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We decompose turbulent flows into two orthogonal parts: a coherent, inhomogeneous, non-Gaussian
component and an incoherent, homogeneous, Gaussian component. The two components have
different probability distributions and different correlations, hence different scaling laws. This
separation into coherent vortices and incoherent background flow is done for each flow realization
before averaging the results and calculating the next time step. To perform this decomposition we
have developed a nonlinear scheme based on an objective threshold defined in terms of the wavelet
coefficients of the vorticity. Results illustrate the efficiency of this coherent vortex extraction
algorithm. As an example we show that in a 286mputation 0.7% of the modes correspond to the
coherent vortices responsible for 99.2% of the energy and 94% of the enstrophy. We also present a
detailed analysis of the nonlinear term, split into coherent and incoherent components, and compare
it with the classical separation, e.g., used for large eddy simulation, into large scale and small scale
components. We then propose a hew method, called coherent vortex simyGxis)) designed to
compute and model two-dimensional turbulent flows using the previous wavelet decomposition at
each time step. This method combines both deterministic and statistical appro@c&asce the
coherent vortices are out of statistical equilibrium, they are computed deterministically in a wavelet
basis which is remapped at each time step in order to follow their nonlinear maiigrince the
incoherent background flow is homogeneous and in statistical equilibrium, the classical theory of
homogeneous turbulence is valid there and we model statistically the effect of the incoherent
background on the coherent vortices. To illustrate the CVS method we apply it to compute a
two-dimensional turbulent mixing layer. @999 American Institute of Physics.
[S1070-663199)04608-3

I. INTRODUCTION present a wavelet-based method which performs such a sepa-
ration. The non-Gaussianity of turbulent fields results from

In this article we introduce a new approach for comput-th i d . f Navier—Stok fi hich
ing turbulence which is based on the observation that turbu- € noniinear dynamics ot Navier—>tokes equations, whic

lent flows contain both an organized pétie coherent vor- produces stropg .gradients and orgaqized vortices. We then
tice and a random parthe incoherent background flow checka posteriorithat the non—Gaus_S|an components actu-
The direct computation of fully developed turbulent flows &lly correspond to the coherent vortices. .

involves such a large number of degrees of freedom that itis  Of course this approach is only of interest if the Gauss-
out of reach for the present and near future. Therefore som@n Part(to be modeleylis responsible for the vast majority
statistical modeling is needed to drastically reduce the comf degrees of freedom and if the coherent vortex j@rte
putational cost. The problem is difficult because the statisticomputed contains a small number of degrees of freedom
cal structure of turbulence is not Gaussian, although mosthich are responsible for most of the nonlinear tefand
statistical models assume simple Gaussian statistics. The afyence the cascagieNVe have found this to be the case when
proach we propose is to split the problem in tw@: the  we apply our method to two-dimensional turbulence. Note
determinist computation of the non-Gaussian components dhat, although we apply our method in two dimensions, it can
the flow and(ii) the statistical modeling of the Gaussian also be applied to three-dimensional flows. In fact, the dy-
componentgwhich can be done easily since they are com-namics of two- and three-dimensional turbulence may not be
pletely characterized by their mean and varignc@&/e  as different as is usually assumed, since in two dimensions
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vorticity gradient stretching and palinstrophy productionare well defined, thanks to the central limit theorem which

plays a dynamical role similar to that of vortex stretchingremains valid as long as the coherent vortex strain inhibits
and enstrophy production in three dimensions. Moreoverny nonlinear instability from developing in the incoherent

Biot—Savart's law, Kelvin's theorem, and Helmholtz’s theo- background flow.

rem are valid regardless of the dimension, and they form the If one can guarantee that the background flow has a
basis of our computational scheme, which is written usingGaussian probability density functigfPDP), its total statis-

the vorticity—velocity formulation of the Navier—Stokes tical effect can be calculated from its mean and variance. All

