume a weak dissipation in the inertial range.

For shear flows, such as the channel flow or the mixing layer we have studied,
there is a clear correlation between large—scale events and small—scale activity, due
to the presence of coherent structures. Wavelet analysis has been an essential tool
for identifying them as phase-space regions correlated in both space and scale,
where intermittency increases with scale [75]. We conjecture that for large Reynolds
numbers these regions may become more and more localized and very intense in
small-scale enstrophy. Therefore they correspond to rare but strong events, which
are susceptible to develop singularities at very large Reynolds numbers. For the
mixing layer these quasi—singular regions correspond to collapsing events, where
the ribs are stretched and accumulated inside the primary vortex core, while for the
channel flow these regions correspond to the tip of the horseshoe vortices ejected
from the wall boundary layer. According to the Cafarelli-Kohn—Nirenberg theorem
[33], singularities, if they exist, should be at most a set of Hausdorff measure one
in space—time for any Reynolds numbers, which confirms the fact that they could
only be rare events to which standard statistical tools, such as two-point correlation
and energy spectrum, remain insensitive. Incidently if we want to look for quasi—
singularities in three—dimensional turbulent flows it may be better to use a space—
time continuous wavelet transform, whose theory is being initiated by Duval-Destin
and Murenzi [61], but has not yet been sufficiently developed.

5 Turbulence modelling

We will now reconsider the closure problem mentioned in subsection 2.3, taking
advantage of the new observations we have made of turbulent flows, and in particular
the dynamical role of coherent structures, thanks to the wavelet analysis.

5.1 Two—dimensional turbulence modelling

To compute turbulent flows we must separate the active components, responsible for
their chaotic behaviour (namely sensitivity to initial conditions), from the passive
components, which are advected by the velocity field resulting from the overall
coherent structure motion. The active components are not in thermal equilibrium,
while the passive components are well thermalized. Therefore the active components
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should be computed explicitly, while the passive components can be modelled by
some ad hoc parameterization.

Classical numerical techniques (Galerkin methods [103], Large Eddy Simulation
[133], [175], [135] and Nonlinear Galerkin methods [149]) assume that the active
components are the low—wavenumber Fourier modes, or the scales resolved by the
computational grid, while the passive components are the high—wavenumber Fourier
modes, or the sub—grid scales. This scale separability of the turbulent dynamics is
assumed to be true in both two and three dimensions.

We have shown [204] that a compression in the wavelet or wavelet packet rep-
resentation extracts the coherent structures out of the background flow, while the
same amount of compression done in the adapted local cosine (Malvar) represen-
tation, which is a type of windowed Fourier basis, does not have this property
(figure 4). Indeed, the more you compress in Fourier or windowed Fourier represen-
tations, the more you smooth the coherent structures, and consequently lose their
enstrophy, destroy their phase information, and introduce parasitic wiggles in the
background. Indeed, the more you compress the larger the effect of the analysing
function. Therefore wavelets and wavelet packets, being localized functions, tend to
separate coherent structures from the background flow (figure 4a), while Fourier and
windowed Fourier, being non—localized functions, tend to smear coherent structures
into the background flow (figure 4b).

We have shown [74], using nonlinear wavelet packet compression, that there is
no scale separability in two—dimensional turbulence; we conjecture that this result
is also true in 3D turbulence. To prove this we have computed the time evolution
of a two—dimensional turbulent flow which we use as our high—resolution reference
flow. We have then compressed the initial vorticity field in two ways: either by
retaining only the lower wavenumber Fourier modes, or by selecting the strongest
(in L?-norm) wavelet packet coefficients. We found that for a compression ratio of
200 the wavelet packet representation preserves, in a statistical sense (namely the
energy spectrum is well predicted), the reference flow evolution while the Fourier
representation leads to a statistically different solution. This conclusion is not sur-
prising, considering the existence of an inverse energy cascade in two—dimensional
turbulence which implies that the high-wavenumber Fourier modes remain active
and affect the evolution of the low—wavenumber modes. The implication of this be-
haviour should be implemented in turbulence models, because we now have wavelet-
based numerical methods to replace replace grid—point or Fourier representations
and integrate Navier-Stokes equations (see 6).

In the same paper [74] we showed that there is a possible separability between
active modes, namely the coherent structures corresponding to the strong wavelet
packet coefficients, and passive modes, namely the vorticity filaments of the back-
ground flow corresponding to the weak wavelet packet coefficients. Both components
are multi—scale, which is why the Fourier representation is not able to disentangle
them and a fortiori to model them. According to Weiss analysis [202] the co-
herent structures correspond to elliptic regions (nearby fluid trajectories remain
nearby) where rotation w? dominates strain s?, while the background flow corre-
sponds to hyperbolic regions (two nearby fluid trajectories separate exponentially)
where strain s? dominates rotation w?. In the elliptic regions the local Reynolds
number Re(x,r) is larger than one, while in the hyperbolic regions it is smaller
than one, which indicates that the background flow is actually laminar (figure 5).

We have shown ([83], [82], [84]) that probability distribution function (PDF)
of the vorticity and velocity fields associated to the coherent structures are non-
Gaussian, while they are Gaussian for the background flow (figure 3). Therefore
the coherent structures are out of thermal equilibrium, while the background flow
has already thermalized due to the very strong mixing resulting from the strain
imposed by the coherent structures. Therefore the probability distributions of the
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Plate 4.4 Comparison between wavelet packet and adapted local cosine compression (this
computation was done in collaboration with Echeyde Cubillo). (a) The uncompressed vorticity
field computed with 128> modes. (b) The vorticity field reconstructed from the 70 strongest
wavelet packet coefficients, which contain 90% of the enstrophy. (c) The vorticity field
reconstructed from the 425 strongest adapted local cosine coefficients, which contain 90% of the
total enstrophy. (d) Enstrophy contained in the retained coefficients versus their number.

We observe, for instance, that 70 wavelet packet coefficients retain 90% of the total enstrophy,
while 70 adapted local cosine coefficients retain only 50% of the total enstrophy.
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Plate 4.5 Wavelet Reynolds number (this computation was done in collaboration with Thierry
Philipovitch). (a) Velocity field computation with resolution 128? (Ax = 1 unit length between two
grid-points). (b) Wavelet Reynolds number at scale 64Ax, which fluctuates between 148 and 2700
with a mean value of 1713. (c) Wavelet Reynolds number at scale 20Ax, which fluctuates between
31 and 578 with a mean value of 365. (d) Wavelet Reynolds number at scale 8Ax, which fluctuates
between 1 and 27 with a mean value of 17. (e) Wavelet Reynolds number at scale 2Ax, which
fluctuates between 0 and 3 with a mean value of 2.



background flow are stationary and do not depend on the spatial configuration of
the coherent structures. We should then be able to model the incoherent back-
ground flow by an ad hoc stochastic process having the same enstrophy and the
same statistics, in particular the same spectral slope, or using simple turbulence
models (Boussinesq, Smagorinsky or k — €), whereas the coherent structures should
be explicitly computed in wavelet phase-space. A possible direction would be to
construct a wavelet or wave packet frame (namely a quasi—orthogonal basis) made
of local solutions of the linearized Navier—Stokes equations (namely any isotropic
smooth function, such as the Mexican hat). We do not yet know how to construct
it, nor to compute Navier—Stokes equations in it, although we know how to compute
Navier-Stokes equations in an orthogonal wavelet basis (see 6), which is a promising
first step in the same direction.

