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Combining deterministic and statistical approaches to 
compute two-dimensional turbulent flows with walls 

M. Farge, N. Kevlahan, C. Bardos, K. Schneider 

1 Research programme 

'Although this may seem a paradox, all exact science is dominated 
by the idea of approximation' (Bertrand Russell). 

We are searching for the best approximation to compute fully-developed two
dimensional turbulent flows. Fluid mechanics is governed by the Navier-Stokes 
equations, which are entirely deterministic. Fully-developed turbulence corre
sponds to very large Reynolds number flows (for which the micro-scale Reynolds 
number Re is larger than 104 ) and is the regime where the nonlinear advective 
term of Navier-Stokes equations strongly dominates the linear dissipative term. 
In this limit, the solutions to the Navier-Stokes equations are highly chaotic and 
we are unable to integrate them. Therefore, in order to compute fully-developed 
turbulent flows we need to combine a deterministic numerical integration with a 
statistical model. In this paper we propose a possible solution to this problem, 
based on the wavelet representation. 

The classical method of computing fully-developed turbulent flows is based 
on Reynolds averaging: in each realization the flow is separated into a mean part 
and a fluctuating part using a suitable averaging procedure. Such a separation 
is necessary because the huge number of degrees of freedom in a high Reynolds 
number turbulent flow prohibits a direct numerical simulation (DNS). The goal is 
to calculate the evolution of the mean part in detail using a deterministic equation 
and to design a statistical model which simulates the effect of the fluctuating part 
on the mean. However, because the Navier-Stokes equations are nonlinear, we 
must address the closure problem, i.e. the equations for the nth order moment 
depend on the n+ lth order moment. Thus this method requires that the statistics 
of the fluctuating part be known completely. The closure problem can be solved 
if the statistics are Gaussian, since in this case all higher-order even moments 
can be expressed in terms of the second order moments and all odd moments 
are zero. Therefore the fundamental difficulty in turbulence is to find an averaging 
technique that produces a fluctuating part with Gaussian statistics. Unfortunately, 
the classical averaging techniques (e.g. separation into large scale and small scale 
eddies used in Large Eddy Simulation) do not guarantee this. We will propose 
one such averaging procedure that overcomes the closure problem, based on the 
wavelet-representation of the vorticity field. 

In this paper we focus on two-dimensional turbulence, but our results could be 
extended to three-dimensional turbulence. From a physical point of view the two-
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dimensional approximation is relevant for studying large-scale geophysical flows, 
due to the combined effect of stable stratification and Earth's rotation. From a 
mathematical point of view there are existence, uniqueness and regularity theo
rems for the two-dimensional Navier-Stokes equations, which are not yet available 
in three dimensions. These theorems are necessary to validate the numerical proce
dure we use to solve Navier-Stokes equations. Therefore, from a numerical analysis 
point of view, numerical integration is better justified for two-dimensional turbu
lent flows than for three-dimensional turbulent flows. Moreover, the existence of an 
inertial manifold has been proven for two-dimensional turbulent flows, and upper 
bounds for the dimension of the attractor have been given, but this is still an open 
problem for three-dimensional turbulent flows. A final argument justifying our in
terest in two-dimensional turbulent flows is that, according to the usual estimation 
the minimal number of degrees of freedom N necessary to compute fully-developed 
turbulent flows without a model, namely by DNS, scales as Re in two dimensions 
and as Re9/ 4 in three dimensions. Therefore using DNS we are able to compute 
much larger Reynolds number flows in two dimensions than in three dimensions. 
For two-dimensional turbulence we have already reached the fully-developed tur
bulent regime without resorting to any ad hoc turbulence models, but this is not 
yet the case for fully-developed three-dimensional turbulence. 