equations. remaining components exhibit a non-Gaussian PDF and we

Coherent vortices are localized concentrations of vorticcheck that they do indeed correspond to the coherent vorti-
ity, tending to vortex spots in two dimensions and to vortexces. In fact, we propose to define the incoherent background
tubes in three dimensions. They are produced by the nonlirflow as those components associated with a Gaussian PDF,
ear dynamics of incompressible Navier—Stokes equationgind the coherent vortices as all other remaining components.
The main difference between two and three dimensions is The paper is organized as follows. In Sec. Il we briefly
that vortices are much more stable in two dimensions due teecall the essential features of wavelets and describe the al-
the lack of vortex stretching. The velocity associated with agorithm used to separate the Gaussiarcoherent back-
coherent vortex is less local than the vorticity, because of thground and non-Gaussiaticoherent vortex parts of the
Biot—Savart kernel. Therefore, as soon as coherent vorticdow. We propose a new wavelet-based method to compute
are present in turbulent flows, one achieves higher compregurbulent flows (the coherent vortex simulation method
sion by filtering the vorticity field rather than the velocity which is presented in Sec. Ill. The results are discussed in
field, since the vorticity field is more intermittent and henceSec. IV and the paper ends with some conclusions in Sec. V.
better suited for adaptive computation. This motivates the
choice of the vorticity—velocity formulation of Navier— || COHERENT VORTEX EXTRACTION BASED ON
Stokes equations instead of the velocity—pressure formularHEIR NON-GAUSSIANITY
tion.

In the case of two-dimensional flows, we have shbwn
that the strain imposed by the coherent vortices on the back- Inspired by the work of Grossmann and Moretye
ground flow inhibits the development of nonlinear instabili- have proposed using wavelets to study turbulent fidfvs.
ties and the formation of new vortices in the backgroundWavelets are functions which are well localized in both
This led us to conjecture that, for large Reynolds numbephysical and spectral space. In addition, their smoothness
flows, the density of coherent vortices should be roughly(which determines the number of times they can be differen-
constant(and is probably quite smalllf this conjecture is tiated and their number of vanishing momeitéshich deter-
verified, it will guarantee that the number of resolved modesnines the number of times they can be integrategh be
of our method will remain bounded for any Reynolds num-controlled. They can efficiently represent data which is nei-
ber. However, this inhibition is not present if coherent vor-ther completely particle-like nor wave-lik@.g., multiscale
tices have not yet formed, which is the case in wall regiondocalized structures Furthermore, fast wavelet algorithms
for bounded flows, or during the early evolution of un- exist and wavelet bases are available for von Neumann or
bounded flows initialized with random conditions. Dirichlet boundary conditions. The characteristics men-

In this paper we propose a new way of computing andioned above mean that wavelets are suitable for detecting
modeling turbulence, called coherent vortex simulationand analyzing the coherent vortices that emerge out of ran-
(CVS), which is based on the conjecture that coherent vortidom Gaussian initial conditions, or are created in boundary
ces are generic in incompressible turbulent flows, in two andayers.
three dimensions. It assumes that only the degrees of free- The shape of these vortices results from a competition
dom attached to the coherent vortices are deterministicallpetween the Biot—Savart kerngised to compute to the non-
active and need to be computed exactly. In two dimensioninear advection term of the Navier—Stokes equgtanmd the
vortices correspond to the elliptical regions of the flow whereheat kernelused to compute the linear dissipation tégrif
rotation dominates strain and thus are not well mixed. Theyne considers initially a Gaussian random field, then the
experience strain and mixing only during close encounter8iot—Savart kernel selects the strongest local maxima
with other vortices, which results in vorticity filament emis- (namely the tails of the vorticity PDF which correspond to
sion and vortex merging or tearing. However, these eventthe strongest singularities, in the sense 6idéd) and lo-
are too rare to allow the coherent vortices to reach a statissally organizes the flow into vortices whose centers corre-
tical equilibrium state, and thus the central limit theoremspond to these initial local maxima. As a result, there are also
does not apply so that meaningful averages cannot be demall scales in the vortex cores, which we have shown using
fined. Therefore, one is forced to compute their evolution aswo-dimensional  continuous  wavelet analyses of
exactly as possible, in particular their shape and position. Otwo-dimensionat* and three-dimensiorfaturbulent flows.
the other hand, we suppose that all remaining degrees @onsequently the coherent vortices are multiscale structures,
freedom have reached a quasi-equilibrium state and thereforehich are excited all along the inertial rangee., from the
can be modeled statistically, because they are attached to th@egral to the dissipative scales
well-mixed background flow, which corresponds to hyper-  The Biot—Savart kernel is an integral operateith 1/r
bolic regions where strain dominates rotation. Their averagedecay in dimension two It is therefore global in physical