We have also shown [114] that the presence of coherent structures inhibits the
nonlinear instability of the background flow, namely the formation of new coher-
ent structures. Using the wavelet packet representation to extract the coherent
structures we then computed the evolution of the remaining background flow, in
the absence of coherent structures, and observed the emergence of new ones out of
it (figure 6). Actually when coherent structures are present, they impose a strain
on the background flow, which then inhibits the formation of new coherent struc-
tures, and therefore there is no energy or enstrophy backscatter from the incoherent
to the coherent components of two—dimensional flows. The next step to validate
this observation will be to compute the different transfers between coherent and
incoherent components of the flow (namely from coherent structures to coherent
structures, from coherent structures to background, from background to coherent
structures and from background to background) and check that there is no transfer
from background to coherent structures. If this is confirmed, there will be a possible
wavelet separability between the coherent and incoherent flow components and we
may then be able to propose new turbulence models based on this gap.

5.2 Three-dimensional turbulence modelling

The assumption that the high—wavenumber Fourier modes are slaved to the active
low—wavenumber Fourier modes, is probably also wrong for three—dimensional tur-
bulence due to the evidence of energy backscattering [55], [54], [56], [129], [169],
i.e. inverse energy transfer from small to large scales, resulting from the presence of
organized structures which locally interact and transfer energy to larger scales. We
should take this observation with caution knowing that the amount of backscatter-
ing observed depends sensitively on the sharpness of the spectral filter used. There
are two other reasons to explain why the assumption that the highwavenumber
modes are slaved to the low-wavenumber modes is not valid and should be revised.

The first reason comes from the fact that we do not have any universal theory
of turbulence aside from the statistical theory which deals with homogeneous and
isotropic ensemble averages, while numerical simulations computes one flow realiza-
tion at the time (at the highest resolution possible with present supercomputers)
and not ensemble averages (which will require too many computations to obtain
several realizations of the same turbulent flow). Actually each flow realization is,
unlike an ensemble average, highly inhomogeneous due to the presence of coherent
structures. As we have shown in performing wavelet analyses of two and three di-
mensional turbulent flows, coherent structures are multi-scale and, through their
mutual nonlinear interactions, are responsible for inverse energy transfers. If the
computational grid is too coarse, its resolution is insufficient to accurately compute
these transfers. Likewise subgrid—scale parameterization is only able to model direct
transfers (from resolved to unresolved scales) and inverse transfers (from unresolved
to resolved scales) in a statistical sense, assuming homogeneity, but cannot exactly
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Plate 4.6 Dynamical analysis of coherent structures and incoherent background flow. (a) Total
vorticity at ¢ = 30 computed with a resolution 10242, (b) Vorticity corresponding to the coherent
vortices alone at ¢ = 30. They are made up of 31 strong wavelet packet coefficients which contain
83% of the total enstrophy. (c) Energy spectra at ¢ = 30. In green: the total energy spectrum. In red:
the coherent vortices energy spectrum. In blue: the filament energy spectrum. (d) Vorticity
corresponding to the filaments alone at 7 = 30. They are made up of 1 048 545 weak wavelet packet
coefficients which contain 17% of the total enstrophy. (e) Integration of the total vorticity until

t = 120. (f) Integration of the coherent vortices alone until # = 120. (g) Energy spectra at ¢ = 120. In
green: the total energy spectrum. In red: the coherent vortices energy spectrum. In blue: the
filament energy spectrum. (h) Integration of the filaments alone until ¢ = 120.



compute the tranfers for the given inhomogeneous flow realization one integrates. In
fact backscattering is a major unresolved drawback of current numerical methods,
which will last as long as they will be unable to separate the coherent structures
from the background flow and take into account the parameterization of homoge-
neous turbulent components separately from the inhomogeneous components. This
difficulty comes from the fact that both components are multiscale and therefore
low-pass filters are inadequate here.

The second reason comes from the fact that our current numerical methods are
defined, either in grid—point, finite element or Fourier representation, and are unable
to compute multi—scale objects with a small number of coefficients. This would be
possible using either adapted multi—grid or wavelet numerical methods. Multi—
grid techniques were proposed 20 years ago by Achi Brandt [31] for solving elliptic
problems, such as the diffusion equation; they were then adapted to quasi—stationary
problems, but do not seem yet optimal to solve time—dependent problems. Actually
the multi—grid approach is similar to a wavelet approach using a Haar wavelet,
which is very well localized in physical space and corresponds to a set of embedded
grids, but which is too delocalized in spectral space and tends to produce large
errors in the higher order derivatives of the solution. As far as we know, locally
refined multi—grid techniques have been tried for the Navier—Stokes equations, but
not yet in the turbulent regime.

One possible approach is to use the wavelet Reynolds number to split the Navier—
Stokes equations at each time step into advection and diffusion operators, which will
be solved separately using the most appropriate numerical method and turbulence
parameterization for each operator. Namely, the advection term should be com-
puted only where Re(a,r) > O(1), and the diffusion term where Re(z,r) < 0(1)1.
This method makes sense only if the flow is computed either in a multi—grid or in
a wavelet representation section (see 6).

Actually, as we have already said, the Navier—Stokes equations are computa-
tionally intractable for the large Reynolds number limit which corresponds to fully
developed turbulent flows. Although the use of wavelets may improve current nu-
merical methods of solving the Navier—Stokes equations (see section 6), a more
promising direction may be to look for a new set of equations specific to the tur-
bulent regime. Such equations would be written in terms of a small number of
new variables corresponding to the degrees of freedom attached to the coherent
structures. As a consequence they may break some of the symmetries of Euler or
Navier—Stokes equations. This is analogous to the way in which Boltzmann’s equa-
tion, describing the macroscopic level, breaks the time reversibility of Newton’s
equation, describing the microscopic level. For modelling turbulent flows we ought
to go one step further in this hierarchy of embedded equations and define a new
‘organized’ level emerging out of the thermalized background flow.