2 Coherent vortex eduction 

Since 1984 we have proposed using the wavelet representation to analyze, model 
and compute fully-developed turbulent flows. We have shown that the strong 
wavelet coefficients correspond to the coherent vortices, while the weak wavelet 
coefficients correspond to the incoherent background flow (for 2D turbulence see 
Farge and Rabreau 1988, Farge and Sadourny 1989, Farge, Holschneider and 
Colonna 1990, and for 3D see Farge, Meneveau, Guezennec and Ho 1990, Farge 
1992). Both components are multiscale and therefore cannot be separated by 
Fourier filtering. We have developed a method, inspired by Donoho's denoising 
technique (wavelet shrinkage see Donoho 1993), to separate coherent vortices from 
the background flow (Farge, Schneider and Kevlahan 97). To extract the coherent 
vortices we reconstruct the vorticity field from its wavelet coefficients, retaining 
only those larger than a threshold value WT = (2Z loglO N) -1/2, which depends 
on Z the total enstrophy and N the resolution without any ad hoc adjustable 
parameter. Figure 1 shows an example of this separation applied to a vorticity 
field which has been computed at a resolution a 2562 . Only 0.7% of the wavelet 
coefficients correspond to the coherent vortices, which have the same non-Gaussian 
Probability Distribution Function (PDF) as the total field, while the remaining 
99.3% weaker wavelet coefficients correspond to the incoherent background flow, 
which has a Gaussian PDF. Using the wavelet representation higher resolutions 
produce stronger compression ratios. 

We separate each turbulent flow into: 
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• A low-dimensional dynamical system out of statistical equilibrium, which we 
can compute with as little approximation as possible, using a deterministic 
equation. 

• A high-dimensional dynamical system which has reached a statistical equi
librium state, for which we can compute averages that can be modelled by 
a Gaussian stochastic process. 

In order to perform this separation we assume that there are two kinds of 
elementary motions characteristic of two-dimensional turbulent flows: 

• Self-organized vortices, which are dynamically stable and each vortex belongs 
to an elliptic region and is characterized by the existence of a monotonic 
coherence function w=F( 'IjJ). These vortices are out of statistical equilibrium 
because the encounters with other vortices are too rare to produce enough 
mixing to generate an equilibrium state. The one-point PDFs of the coherent 
vortices are non-Gaussian and their entropy evolves over time, which means 
that we cannot rely on the Central Limit Theorem to define averages. This 
means that we cannot discard the phase information of the vortices (Le. 
their positions) and we should therefore compute their motions with as little 
approximation as possible. 

• Incoherent background flow, made of one-dimensional vorticity filaments 
which are dynamically unstable (they belong to hyperbolic regions and are 
stretched in one direction and compressed in the orthogonal direction) and 
have reached statistical equilibrium (because the strain imposed by the co
herent vortices on the background flow inhibits the formation of new coherent 
vortices and mixes the filaments). Because the one-point PDFs of the back
ground flow are Gaussian and entropy has reached its maximum we can rely 
on the Central Limit Theorem to define averages and discard the phase in
formation (namely the spatial distribution of the vorticity filaments). Only 
its mean and variance are necessary to describe the stochastic effect the 
background exerts on the coherent vortices. 

We have shown that the incoherent background flow is slaved to the coherent 
vortices, due to their straining which inhibits the development of any nonlinear 
instability in the background flow (Kevlahan and Farge 1997). From this result we 
have conjectured that the number of coherent vortices may saturate to a constant 
number when the Reynolds number is sufficiently large to produce enough vortices 
in boundary layers in order to inhibit any instability which would otherwise form 
new vortices in the bulk of the flow. We have shown that both coherent vortices and 
the incoherent background are multiscale, and therefore we propose the wavelet 
representation to compute their evolution. This is because the wavelet basis is scale 
invariant (being based on the affine group), and is thus better suited to compute 
turbulent flows than the Fourier basis which is wavenumber invariant but not 
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scale invariant (being based on the Weyl-Heisenberg group). Similarly, the wavelet 
basis is preferable to a pure grid point representation since a grid point basis is 
translation invariant, but not scale invariant. 