A. Wavelet representation to study turbulent flows
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space and couples all coefficients of a collocafios, grid-  vorticity field which correspond to the centers of coherent
point) projection of the fields. Using a wavelet representationstructures.
this operator becomes increasingly localized at small scale, We have also tried"*?to use orthonormal bases made of
due to the vanishing moments of the wavelet. The nonlineaeither wavelets, wavelet packets, or adaptive local cosines
term of the Navier—Stokes equatio(® is optimally local- (Malvar wavelets to separate coherent vortices from back-
ized in a grid-point projection, because the collocation pro-ground flow. We showed that the local cosine representation
jection commutes with the nonlinear operator. On the condoes not compress the enstrophy as well as wavelets or
trary, the nonlinear term is delocalized in a Fourierwavelet packets. First, it smoothes the coherent structures
projection where it becomes a convolution. It has beerand therefore loses enstrophy, and second, it introduces spu-
showrl that using wavelets one recovers the locality of therious oscillations in the background, due to the loss of the
nonlinear operator at small scales. MeneVéms studied the phase information attached to the weak coefficients. These
dynamics in space and scale of three-dimensional turbulerdtrawbacks are shared by any Fourier or windowed Fourier
flows, and the associated energy transfers, by projecting thepresentation, because each Fourier component contains
Navier—Stokes equations onto an orthogonal wavelet basisnonlocal information and we need the phase information of
all Fourier components to reconstruct precisely a given re-
gion of the field. Therefore no Fourier technique can prop-
erly extract coherent vortices, because as the vorticity field is
One needs a method to extract coherent vortices out agfompressed the coherent vortices disappear and become in-
turbulent flows, in order to compute their circulation, spatialcreasingly mixed with the background fldw!? This is why
support, vorticity and velocity PDFs, and study their dynam-we prefer to use wavelet or wavelet packet bases.
ics. However, at present there is no consensus on the precise
definition of a coherent vortex. The only definition which
seems objective is a locally metastable state. In two dimenC. A new wavelet-based vortex extraction method
sions a coherent vortex can be unambiguously characterized

by a functional relation betvv(ien the vorticity and the  coperent vortices which uses the projection of the vorticity
streamfunctiont¥’ in tho(%form w=F(W¥), whereF is called ;44 an orthonormal wavelet basis. This extraction scheme is
the coherence functionOne technique to extract coherent paseq on the assumption that coherent vortices are respon-

vortices from two-dimensional turbulent flows would thus besible for the non-Gaussianity of the PDF of vorticity. There-
to plot the pointwise scatter plot @ versusW and extract  yre it js designed such that the discarded vorticity coeffi-
the branches which can be fitted by some functioriThe  ionts have a Gaussian PDF. This is the oalypriori

points belonging to these branches would correspond 10 10555 mption we make, apart from the choice of the wavelet
cations where the vorticity field>.. is coherent, while the a5 Note that we do not assume any shape or intensity of
scattered points which do not belong to any branch wouldye yortices. The coherent vortices correspond to all modes

correspond to locations in the incoherent background ﬂo"‘femaining after discarding those with a Gaussian PDF. In

w- . In practice this method is not feasible because it rexher words, we define the coherent vortices to be the non-

quires that the computation & be performed in a frame of - 55ssjan part of the vorticity field. Although the method is
reference moving with each coherent vortex. verified here only for a two-dimensional flow, it can also be

~ Other techniques to extract coherent vortices are 1ess Ohjse for three-dimensional flows and analyses of such flows
jective than the one described above because they depend gp, currently in progress.

a threshold value which has to be defirgegriori. The sim-
plest method is to choose a vorticity threshold, for instanc
ec=ZY?with enstrophyZ= 3/ w?dx, and retain as coherent
the regions wher¢w|> e, while the remainder forms the
background flow. The drawback of this clipping method is
that it does not preserve the smoothnesspfind both in-
coherent and coherent fields will contain spurious disconti
nuities which will affect their time evolution and their energy
spectrum. To avoid this problem we suggest replacing th
grid-point representation by a wavelet representation, whic
does not introduce discontinuities and therefore preserves tq
spectral properties of the flow when we truncate in this
wavelet basis.