5.3 Stochastic models

The idea is to find stochastic models of turbulence that mimic the behaviour of
Navier—Stokes equations at high Reynolds numbers, but which would be easier to
solve numerically, and perhaps even analytically. These models could then be used
to study some properties of turbulent flows, such as energy spectrum, probability
distribution functions, intermittency and departure from Kolmogorov’s scaling.
The first attempt was done in 1974 by Desjanski and Novikov [52] who devised
a so called shell model where the Navier—Stokes equations were represented on a
discrete set of wavenumbers in Fourier space, each Fourier shell corresponding to
one octave. The coupling between different octaves was supposed to be local in
Fourier space and energy was transferred only from large to small scales. Such shell
models, sometimes also called cascade models, are still popular because with them
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it is easy to obtain very large inertial range, up to Reynolds numbers 1010, at a
limited computational cost. The number of degrees of freedom needed to compute
three—dimensional Navier—Stokes equations by standard direct simulations scale as
Re%/*, whereas they scale as Re for shell models. The weak point of shell models is
that the vectorial structure of Navier—Stokes equations is lost, the incompressibility
condition is not satisfied and they do not give accurate information on the spatial
structure of the flow.

In 1981 Zimin [209], [90], [210] proposed another model, called the hierarchi-
cal model, defined in both space and scale. He projected the three-dimensional
Navier—Stokes equations onto Littlewood—Paley basis and discretized them by oc-
taves, considering a limited number of vortices for each octave, few in the large
scales and more in the small scales in accordance to the uncertainty principle. He
then assumed that each vortex is advected by the velocity field of the larger vortices,
which lead him to propose a set of semi-Lagrangian wavelets to compute the flow
evolution. This impressive work fore—shadowed the wavelet decomposition, and has
since been developed by Frick [89], [88], [8]. Hierarchical models are more physi-
cal than shell models because they also take into account the vortex motions, but
they are still not very realistic from a physical standpoint because they neglect the
vortex deformation which is responsible for energy transfers and subsequent dissi-
pation. Recently Eyink, in an unpublished paper [68], has criticized this approach
in showing that semi-Lagrangian wavelets do not remove the effect of large—scale
convection to the energy transfers and therefore do not guarantee their locality in
wavenumber space. This is again due to Heisenberg’s uncertainty principle and is
related to the fact that it is impossible to compare transfers between wavenumbers
and transfers between wavelets (this point has already been discussed in section 4).

Ideas on turbulence evolve at a very slow pace. As example of this, let us quote
what Liepmann wrote in the proceedings of the turbulence conference held in Mar-
seille in 1961 [140]: ‘The success of the spectral representation of turbulent fields is
due, after all, not to the belief in the existence of definite waves but to the possibility
of representing quite general functions as Fourier integrals. In the application to
stochastic problems the usefulness of the Fourier representation stems essentially
from their translational invariance. Consequently, really successful models for rep-
resenting turbulent shear flows will require far broader invariance considerations. It
is clear that the essence of turbulent motion is vortex interaction. In the particu-
lar case of homogeneous isotropic turbulence this fact is largely masked, since the
vorticity fluctuations appear as simple derivatives of the velocity fluctuations. In
general this is not the case, and a Fourier representation is probably not the ulti-
mate answer. The proposed detailed models of an eddy structure represent, I believe,
a groping for an eventual representation of a stochastic rotational field, but none of
the models proposed so far has proven useful except in the description of a single
process’. These remarks, written 33 years ago, are still very pertinent and define
the direction we should take for future research in turbulence.

Nowadays, using continuous wavelets we can construct more elaborate stochastic
processes. As Liepmann has perceived we should be able to synthesize stochastic
rotational fields, built from a set of randomly translated, rotated and dilated el-
ementary vortices, which should have the same non-Gaussian statistics as those
observed for two and three dimensional turbulent flows (see figure 3). Recently
Elliott and Majda [64], [65] have used wavelets to build a Gaussian, stationary
and self-similar stochastic process for synthesizing turbulent velocity fields satisfy-
ing Taylor’s hypothesis and displaying Kolmogorov’s energy spectrum. Using these
synthetic velocity fields they recover Richardson’s law for scalar pair dispersion
[66]. It is well-known that the Gaussian hypothesis is not valid in turbulence, but
their method may be useful to model the background flow, which, contrary to co-
herent structures, may present Gaussian statistics, although this point is still very
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controversial [192].

6 Turbulence computation

6.1 Direct Numerical Simulations

The numerical simulation of turbulent flows, based on the direct integration of the
Navier—Stokes equations at high Reynolds number without a sub—grid turbulence
model, requires a very large number of degrees of freedom. This number increases
like Re in two dimensions and like Re®/* in three dimensions. Among the numerous
Eulerian and Lagrangian numerical schemes, one may identify two different points
of view: spectral and physical.

The first long-time simulations of two—dimensional turbulent flows [14], [143],
[22] were based on spectral methods, i.e. Fourier decomposition, and had a resolution
of 5122. More recently, resolutions of 40962 have been calculated [42], but even
these high-resolution simulations cannot attain realistic Reynolds numbers which
are several orders of magnitude larger. The observation of the formation of coherent
structures in both laboratory and numerical experiments lead to the recognition of
the important dynamical role played by vortices in turbulent flows and resulted
in the development of Lagrangian methods ([1], e.g. vortex methods [134], [47]
or contour dynamics methods [127]) which follow the motion of each vortex, but
which are imprecise concerning the background flow between the vortices. Finite—
element, —difference or —volume methods allow mesh refinement in regions of the flow
where small structures appear, for instance in the boundary layer of an obstacle;
unfortunately automatic adaptive refinements requires post—processing to follow
these small structures.

Wavelet bases, in the context of the numerical simulation of PDEs (partial dif-
ferential equations), appear to be a good compromise between spectral methods
(precise, but expensive), contour dynamics (which automatically follow coherent
structures, but not the background flow) and finite element or finite difference
methods (local in space, of low order and therefore not precise). Wavelet numer-
ical methods have already been used to solve Burgers’ equation in one [9], [104]
and two dimensions [25], Stokes’ equation in two dimensions [196], the Kuramoto—
Sivashinsky equation [159], Benjamin—Davis—Ono-Burgers’ equation [87], the heat
equation in two dimensions [40], some reaction—diffusion equations in one and two
dimensions [94] [29] [28], the nonlinear Schrodinger equation [100], Euler’s equation
[172] and Navier—Stokes’ equation in two dimensions [41], [96].

6.2 Wavelet based numerical schemes

The localization of wavelet bases, both in space and scale, leads to an effective non-
linear compression of the solution as well as of the operators involved in equations
(4). Such a sparse representation is obtained by performing nonlinear thresholding
of the wavelet coefficients of the solution and of the matrices representing the op-
erators, i.e. those coeflicients with absolute value below a given threshold are set to
zero. This thresholding can be justified by theoretical results [53] and verified by
numerical experiments.