3 Coherent Vortex Simulation 

We are presently developing a new method to compute fully-developed two
dimensional turbulent flows, which is based on a wavelet phase-space segmentation 
(Farge et al. 1992, Farge et al. 1996, Farge et al. 1997) and which uses the wavelet
based Navier-Stokes solver designed by Jorgen Frolich and Kai Schneider (Frolich 
and Schneider 1996). This method computes the dynamics of the coherent vortices 
with a limited number of wavelet modes, keeping only the most excited ones which 
correspond to coherent vortices, and re-mapping the wavelet basis at each time 
step. We have compared simulations using these wavelet techniques with stan
dard spectral simulations and nonlinearly filtered spectral simulations (Schneider, 
Kevlahan and Farge 1997). The results showed that the wavelet method is very 
accurate and require fewer active modes than spectral methods. Moreover, the 
aliasing errors remain localized to regions of strong gradients, in contrast to the 
Fourier representation which spreads aliasing error over the entire solution. One 
can always reduce aliasing errors by locally adding more wavelet modes to improve 
the resolution where needed. 

We have shown that the number of active wavelet modes is approximately 
constant in time, even during intense nonlinear interactions, whereas the number 
of active Fourier modes peaks when the interactions are more intense and strongly 
excite small scale. The discarded coefficients, which correspond to the incoherent 
background flow and have a Gaussian one-point PDF for velocity and vorticity, 
should be modelled statistically in order to take into account their effect on the 
coherent vortices. We can either model them by a stochastic forcing having the 
same statistical behaviour, compute the linear equation characterizing their mo
tions, or design a one-point turbulence model (such as Boussinesq, Smagorinsky 
or k-E). The justification for this procedure is that the coherent vortices are not 
numerous enough and their encounters are too rare events to have reached a sta
tistical equilibrium state, and therefore we have to compute their dynamics with 
a deterministic method. On the contrary, for the well-mixed background flow we 
can assume stationarity, homogeneity and ergodicity in order to define a statistical 
equilibrium state from which we can design an appropriate statistical model. 

4 Wall effect 

4.1 Mathematical analysis 

In two space dimensions and for any finite time both the solutions of the incom
pressible Navier Stokes equation and of the incompressible Euler equations are 
well controlled for smooth initial data. This result is true for a solution defined 
either in the whole space, in a periodic box, in the interior of a vessel or around 
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an obstacle. In the last two cases the fluid domain is denoted by n, the boundary 
of this domain is denoted an and the outward unit normal to this boundary is de
noted by ii. Some boundary conditions have to be assumed. The natural boundary 
condition for the Navier-Stokes equation is the viscous boundary condition 

u"oo = 0 (1) 

and for the Euler equation it turns out to be 

u" . ii, (2) 

which means that the fluid does not penetrate or leave the domain. 
The viscous boundary condition is a natural approximation of the effect of 

a 'rough boundary'. This can be seen as follows. The action of a rough boundary 
can be described at the level of the Boltzmann equation with the introduction of 
a scattering kernel R(v, Vi). Then an asymptotic analysis, with a Knudsen number 
and a Mach number both of the order of E -+ 0 gives a boundary condition for 
the macroscopic equation of the form u = O(E) on the boundary. For the Euler 
equation the tangential component of the velocity is not usually equal to zero. 
Therefore when the viscosity goes to zero the quantity 

(3) 

goes to a non-zero value. The solution cannot remain uniformly smooth near the 
boundary and this implies that some boundary layer must appear. Since the prob
lem is nonlinear, in many unstable cases this layer of strong vorticity does not 
remain confined near the boundary, but instead moves into the interior of the do
main. Such a situation corresponds to detachment of the boundary layer. This im
plies that the solution u" of the Navier Stokes equation which remains uniformly 
bounded in energy norm may not converge to a solution of the Euler Equation 
(Bardos and Ghidaglia 1998). The fact that the u" converges in the weak sense in 
the space 

lS~c(~t;lS2(n)) 

to a function u does not implies the relation 

Hilbert space theory shows that when the above relation is not valid one has 

limo(ut ® ut) - (ui ® uj ) = Rij ,,--> 

(4) 

(5) 

(6) 

with Rij denoting a symmetric positive tensor, and thus the limit of the Navier 
Stokes equation may not be the Euler equation, but rather the equation: 

au at +V'(u®u)+V'R= -V'p, V'·u=O (7) 



168 M. Farge, N. Kevlahan, C. Bardos, K. Schneider 

R plays the role of the Reynolds tensor and it is interesting to notice that in this 
case its appearance is due only to the fact u is a "weak limit" of solutions of the 
Navier Stokes equation with viscous boundary condition. No separation of scale 
and no introduction of a family of solutions nor of ensemble averaging is needed. 
It is possible that the region where R is not zero (which is not necessarily confined 
near the boundary) is the turbulent region. 