Since the wavelet transform is invertible, it is always

B. Classical vortex extraction methods

In this paper we propose a new procedure to extract

Our method is inspired by a theorem of Donbhahich
States that the optimal way to denoise a sighakmpled on
N points and perturbed by an additive Gaussian white noise
of variance(n?) (where(-) denotes the averagés to take
its orthonormal wavelet transforrh, and then select only
those coefficients with absolute value larger than the thresh-
old ep=(2(n?)logN)*? before reconstructing the denoised
signal f- . In many casese.g., turbulent signalsit is not
ossible to guarantea priori the Gaussianity of the noise
nd to know its variancén?). Moreover, the statistical
ﬁeory of homogeneous turbulence suggests that the noise
may have some correlation, which corresponds to a scaling
law steeper than for a white noisee., k= *?in three dimen-
sions andk 2 in two dimensions Therefore we propose the
ﬁ}llowing algorithm (the wavelet decomposition and recon-

a filtered version of the field from them. Using this property, struction is explained in Sec. 1D

we have proposéfl using the continuous wavelet represen-
tation to extract coherent vortices by discarding all wavele{1) Decompose the signéinto orthonormal wavelet coeffi-
coefficients outside the influence cories., the spatial sup- cientsf.

port of the wavelefsattached to the local maxima of the (2) Select the coefficients larger than the thresheld
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=(2(f%logN)2, where we overestimate the variance of enstrophy and\ the number of grid points. The advantage of
the Gaussian noise we want to remove, by taking theur method is that this threshold is objective and therefore

variance(f?) of the total signal instead gfn?), there-
fore e;=e¢p .

Reconstruct the signdl. from the wavelet coefficients
|f|>er.

Reconstruct the signdl. from the wavelet coefficients

3
(4)

has no adjustable parameters. The two fields thus obtained,
o~ andw_, are orthogonal, which ensures a separation of
the total enstrophy intd=2-. +Z_ because the interaction
term{w-~ ,w.) is zero.

In Sec. Ill we propose a new method of computing tur-

|?|< e and test Gaussianity by computing the odd mo-bulent flows which is based on the coherent vortex extraction

mentsM . = (f2"" 1), with m=1, 2 or 3, the skewness
S_=(f3)/(f2)%” and the flatnes§ .= (f%)/(f2)? of
the signalf_ reconstructed from the discarded coeffi-
cientsf_.

If Mp<=0, S.=0 and F_=3, f_ is Gaussian and
therefore the remaining paft. is the non-Gaussian de-
noised signal we wanted to extract.

If |S.|>¢ and|F_.—3|>¢, wheree is the prescribed
precision of the algorithm, we do another iterat{start-
ing in (2] with the new threshold e/
=(2(f2)log N)*?, which is based on the varian¢é)

©)

(6)

algorithm we have just described.

[ll. COHERENT VORTEX SIMULATION (CVS)

A. Turbulent flow computation: Direct numerical
simulation versus modeled numerical simulation

In contrast to the statistical theory and to most laboratory
experiments, which deal with?-norm averaged quantities,
numerical experiments deal with nonaveraged instantaneous
quantities. We compute deterministically the evolution of
one flow realization at a time, and perform the desired aver-

of the signal reconstructed from the discarded coeffi-2ges afterwards. There are two ways of computing turbulent
cients of the previous iteration. If further iterations are flows: either by direct numerical simulatio®NS), or by

necessary, we use a new threshejd=3(er+ e7/), in-
termediate between the previous ones, together with
classical bisection type algorithm.

modeled numerical simulatiofMNS).

a In DNS we compute all degrees of freedom of the flow,
whose numbeN increases with the Reynolds number, as Re
in two dimensions and as R&in three dimensions. In this

The iterative process is stopped, either if the discarded coefage poth the nonlinear dynamics and the linear dissipation
ficients are Gaussian, or if there are no Gaussian coefficientg,g fully resolved by computing the time evolution of these

In the second case all wavelet coefficients are retainedy gegrees of freedom. Unfortunately, with present computers
which means that there was no Gaussian noise present in t)&, cannot reach Reynolds numbers larger than a few thou-

signal.