The sparsity of the wavelet expansion of a given function is linked to its local
smoothness: where the function is regular, the corresponding wavelet coeflicients
decrease with scale. This fact is related to the characterization of point—wise Holder
spaces [108], [105] (see subsection 3). Recall that for the Fourier decomposition,
the decay of the coefficients depends on the global regularity of the function [211].
Another important property of wavelets is the nonlinear approximation of functions:
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the approximation error between a function and its wavelet series taken as the N
largest coefficients (in a given norm) can be estimated, in some Lebesgue space, by a
(negative) power of N which depends on the smoothness, or non—smoothness, of this
function. This result follows from the characterization of Sobolev and Besov spaces
by mean of wavelet coefficients [151], [53], [58]. Note that the nonlinear wavelet
approximation of a given function is associated with a grid in physical space which
is refined where there are singularities of this function. A comparison of Fourier
versus wavelet and wavelet packet nonlinear compression for the same vorticity field
is shown in figure 7. We observe that the wavelet packet compression is the most
efficient, both in terms of the minimal number of coefficients used and the quality
of the approximation.

Another important consequence of the simultaneous localization in space and
scale of wavelet bases is that many pseudo—differential operators and their inverse
have a sparse representation, i.e. are almost diagonal or have a typical finger struc-
ture, depending on the employed (i.e. non—standard or standard) form [24]. This is
the case for the gradient operators and the heat kernel. For a theoretical justifica-
tion in the general context of Calderon—Zygmund operators we refer the reader to
[151]. As an example, the discretized heat kernel (on a 10242 grid) is projected onto
a wavelet basis (figure 8b) and we observe that only 9.5 % of the coefficients are
greater than 1078, absolute value to be compared to the largest eigenvalue which
is order 1, instead of 21 % for a finite difference projection (figure 8a).

These two fundamental properties (compression of the solution and of the op-
erator) allow us to define adaptive wavelet—-based numerical schemes for solving
nonlinear PDE’s. By neglecting small coefficients in the solution and/or in the op-
erator’s wavelet representation, each step of the algorithm is based on approximate
but fast matrix—vector products computed in wavelet space. Note that the schemes
based on scaling functions (often deliberately confused with wavelets) [102], [124],
[87] instead of wavelet functions are no more efficient than classical finite element
methods on a regular grid! Theoretical error and stability estimates for some partic-
ular wavelet schemes may also be derived [24], [50], [26]. A scaling function scheme
for solving the Euler equations has already been developed by Qian and Weiss [172].

6.3 Solving Navier—Stokes equations in wavelet bases

Before presenting wavelet—based numerical schemes to solve the Navier—Stokes equa-
tions, we should mention a very interesting direction which consists of simplifying
the Navier—Stokes equations by re—writing them in an appropriate wavelet basis.
Jacques Lewalle has shown that some continuous wavelets, namely the Hermitian
wavelets (derivatives of the Gaussian), simplify the resolution of the linear term
and allow a simpler convolution formula for the nonlinear term [136], [137]. He
has found that the first derivative of the Gaussian gives a Hamiltonian form of
the diffusion equation, where dissipation is replaced by spectral transport, namely
Hermitian wavelets are propagators for the diffusion equation [138].

The first adaptive wavelet schemes for the Navier—Stokes equations, have been
derived by Charton & Perrier [39] and Frohlich & Schneider [96]. Different ap-
proaches can be used to solve the two—dimensional Navier—Stokes equations. We
will focus here on the two recently developed wavelet schemes for solving Navier—
Stokes equations: the algebraic wavelet method of Charton & Perrier [41] and the
Petrov—Galerkin scheme of Frohlich & Schneider [96, 97]. Both methods are based
on the discrete wavelet transform and take advantage of the nonlinear compression
of the operators and the solution.

Apart from the above Eulerian schemes another possible approach would be to
develop Lagrangian—type wavelet methods, based on the continuous wavelet trans-
form. The travelling wavelet method in which wavelets behave like particles evolving
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Plate 4.7 Nonlinear compression of a vorticity field. In each case the reconstructions using the
strong coefficients (containing 95% of the total enstrophy are displayed on the left, and using the
weak coefficients (containing 5% of the total enstrophy) are displayed on the right. (a) Uncompressed
vorticity field computed with a resolution of 5122 (b) Compression in a Fourier basis (813 strong
coefficients). (c) Compression in a wavelet basis (338 strong coefficients). (d) Compression in a
wavelet packet basis (156 strong coefficients).



Figure 8: Discretization matrix of the heat operator (1 —10"%A)~1. The gray code
is a logarithmic scale from white to black, the significant values being black. (a) In
finite differences of fourth order. (b) In a wavelet basis with the same precision.
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in phase—space coordinates has been proposed in 1990 by Basdevant, Holschneider
and Perrier [13]. The travelling wavelet method looks for an approximate solution
of the above equation (51) which is a finite sum of wavelets evolving in phase—space:

w(z,t) ~ Zci(t) ) (Lw) , a; >0, (50)

part ai(t)

where 1) is the wavelet and ¢;, a;, b;, are respectively the time dependent amplitude,
scale and position parameters.

This method works well for linear equations, such as the convection—diffusion
equation, and also for the Korteweg—de-Vries equation. It has also been applied
to the study of the formation of galaxies [20]. However, in the nonlinear case
the method encounters technical difficulties which have not yet been completely
overcome. These difficulties arise when two wavelets approach each other in phase—
space which leads to a ‘phase—space atom collision’.

Now let us consider the two—dimensional Navier—Stokes equations written in
terms of vorticity and stream function, which are scalars

{ %—‘;;+v.vwzyvaiw+£ z€[0,1?,t>0 (51)
A% l]:’:wJ v:([-)_yi_%):
We complete the problem with periodic or Dirichlet or Neumann boundary condi-
tions and a suitable initial condition.

By introducing a classical semi—implicit time discretization and a time step dt,
and setting w™(z) ~ w(z,ndt) to be the approximate solution at time ndt, equation
(51) is replaced, for example (for notational ease we take here the simplest, but
unstable, time scheme), by

(1 — w6tV = W™ + 5t(f" — ™. Y wh)
{ leI,n+1 — wn—i—l , ,Un—f—l — (ayq,n—l—l, _ale,n—i-l) (52)
The spatial discretization is then performed by approximating, at time ndt, w™
by a function w’ belonging to a finite dimensional subspace V; obtained from a
multiresolution analysis (V) ;>0 of the space L2([0,1]2).

At this point the algebraic method of Charton & Perrier differs significantly
from the Petrov—Galerkin scheme of Frohlich & Schneider. The method proposed by
Charton and Perrier [41] starts with a finite difference scheme on a regular Cartesian
grid. Wavelets are then used to speed up the solution procedure by compression of
the discrete inverse operator and the actual solution during the time advancement.
Furthermore, operator splitting by means of an ADI (Alternating Direction Implicit)
technique is introduced. The two-dimensional wavelet basis employed relies on
a tensor product of two one-dimensional multiresolution analyses. The method
proposed by Frohlich and Schneider [97, 96] uses a two-dimensional multiresolution
analysis as the underlying wavelet basis. In this case the inverse operator is applied
during the time advancement, using special test functions.