With the divergence free condition the tensor R, which is called the 'defect 
measure', can be chosen to be symmetric and with zero trace. Such a property is 
also true for the strain tensor S(u) therefore one can write 

R = IJs(x, t)S(u) + IJT(X, t)T(u) (8) 

with IJs(x, t) and IJT(X, t) scalar functions and T orthogonal to S (for the canonical 
scalar product). Even if no space invariance is present, it may be possible that the 
defect measure, which represents a fluctuation, is rotationally invariant. In this 
case, the formula (8) should reduce to the formula 

R = IJs(x, t)S(u) (9) 

leading in (7) to a turbulent diffusion provided that the function IJs(x, t) is pos
itive. Such a property should be true in 'reasonable' situations; it is not a direct 
consequence of the positivity of the tensor R. In fact at present there is no direct 
way of constructing this 'enhanced diffusion'. The above consideration should only 
be used as guideline for the study of two dimensional turbulent flows generated by 
viscous boundaries. Following Chorin (Chorin 1996) one could introduce a frac
tional step method with a diffusion equation, which would generate vorticity from 
the boundary, and a treatment of the incompressible Euler equation. To study the 
propagation of the vorticity this may be similar to the decomposition between the 
coherent vortices and the incoherent background flow we have proposed in this 
paper. 

4.2 Physical modelling 
Although DNS are the only methods able to compute turbulent flows without re
sorting to ad hoc models, they are currently only of academic interest and have not 
proved directly useful to engineers. This is due to two drawbacks. First, as men
tioned above, such simulations cannot reach the high Reynolds numbers typical of 
most flows of interest to engineers. We hope that the combination of wavelet-based 
numerical methods for the Coherent Structure evolution and statistical modelling 
of the Gaussian background will overcome this limitation. Secondly, DNS are usu
ally limited to simple boundary conditions (e.g. periodic boundary conditions) and 
geometries (e.g. a rectangular prism). The most realistic DNS manage to compute 
flow in a rectangular channel with periodic boundary conditions in the streamwise 
and spanwise directions and no slip conditions in the perpendicular direction (us
ing Chebyshev polynomials). Obviously, a DNS which computes flow in a box with 
periodic boundary conditions is not useful for calculating the flow over a wing! 
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The problems of treating no-slip boundary conditions and complicated ge
ometries at high Reynolds numbers are both theoretical and numerical in nature. 
The problem is difficult theoretically because the only mathematical theory avail
able for flow over a wall (e.g. Prandtl's law of the wall) fails as soon as the bound
ary layer detaches. Unfortunately, the boundary layer detaches as soon as the flow 
becomes turbulent, which severely limits the use of boundary layer theory for de
scribing fully turbulent flow over a wall. There are two main classes of numerical 
difficulties, the first related to matching the correct boundary conditions at the 
wall (or edge of the computational domain) and the second related to calculating 
the flow around complicated shapes. The turbulent boundary layer also demands 
very high resolution since the boundary layer thickness decreases with Reynolds 
number according to 8 ex Re- 1/ 2 • 

Matching boundary conditions requires that the basis function used to rep
resent the solution have the correct behaviour near the wall (e.g. that they are 
zero at the wall, as is the case for the Chebyshev polynomials mentioned above). 
This limits the choice of basis functions and means that a set of basis functions 
that is very efficient and accurate numerically may not be able to be used (this 
is the reason Chebyshev polynomials were used for the channel flow instead of 
the more efficient Fourier basis functions). Wavelets can be constructed so as to 
have the desired properties at the boundaries, and recently an efficient algorithm 
for constructing wavelets over an interval on an irregular grid has been developed 
(Sweldens 1996). The fact that wavelets can be easily constructed on irregular 
grids allows them to increase resolution near the wall in order to fully resolve the 
thin boundary layer of a fully-developed turbulent flow. 