D. Application to two-dimensional turbulent flows

To extract coherent vortices in two-dimensional turbu-

lent flows we take the vorticity field(x,y) as the signal to
be denoised and apply the algorithm described above.

develop w(x,y) as an orthogonal wavelet series from the

largest scald ,,=2° to the smallest scalé,=2""1 (N
=2%)) using a two-dimensional multiresolution analysis
(MRA):>*

o(X,Y) = wq0,0P00dXY)

J-12i-12i-1 3

+5 3 3 S ap

56150 1= =1 el

with ¢ i (}y)= ¢, (x) #;, (y), and
’p]'u,ix,iy(xry):{'pj,ix(x)d’j,iy()/)(/i:1):
¢33, 0,1 (Y)(r=2), ¢j,ix(x)l//j,iy(y)(ﬂz3)}: 2

ffix,iy(XaY): )

sand. Therefore, to compute fully developed turbulent flows
(Re>10% we are forced to use some form of MNS.

In MNS [e.g., unsteady Reynolds averaggtRANS),
large eddy simulation$LES), or nonlinear Galerkin meth-
ods| one supposes that most of the modes can be discarded,

W@rovided that some terfs or some new equatio(s are

added to model the effect of the discarded moftesled
unresolved modes and denoted £] on the retained modes
[called resolved modes and denotedl(]. Ideally, in order

to reduce the computational cost as much as possible, the
number of resolved modé$. should be much smaller than
the number of unresolved modéé$_. Furthermore,N-
should increase more slowly with Re thBindoes to be able

to compute fully developed turbulent regimes, i.e., the large
Re limit. We conjectured that this is the case for the wavelet
representation in two dimensions, because the nuibeof
retained modes is roughly proportional to the number of vor-
tices, which seems to increase more slowly with Re tRan
TheN- resolved modes are then computed deterministically,
while it is assumed that the_ unresolved modes are pas-
sive, namely that there is no nonlinear instability of some

where; ; and; ; are the one-dimensional scaling function ynresolved modes that can grow in such a way that they
and the corresponding wavelet, respectively. Due to the Ofyould deterministically affect the resolved modes. Therefore
thogonality, the scaling coefficients are given B0 it must be ensured that the unresolved modes have reached a
=(w,¢000 and the wavelet coefficients are given by quasi-equilibrium state, characterized by a Gaussian PDF,
Bl i, =(@,yf5 ;). where(.,) denotes thé.*-inner prod-  and are sufficiently decorrelated. In this case it is no longer
uct. necessary to compute the evolution of the unresolved modes
Using the above algorithm, we split the vorticity field in detail because, if they are in Gaussian statistical equilib-
into w~(x,y) and w-(x,y) by applying the threshold rium, they are characterized entirely by their mean and vari-
=(2(w?)logN)?, where(w?)=(w,»)=2Z with Z the total  ance. The model describing the effect of the unresolved



Phys. Fluids, Vol. 11, No. 8, August 1999 Non-Gaussianity and coherent vortex simulation for turbulence 2191

modes onto the resolved modes can then be specified com- For the nonlinear term we use Leonard’'s triple
pletely once the mean and variance of the unresolved modefecompositiort} because the nonlinear term is computed
can be parametrized as a function of the resolved modes. with the same adapted grid as the linear tdim., without

We consider the incompressible two-dimensionaldealiasing. Using (5) and (7) we decompose the nonlinear
Navier—Stokes equation in vorticity—velocity formulation, term of (8) into

dw+V-(wV)—vV20=VxF (wV)-=w-V-+L+C+R, 9
V-V=0, ) where

with F a forcing term and L=(w-Vs)s—w-Vs,
V=ViV-e, (@) C=(wVa)o+(02Vo)-,

whereV+=(— dy,0x), V2 denotes the Green’s function of

the Laplacian, ana is the kinematic viscosity. The above set

of equations is completed by appropriate initial and bounddenoting the Leonard streds the cross stres€, and the

ary conditions. Reynolds stres®, respectively. The sum of these unknown
Using the orthogonal wavelet decomposition we split theterms corresponds to the incoherent stress:

vorticity field into coherent and incoherent components, r=(&V)-—wV_=L+C+R, (10)

R=(0 Vo),

=w-+ . . . . .
WTO>TO< ®) which describes the effect of the discarded incoherent terms

The corresponding velocity fields can be reconstructed usingn the resolved coherent terms. Note that, due to the local-

the Biot—Savart kerngl): ization property of the wavelet representation, the Leonard
Vo=ViV-24 stressl is actually negligible because(V.)-=w-V- .*°
- ” ©6) The filtered Navier—Stokes equatio(® can be rewrit-
V_=ViV ?u_, ten as:
and it follows that w-*+V-(0-V2)—vV?w.=VXF.—V.7r
V=V_+V_. 7) V.V_=0. 11