We will attempt to clarify the basis of these wavelet methods. In principle, the
spatial approximation can be of collocation type, i.e. grid point values, or of Galerkin
type, i.e. a projection onto a basis. The transformation between the single level rep-
resentation of a function, i.e. at regular collocation points, and a multi-level wavelet
Galerkin representation uses an orthogonal wavelet transform. However, problems
arise with adaptive schemes because it is difficult to take advantage of the sparsity
of the wavelet decomposition when going back and forth between grid point and
wavelet representations. Let us be more precise, and consider the one-dimensional
case. Suppose that dim V; = 27. Then the function w? can be expanded onto the
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scaling function basis (single level representation) (¢,x)k—0,27—1 of V;

wj(z) = di g Yik(T) + G- (54)
The transition between both representations is done by the orthogonal wavelet
transform (Mallat’s algorithm).
In the collocation method, the function w? is naturally associated with a regular
grid (z = k277)—0 20, of [0,1] and its corresponding collocation values w7 (2}).
Often, by using properties of scaling functions ¢ one can identify

Wi (zx) 277, (55)

The wavelet Galerkin method is based on the wavelet coefficients dj ), and in
practice uses only a few (non—negligible) coefficients larger than a given threshold
e: {dj, ; |dj,| > e}. Mallat’s fast wavelet algorithm works well for regular grids,
but is not efficient for irregular grids made up of irregularly spaced grid points zy,
corresponding to the ‘centers’ of wavelets 1); s, for which the coefficients of w’(xy)
satisfy |d},| > e. To avoid this problem, one can introduce in many cases, an
interpolating function of Vy [201] and adapt Mallat’s fast wavelet algorithm [95, 97].
Another way to overcome this problem is to directly construct the interpolating
scaling functions ¢z and the corresponding interpolating wavelet basis v [57]
[25]. Finally, one can also construct an adaptive multiresolution analysis [171], [4].

The algorithm (52) for solving the two—dimensional Navier-Stokes equations
can now be split into four steps which we will discuss below: 1. time—stepping the
heat equation, 2. solving a Poisson equation, 3. computing the nonlinear term, 4.
imposing the boundary conditions.

6.3.1 The heat equation solution

Let us consider the discretized heat equation
(1 = vdtV?) wtt = W™ 4 6t fm. (56)

The biorthogonal approach introduced in [139], [126], [94], [97] consists of building
a biorthogonal system from a classical wavelet basis 9; 1, first setting

0]"]9 = (1 — V5tv2)71’(/}j’k, (57)

with suitable hypotheses on . Then a system 67]-,,9 biorthogonal to 8, is con-
structed, and equation (56) is reduced to the change of bases

@™ [ in) = (W™ | O5k) + ™ | 0.8, (58)

where the notation {|) means scalar product. The functions 6;; and 8, are called
vaguelettes and have localization properties similar to those of wavelets [151]. This
approach avoids assembling and solving a linear system. For the collocation pro-
jection operator—adapted cardinal functions [97] have been constructed which allow
the construction of efficient interpolatory quadrature formulas. The decomposition
of the right hand side of equation (58) can then be calculated using the fast adaptive
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vaguelette decomposition of [97] based on a hierarchical subtraction strategy. This
approach has been used for one— and two-dimensional problems.

The Galerkin approach is to project (56) onto a classical, orthogonal or biorthog-
onal, wavelet basis (1) of the space V;. We can write

(™ 1)) s = K (] + 8¢ 1 1 5)),4 (59)

where
Ko, ey = (@ = vtV s | i ar) (60)

is the heat kernel, which is almost diagonal, as explained in section 6.2, figure 8(b).
This step is based on approximated, but fast, matrix—vector products. An easy way
to reduce the previous two—dimensional system to several one—dimensional systems
is to use a tensor wavelet basis (v, (x).¢;j: x(y)) and to split the two-dimensional
heat kernel into two one—dimensional operators

0? 02

1—vdtVH 't (1 - V&t@)_l(l - u6ta—g/2)—1 (61)

as in ADI methods. Such a method is applied in [40], [41].

6.3.2 The Poisson equation

The solution to the Poisson equation
V2gntt = ntt (62)

can be obtained using a pseudo—transient technique, i.e. calculating the steady state
solution of the heat equation, which, as in ADI methods, is reached in only a few
iterations by considering iterated powers K" of the heat kernel K (60) which become
sparser with n [40].

An alternative approach, proposed by Jaffard [108], is to consider the well-
conditioned system

PAP P (@5 950) iy = P (@5 1930)) (%)

where A is the Galerkin matrix of the Laplacian in a wavelet basis: A(j,k),(]-/,k/) =
<V?'¢}j7k|¢jl’k1> and P is the diagonal preconditioning matrix: P (; ), k) =

277 §; j» Ok, k, in one dimension (in two dimension this should be modified according
to the chosen 2D wavelet basis). Jaffard proved that the condition number of PAP
does not depend on the dimension of the system. Then the solution of (63) can be
reached in a few iterations by a classical conjugate gradient method.

The biorthogonal approach is also possible using operator—adapted biorthogonal
vaguelettes for homogeneous operators, i.e. 8; 5 = (V2)~14;x and 8, = V>t; .
The solution of the Poisson equation then also reduces to a change of basis, analo-
gously to case of the heat equation.

6.3.3 The nonlinear term

The nonlinear term v™. 7 w™ can be computed either by a collocation or by a
Galerkin method. The collocation (also called pseudo-spectral or pseudo-wavelet)
method can be sketched as follows: starting from the wavelet coefficients of w™
we obtain the values of w™ on a locally refined grid through an inverse wavelet
transform. Solving the Poisson equation with one of the methods described in the
previous section, we get the wavelet coefficients of the stream function ¥"™. Applying
an inverse wavelet transform, the stream function is reconstructed on a locally
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refined grid. Subsequently, the velocity v™ and Vw" are calculated using finite
differences on an adaptive grid. Then the scalar product v™ - Vw™ is calculated at
each grid point. Finally, the wavelet coefficients of the nonlinear term are obtained
by a wavelet transform. However, in the bi—orthogonal approach the right hand side
of the first equation of (52) is summed up on the adaptive grid in physical space and
then the wavelet coefficients of the vorticity w™! are calculated using the adaptive
vaguelette decomposition. This collocation method requires a fast wavelet transform
between grid points and sparse coefficients sets. This problem was mentioned in
the previous section 6.3. Frohlich and Schneider [97, 95] have developed a wavelet
transform for lacunary bases which enables the adaptive evaluation of terms of the
form f(w) without derivatives. This method has been applied for the full adaptive
discretization of reaction—diffusion problems [28]. The algorithm described above
will enable the adaptive evaluation of the convective term.