Figure 1. (Next two pages.) 
Wavelet compression of vorticity: (a) The vorticity. (b) The modulus of velocity. (c) 
The stream function. (d) The coherence scatter plot. (e) Cut of vorticity. (f) PDFs of ve
locity and vorticity. (g) Energy spectrum. The solid lines correspond to the total vorticity 
w, the dashed lines to the coherent part w>, and the dotted lines to the incoherent part 
w<. We observe that only 0.7% of the total number of wavelet coefficients are sufficient to 
represent all coherent vortices, while the remaining 99.3% correspond to the incoherent 
background flow, which is much weaker and homogeneous. The coherent vorticity w> 
contains 94.3% of the total enstrophy. Moreover, the velocity associated with the coher
ent vortices is quasi-identical to the total velocity and contains 99.2% of the total energy. 
As for the coherent stream function, '¢>, it is identical to the total stream function '¢. 
The fact that the scatter plot of the background, F< such that w< = Fd'¢d, is isotropic 
proves that our method has extracted all coherent vortices. The PDFs of velocity and 
vorticity show that only 0.7% of the wavelet coefficients are sufficient to capture the non
Gaussian one-point statistical distributions of vorticity and velocity, while the remaining 
99.3% correspond to a Gaussian distribution. The energy spectrum, on the contrary, is 
dominated at small scales by the incoherent background flow and therefore is insensitive 
to coherent vortices because they are too rare to affect the energy spectrum (which is 
the Fourier transform of the two-point correlation function). 
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The second problem, that of calculating flow around complicated objects, 
normally requires the calculation of a specially adapted grid or mesh, that follows 
the contours of the object and increases resolution where necessary (e.g. near sharp 
corners). Algorithms for generating such grids for finite element codes exist, but 
they are not suitable for use with DNS. Furthermore, such grid-based approach are 
impractical for objects which change their shape over time (e.g. a swimming fish, 
or a pumping heart). Grids adapted to complex geometries are clearly impossible 
for Fourier-based methods and are impractical for wavelet-based methods. Ideally, 
one would like to be able to calculate physically realistic boundary conditions for 
complicated (possibly time-dependent) geometries while still using a Cartesian 
grid to represent the solution. In this case the relevant equations are solved over a 
Cartesian 'virtual' domain which does not necessarily correspond to the geometry 
of the physical flow. 

If the grid is fixed, the only alternative is to change the equations solved, and 
this is what penalisation methods do. The classic approach is to add an appropriate 
body force to simulate the presence of the obstacle. This approach has been used 
by Peskin (1977) and more recently by Goldstein, Handler and Sirovich (1993). 
The drawback of these methods is that the equations and solution method are 
rather complicated, and, more importantly, there is no mathematical estimation 
of the rate of convergence of the approximate solution to the exact solution. This 
means that one cannot easily estimate the error, or be confident that the solution 
will converge to the true solution. 

A new approach introduced by Angot, Bruneau and Fabrie (1997), based on 
earlier work by Arquis and Caltagirone (1984) supposes that the fluid is a porous 
medium and is described by the D'Arcy equations. The interaction of a fluid with 
a solid is then approximated by letting the porosity go to infinity in the fluid and 
to zero in the solid. Practically, one solves the following equation 

au 1 H(x)u 
- +u·'\7u- -~u+'\7p=--at Re ERe 

(10) 

where H(x) = 1 in the solid and H(x) = 0 in the fluid. It can be shown theoreti
cally that the error in this approximation decreases like E3/ 4 (in practice the error 
is found to be only about (1). This 'penalisation by artificial porosity' approach 
allows the flow around complicated objects (which may change shape over time) to 
be easily computed by changing the mask function H(x). By combining this treat
ment of complicated geometries with the Coherent structure/random background 
simulation approach proposed above we hope to develop simulation methods for 
high Reynolds number flows that will be useful to engineers. 
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