Since the wavelet decomposition is orthogonal, we have
(0?)=(w2)+(w%). However, the decomposition of the ve- 4o
locity field is only approximately orthogonal, i.e(V?)
=(VZ2)+(V2)+& with e/(VZ<1 (cf. Table I). This is

due to the fact that wavelets are almost eigenfunctions of
Biot—Savart kernel, i.e., their localization in physical spaceC. DNS using CVS

and _in Fourier space is well preserved. Note that for the |t with the CVS method we consider a very small thresh-
Fourier decompositios=0. old, there is no longer any need to model the effect of the
incoherent part because the incoherent stress is then negli-
gible, and in this case CVS becomes DNS. Note that even
B. Principle of CVS when the wavelet threshold tends to zero, the number of
discarded incoherent modes may still be lafgfe Fig. 9 and
Sec. IV H, due to the excellent compression properties of
wavelets for turbulent flows. This is reflected in the fact that
many wavelet coefficients are essentially zero and can there-
fore be discarded without losing a significant amount of en-
strophy(cf. Sec. IVH.
To obtain the coherent variables. andV-. we deter-
ministically integratg11) with 7 =0, since the variables are
non-Gaussian and correspond to a dynamical system out of

' Lo ' statistical equilibrium. We propose to solve these equations
the case for all LES filterée.g., the Gaussian filterWe filter in an adaptive wavelet basi&:17 The separation into coher-

the two-dimensional Navier—Stokes equatid@s using the ent and incoherent components is performed at each time

nonlinear wavelet filter and obtain the evolution equation for : ; .
L i step. The adaptive wavelet basis retains only those wavelet
the coherent vorticityw-. :

modes corresponding to the coherent vortices and it is

w4V - (wV).—rV2w.=VXF_ remapped at each time step in order to follow their motions,
_ (8)  in both space and scale. In fact, this numerical scheme com-

V-V>=0. bines the advantages of both the Eulerian representéiisn

To model the effect of the discarded coefficients, which cor-cause it projects the solution onto an orthonormal basisl

respond to the incoherent stress, we prop@sein LES to  the Lagrangian representatifipecause it follows the coher-

use a Boussinesq ansdtd. Sec. Il D). ent vortices by adapting the basis at each time)step

A detailed analysis of the nonlinear terW-(w-V-)
omposed into wavelet space is provided in Sec. IVF.

We now describe a new method, called coherent vorte
simulation(CV9), to solve the deterministic evolution of the
coherent vorticityw-. , while modeling statistically the effect
of the incoherent vorticityw . . This method is in the spirit
of LES* but in contrast to LES it uses a nonlinear filter that
depends on each flow realizatignsing the wavelet thresh-
olding procedure presented in Sec). IThe wavelet filter
corresponds to an orthogonal projection, implying_() -
=0, and is hence idempotent, i.eq{)~ = w~ , which is not
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TABLE |. Comparison of the statistical properties bf-norm quantities lead to the formation of new coherent vortices by non-
using Fouzrier Iovzlzpass filterilngké=11 m 1) and wavelet thresholding linear instability of the incoherent background flow.

=(2 logN)**=13.75s ). . . .
(&= (2(w7)log) s) (2) To directly model the formation of new coherent vorti-

Fourier Wavelet ces by adding locally to the wavelet coefficients the
# of cofficienta 65536 (100% 65536  (100% amount of cohgrent enstrophy which shouk_j be Frans—
N 484 (0.7% 458 (0.7% ferred from the incoherent enstrophy by nonlinear insta-
N 65052 (99.3% 65078 (99.3% bility. This procedure is similar to the wavelet forcing

N proposed by Schneider and Far§e.

EnergyE=2/|V|2 dx 0591  (100%  0.591  (100%
E. 0.588 (99.49%  0.586  (99.2%
E. 3.3x10°% (0.69%9 2.6x10°3 (0.4% IV. RESULTS
EnstrophyZ= /| w|? dx 9.82  (100%  9.82  (100% In this section we present the separation into coherent
Z- 8.92  (90.8% 9.26  (94.3% and incoherent components applied to a two-dimensional ho-
Z. 090  (92% 056  (5.7% mogeneous turbulent flow. We then show the analysis of the
PalinstrophyP= 1|V w|? dx 725  (100% 725  (100% r_lonlinear terms of the two-dimensional Navi_er—_Stokes_equa-
P 261 (36%) 404 (55%) tions for the coherent and incoherent contributions. Finally,
P 464 (64%) 360 (49%) to illustrate our approach we use the CVS method to com-

pute a two-dimensional mixing layer.