On the other hand, a Galerkin method works only in the wavelet coefficient
space, avoiding transforms between physical and wavelet space [23]. The nonlin-
ear term is then written as a convolution of the wavelet coefficients of »™ and
vw™; these convolutions involve triple wavelet connection coefficients of the form
(Vi1 ks Vi ks | Yis,ks)- A priori the complexity of such a calculation is very large,
but the method can be competitive for two reasons. First, since the wavelets are
localized both in space and scale, connection coefficients vanish when two of the
three wavelets are separated either in scale or space. Hence, only a small number
of terms in the convolution are significant. Secondly, the method can, more easily
than collocation, handle adaptive description of the fields, i.e. the convolution can
be restricted to the significant components of the flow [167].

Let us mention that at the moment in both methods [41, 96] the nonlinear term
is computed by a collocation method on a regular grid. This aspect will be improved
in the near future.

6.3.4 The boundary conditions

Boundary conditions are in general included in the definition of the spaces (V;);ecz
when constructing the multiresolution analysis. The simplest and most popular (due
to the development of Fourier spectral methods) are periodic boundary conditions
for which periodic wavelets, in one or several dimensions, can be easily constructed
[165]. For Dirichlet or Neumann boundary conditions, compactly supported bases
have recently been constructed in one dimension [48], [156], [157], and these bases
are also associated to fast orthogonal wavelet transforms, like for the periodic case.
They can easily be included in some of the previous algorithms, since the extension
to cubic domains in several dimensions is trivial using tensor products of wavelets
(in practice all two—dimensional orthogonal wavelet bases are tensor products, which
raises the problem of the lack of isotropy).

One should also mention the existence of divergence—free wavelet bases [131],
[130], which can be used for the velocity—pressure formulation of Navier—Stokes

equation (1) and automatically take into account the incompressibility condition
[196].

6.4 Numerical results

To illustrate the previously described adaptive wavelet methods we present some
numerical results for two different cases, i.e. a strong nonlinear interaction of three
vortices and a decaying turbulent flow. For comparison a classical pseudo—spectral
method serves as a reference. Furthermore in order to study statistically stationary
turbulent flows we discuss results computed with a recently developed wavelet based
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forcing method [185]. In all computations presented below the method of [96] using
cubic spline wavelets of Battle-Lemarié type have been used.

6.4.1 Three vortex interaction

As a prototype for vortex merging we consider the strong nonlinear interaction of
three Gaussian vortices [186]. This is an important test case, because the flow
dynamics is highly nonlinear, but not yet chaotic (although the motion of four
vortices would be). This allows us to compare in a deterministic manner the time
evolution of the solution computed with different numerical schemes, presenting
different truncation errors (here we will compare a pseudo—Fourier scheme and a
pseudo—wavelet scheme). As soon as the dynamics of the system one computes
becomes chaotic, namely sensitive to initial conditions and therefore to numerical
errors, it becomes tricky to compare the predictions of different numerical schemes.
A ‘deterministic comparison’ (based on th L?2-norm of the difference between two
solutions computed with two different schemes) works well for laminar flows, but it
should be replaced by a ‘statistical comparison’ as soon as the dynamics becomes
chaotic (namely beyond the onset of the transitory regime). The choice of the
appropriate statistical diagnostics has been addressed for several years by Farge
and Wickerhauser [74], [205], but is still an open issue, not yet sufficiently discussed
in the numerical analysis literature.

For details on the numerical simulation we refer the reader to Schneider, Kevla-
han and Farge [186]. The initial condition is given by the superposition of two
positive and one negative Gaussian vortices, w(z,y) = 3 o_, A;exp (—((z — ;)2 +
(y—v:)?)/o?) with amplitudes 4; = Ay = =243 = 7 and 0; = 1/m. The maximum
resolution of the computation corresponds to a finest scale J = 8 which is equivalent
to 2562 possible degrees of freedom. As threshold for the adaptive method [97] we
used € = 1079, i.e. only wavelet coefficients with absolute value larger than & have
been computed.

In figure 9 we show the vorticity field for the reference pseudo—spectral method
and the adaptive pseudo—wavelet method with the corresponding computed wavelet
coefficients (dark entries) for different instants. We observe that during the interac-
tion small scale components are produced, which is directly reflected in the active
(i.e. the strongest) wavelet coefficients. At ¢ = 0 the vorticity field is highly regular
and the strongest wavelet coefficients (namely those larger than a given threshold)
represent only 3 % of the total. At later times the number of active coefficients in-
creases to 20 %, i.e. we still have a compression of a factor 5. The comparison of the
vorticity fields with the pseudo—spectral method, see figure 9, shows no significant
difference. If we look at the energy spectra at t = 40 we can observe quantitatively
that all relevant scales, in particular the small ones, are well resolved. However, as
the fine resolution is only required locally, the number of degrees of freedom has in
comparison to the pseudo—spectral method been reduced by a factor 5.

Let us mention that at the moment both existing adaptive pseudo—wavelet meth-
ods [41, 97, 96] are not yet more efficient in terms of computing time than a classical,
well-optimized, pseudo—spectral method. In principle the adaptive wavelet methods
have a computational complexity of order 0(N,4), where N,4 denotes the number of
the degrees of freedom adapted to the solution. In comparison the pseudo—spectral
methods are of order O(Nye4logaNyey) complexity, where Ny, denotes the num-
ber of degrees of freedom on the regular grid. The actual numerical cost depends
directly on the constant multiplying the order term. At the moment this factor is
rather high for the adaptive wavelet methods. Therefore for simulations at moderate
resolutions, such as N = 1282 or 2562, the adaptive pseudo—wavelet methods can-
not yet outperform the classical spectral methods, although their operation count
scales slower, as O(N) instead as O(NlogaN). But we have some hope to be able to
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Figure 9: Simulation of the merging of three vortices at times ¢t = 10,20, 30, 40.
(a) Vorticity field, reference pseudo—spectral method. (b) Vorticity field, adaptive
wavelet method. (c) Wavelet coefficients used in the adaptive wavelet method.
(d) Comparison of Fourier energy spectra for the pseudo—spectral and adaptive
pseudo—wavelet methods (note that the two curves are essentially identical).
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significantly reduce the time step needed with the wavelet adapted code, due to the
fact that the retained coefficients are attached to locations of strong vorticity, but
weak velocity. Therefore the CFL (Courant-Friedrich-Lewy) criterium, defining the
largest time step to guarantee stability for an explicit time scheme, can be based on
a much larger spatial step than the smallest scale computed by the adapted wavelet
scheme [85].

6.4.2 Freely decaying turbulence

For the computation of freely decaying turbulence one typically uses a statistical
initial condition, generated by means of Gaussian random numbers and imposing a
given energy spectrum. Here we used a broad band spectrum of the form E(k) =
ck?/(ko® + k8) exp(—k?/k,?) with ko = 10 and k, = 80. The constant ¢ has been
chosen such that the total kinetic energy was equal to 1/2. The maximal resolution
was 2562 numbers of degrees of freedom, with v = 10~2. Using a classical pseudo-
spectral method we calculated the solution up to ¢ = 4 corresponding to 12 initial
eddy turn—over times. The resulting vorticity field, exhibiting coherent structures
and a smooth spectrum with an inertial range, was then taken as initial condition
for the adaptive wavelet calculation and therefore we assigned the time ¢ = 0.
The threshold for the wavelet coefficients was € = 51075, In figure 10 we give
an example of the vorticity field at ¢ = 2 for the pseudo—spectral method and the
adaptive wavelet method with the corresponding wavelet coefficients which have
been computed. As observed in the case of the three vortices the wavelet solution
does not exhibit a visible difference with respect to the spectral method. However,
out of the total 2562 wavelet coefficients, only about 20 % have been used during the
calculation of the solution. The energy spectrum also does not deviate significantly
from the reference, thus we may conclude that all scales are well-resolved with only
1/5th of the possible degrees of freedom. We should mention that the resolution
of the present calculations with 2562 is fairly small. Since for higher resolutions,
larger Reynolds number flows can be computed the compression rate of the wavelet
representation will increase due to the greater intermittency of the flow. Therefore
the impact of adaptive wavelet methods will become particularly attractive for high
Reynolds number flows.

6.4.3 Wavelet—forced turbulence

The numerical simulation of turbulent flows has been performed considering two dif-
ferent regimes: either the freely decaying regime, where the flow is excited initially
and its evolution is computed without any forcing, or the forced regime, where the
flow is excited in such a way that it reaches a statistically steady state for which the
dissipation must be compensated by the forcing. The advantage of the freely decay-
ing regime is that it depends only on the flow’s intrinsic nonlinear dynamics, with
the hope of thus observing a universal behaviour. The problem with this method is
that it never reaches a statistically steady state because energy or enstrophy tends
to decay in time. The advantage of the forced regime is that the turbulent flow
reaches a statistically steady state, but this state depends on the kind of forcing
performed [14], which precludes a universal turbulent behaviour.

Classically, two forcing schemes are used which both operate in Fourier space.
Either a negative dissipation within a given wavenumber band, with a complex
amplification coefficient which depends on the wavenumber, or a white or coloured
noise in time with a prescribed isotropic spectral distribution, strongly peaked in the
vicinity of a given wavenumber, with random phases. Neither of the two schemes
is a satisfactory model because they inject energy and enstrophy locally in Fourier
space and therefore non—locally in physical space. This forcing mechanism is neither
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Figure 10: (a) Vorticity field of the freely decaying turbulence simulation at time
t = 2 for the reference pseudo—spectral method. (b) The vorticity field at ¢t = 2
for the adaptive wavelet method. (¢) The Fourier energy and enstrophy spectra for
the two methods. (d) The corresponding wavelet coefficients used by the adaptive
wavelet method.
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intrinsically related to the flow’s chaotic dynamics, nor simulates the production of
enstrophy on walls and in shear layers, which is local in physical space and therefore
broad-band in Fourier space. Another drawback of such a forcing is that the scale
of the coherent vortices produced by the nonlinear dynamics of the flow is imposed
by the scale at which the forcing is done.

To overcome these drawbacks of the Fourier forcing, a wavelet forcing scheme
has been proposed by Schneider and Farge [185], which excites vortices locally in
physical space and as smoothly as possible (in order to avoid creating any unphysical
discontinuities in the vorticity field), without affecting the background. This wavelet
forcing is based on the fact that vortices produced in two—dimensional turbulent
flows correspond to the strongest wavelet coefficients of the vorticity field while the
remaining weaker coefficients correspond to the residual background flow [81, 70,
71, 79]. Therefore it injects enstrophy only into the strongest wavelet coefficients,
hence in an inhomogeneous way, in order to excite the vortices without affecting the
background flow. This procedure does not interfere with the emergence of vortices
and does not impose them a scale, contrarily to the Fourier forcing. The distribution
and size of the vortices depend only on the intrinsic nonlinear dynamics of the flow.

For the numerical results presented here both energy and enstrophy are kept
steady during more than 60 eddy turn over times. Figure 11(a) displays the vorticity
field in a stationary regime at different instants showing that neither the energy
spectrum (figure 11c) nor the PDF of vorticity (figure 11d) change significantly
in time. The vortices present in the initial condition become more circular and
well isolated during the flow evolution because they are better able to withstand
the mutual strain due to the additional enstrophy injected into them. We observe
that the slopes of the spectra (see figure 11c) are much steeper (close to k)
than the k=3 law predicted by the statistical theory of homogeneous turbulence.
This discrepancy, as observed for other types of forcing [14], confirms the fact that
the spectral behaviour of two—dimensional turbulent flows is not universal, but
instead depends on the forcing. In figure 11(b) we observe that the spatial support
of the active wavelet coefficients decreases with the scale, which reveals a strong
intermittency of the flow. Consequently the vorticity field is efficiently compressed
in a wavelet basis, because only about 20 % of the 1282 coefficients are needed to
represent the flow dynamics. We also show that the PDF of vorticity (figure 11b) is
Gaussian for the weak values, corresponding to the background flow, and presents
non—Gaussian tails for the strong values, corresponding to the vortices.

In the work presented here, we only excite the vortices produced by the flow’s
nonlinear dynamics. We can also use the same wavelet forcing to create new vortices
by injecting enstrophy locally in the regions of the background flow where the strain
(imposed by the coherent structures to the background flow) becomes weaker than
the background vorticity, this in order to simulate the formation of new vortices by
instabilities, such as Kelvin—Helmholtz instability.

7 Conclusion

The main factor limiting our understanding of turbulent flows is that we have not
yet identified the structures responsible for its chaotic and therefore unpredictable
behaviour. Based on laboratory and numerical experiments, we think that vortices
(or coherent structures) are these elementary objects, from which we may be able
to construct a new statistical mechanics and define new equations appropriate for
computing fully developed turbulent flows.

The quasi—singular vortices encountered in turbulent flows are, by their nature,
very rare. In fact, the Cafarelli, Kohn and Nirenberg theorem [33] shows that
singular structures, if they exist, must be of Hausdorff measure one in space—time.
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Figure 11: Temporal evolution of the wavelet—forced turbulence simulation. (a) The
vorticity field at ¢ =0, 60, 120. (b) The wavelet coefficients used at ¢ =0, 60, 120.
(¢) The Fourier energy and enstrophy spectra at ¢ =0, 60, 120. (d) The PDF of
vorticity at ¢ = 0, 60, 120.
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Most of the statistical diagnostics presently used to analyse turbulent flows are
low order statistics and thus insensitive to rare events, while the effect of coherent
structures appears only in the higher order statistics. An example of this is the fact
that the two—point structure function follow Kolmogorov’s 1941 law (which assumes
a homogeneous structureless and non—intermittent flow), while the higher order
structure functions depart strongly from this law. This deviation is due to the fact
that turbulent flows are highly intermittent, and we think that this intermittency is
due to the nonlinear interaction of coherent vortices, which correspond to strong but
rare events. To efficiently analyse the role of coherent structures in turbulent flows
one requires either a high order statistical method or some conditional averaging.

Using a wavelet representation instead of a Fourier representation minimizes the
restrictions on the basis functions enlarging them from Sobolev to Hélder and Besov
spaces. Moreover, the Fourier spectrum used by the present statistical theory of
turbulence is not the appropriate way to analyse the physical structure of a turbulent
flow because it averages over space and thus loses all spatial information (which is
present only in the phase of the Fourier coefficients). Since the Fourier spectrum
is by definition the modulus of the Fourier transform of the two—point correlation
function, the phase is lost. Furthermore, the Fourier energy spectrum is sensitive
to only the strongest isolated singularity in the flow, and even then can give no
information about the form or location of this singularity. In short, Fourier space
analysis is unable to disentangle coherent structures from the rest of the flow.

The complementary simultaneous space and scale information provided by the
wavelet representation makes it an appropriate tool for identifying and analysing
coherent structures in turbulent flows. The wavelet transform can be used to seg-
ment the vorticity field into coherent and incoherent components as the first stage in
a conditional sampling algorithm. Such a segmentation method respects Galilean
invariance because it is performed on the vorticity field and not on the velocity
field, which loses Galilean invariance. A local wavelet analysis can also give the
strength and form of all quasi—singular isolated vortices and separate them from
the background flow.

Different wavelet techniques must be used depending on whether the flow con-
tains oscillating (e.g. spiral) or non—oscillating (e.g. cusp) type singularities, and
whether it contains isolated (e.g. a single cusp or spiral) or dense (e.g. fractal)
distributions of singularities. For example, the current wavelet—based methods for
determining the singularity spectrum of a multifractal work only if the signal does
not contain oscillating singularities. Turbulence may contain both types of singular-
ities in either dense or isolated distributions. It is therefore important to determine
from the beginning whether a given turbulence signal contains oscillating singulari-
ties and how these singularities are distributed. This classification is possible using
a wavelet—based diagnostic.

In section 3 we reviewed the wavelet—based methods for detecting and analysing
the singular structure of a signal. We saw that these methods are useful, not only
because they provide new information which cannot be obtained using other meth-
ods, but also because they formally unify a wide range of previously disparate ap-
proaches. For instance the wavelet—based method of calculating the structure func-
tions unifies their analysis with the calculation of energy spectra and the strength
of local singularities. Furthermore, wavelets play the role of ‘generalized boxes’ in
a new form of the standard box—counting algorithm used to estimate fractal di-
mensions. This algorithm brings out the intimate relationship between structure
functions and multifractals. These techniques have been applied to analyse turbu-
lent signals.

In section 4 we showed that wavelet analysis has been an essential tool for
identifying coherent structures as phase—space regions correlated in both space and
scale, and for studying their scaling properties. This method has helped to relate the
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intermittency of turbulent flows to the presence of organized coherent structures,
and explained why the predictions of the statistical theory of turbulence are not
verified for high—order statistics. The wavelet representation has also been used to
compute the transfers of energy and of enstrophy between coherent and incoherent
components of turbulent flows. Wavelet extraction of coherent structures has shown
that they have non—Gaussian one—point PDFs, while the background has Gaussian
one—point PDF's.

In section 5 we reviewed several applications of wavelets turbulence modelling.
In particular, we showed that the wavelet representation, associated with nonlin-
ear filtering, extracts the coherent structures in a computationally efficient way.
Turbulent motions are non—separable in the Fourier representation, while a wavelet
representation is able to provide such separability. Based on the analysis mentioned
above, we expect a separation in wavelet coordinates between organized structures
(having non—Gaussian statistics) to be explicitly computed, and background flow
(having Gaussian statistics) to be modelled by an appropriate stochastic process.
This decomposition may be the basis of a new way of numerically simulating turbu-
lent flows and possibly other kind of intermittent phenomena having similar statis-
tics.

In section 6 we summarized the progresses that has been made in actually com-
puting partial differential equations in wavelet space. Numerous promising exper-
iments have been carried out using wavelets on Burgers’ equation in one or two
dimensions, heat equation or Stokes equation in two dimensions and Navier—Stokes
equations in two dimensions. All these experiments have shown that wavelet ap-
proaches are valid, although they are still computationally expensive.

In conclusion, we think that the wavelet functional representation may be the
proper tool for building a statistical mechanics of turbulence based on the identi-
fication of elementary dynamical structures from the observational data we have.
This theory may replace the present Fourier-based statistical theory of turbulence
which relies on the symmetries of the Navier—Stokes equations, but is unable to
treat near—wall regions where turbulence is produced by instabilities. We are now
convinced that the Navier—Stokes equations are not the practical model equations
to compute large Reynolds number flows. Indeed in this limit, there is probably
some symmetry breaking associated with the production of coherent structures out
of the random background flow in shear layers.

Turbulence research is a kind of tragi-—comedy—tragic due to its military (atomic
bomb, missiles, fighter airplanes) applications—and comic because at each gener-
ation we seem fated to rediscover old ideas. For instance, our understanding of
dissipation and turbulence modelling is the same as what Richardson was suggest-
ing 68 years ago when he wrote ‘Diffusion is a compensation for neglect of detail.
By an arbitrary choice we try to divide motions into two classes: (a) Those which
we treat in detail. (b) Those which we smooth away by some process of averaging’
[177], and the program we develop corresponds to the prescription for turbulence
research proposed 48 years ago by Dryden when he wrote: ‘It is necessary to sep-
arate the random processes from the non—random element’ [60]. This corresponds
precisely to what we do: we split each flow realization between rare events out
of statistical equilibrium (the coherent vortices) that we compute as a nonlinear
dynamical system, and random events in statistical equilibrium (the background
flow produced by the nonlinear interactions between coherent vortices) which can
be modelled by an equivalent stochastic process.

Wavelets, as a new mathematical tool, bring new insights to evaluate current
methods and we hope that they will lead to a better understanding of turbulent
flows. But, knowing the past difficulties encountered in this field, we should not
be overly optimistic, nor should we oversell wavelets. As Robert Sadourny likes to
say ironically: ‘Wavelets? You mean this new approach which will waste another
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20 years of turbulence research!’.
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