A. Turbulent flow to be analyzed

D. MNS using CVS We consider a two-dimensional homogeneous isotropic

Up to now no modeling has been done, and @8d) is  turbulent flow, forced at wave numbky=4 m™?, consider-
not closed as long asdepends on the incoherent unresolveding the same parameters as the simulation of Legtas!®
terms. To close it we propose two possibilities. We compute its evolution by DNS using a fully dealiased
(1) A Boussinesq ansatz as for the LES metfibdhich  pseudospectral code with Newtonian dissipation. The resolu-
assumes that is proportional to the negative gradient of the tion is N= 256, which corresponds to a Reynolds number of
coherent vorticity:r= — vV w~. with vy a turbulent viscos- 1000. The flow has reached a statistically steady state char-
ity coefficient. The turbulent viscosity;: can be estimated, acterized by the fact that the energy spectrum no longer
either using Smagorinsky’s mod¥l,or taking vt propor-  changes. We analyze one flow realization chosen at time
tional to the enstrophy fluxes in wavelet space, such that=75s (which corresponds to 17 eddy-turnover timekn
where enstrophy flows from large to small scalesis posi-  principle, when the flow is statistically steady, all flow real-
tive, and, where enstrophy flows from small to large scaleszations are equivaleriin the classical statistical sense based
(i.e., backscatt¢r v+ becomes negative. This second methodon L?-norm quantities, such as the energy specjrand we
for estimating the turbulent viscosity is in the spirit of Ger- would obtain the same statistical results with any other real-
mano’s dynamical procedure used for LE'S. ization. We decompose this vorticity field into coherent and
(2) 7can otherwise be modeled as a Gaussian stochastincoherent components, using the algorithm presented in the
forcing term, proportional to the variancé®2) and(V2)  previous paragraph with Battle—Lemaspline wavelets of
computed at the previous time stegthe means(w.) order 6(cf. Fig. 1. We then compare these results with those
=(V.)=0). This modeling is made possible since the timeobtained using a classical decomposition of vorticity, into
evolution of the incoherent background, characterized by théow wave number mode@.e., large eddies as used for LES
time scalet<=(Z<)‘1’2, is much slower than the character- and high wave number moddge., small eddigs before
istic time scald- = (Z-) ~ Y2 of the coherent vortex motions, reconstructing the vorticity field from these two components.
becauseZ.>Z_ (cf. Table ). This behavior of the incoher- In both cases, using either the wavelet decomposition or the
ent background had already been noticed, and discussed Hourier decomposition, the compression ratio is the same:
comparison to Fourier filtering in Refs. 10 and 15. the number of modes retaingde., coherent or low wave
The CVS method relies on the assumption that the inconumber modes denoted)(] represents 0.7% of the total
herent part of the flow remains Gaussian, which is true asumber of mode#\.
long as the nonlinear interactions between the incoherent
modes remains weak. This assumption is valid in regions. Vorticity compression
where the density of coherent vortices is sufficient, because
the strain they exert on the incoherent background flow ther|1I C
inhibits the development of any nonlinearity thérelow- .
: . - and incoherent componenis. . The coherent flow can
ever, there may be regions, although of small spatial supporEje

. . . . reconstructed from only 0.7% of the total number of
where the density of coherent vortices is not sufficient to . . .
wavelet modesN, equivalent to a compression ratio of

fvcigt:z)lh'j?i(e;r:r;coherent nonlinear term. In this case, there arRI/N>:143. Table Il shows that these feiM- — 0.7% of
' N) coherent modes retain most of the energi-
(1) To locally refine the wavelet basis in these regions in= 99.2% of E=3f|V|?dx) and most of the enstrophy
order to deterministically compute the effect of the inco-(Z- = 94.3% of Z=3[|w|2dx). About half of the palin-
herent nonlinear ternino longer neglectédwhich will  strophy(P~ = 55% of P= 3|V w|?dx) is due to the mu-

We apply our wavelet segmentation algoritiiaf. Sec.
) to split the vorticity fieldw into coherent components



Phys. Fluids, Vol. 11, No. 8, August 1999 Non-Gaussianity and coherent vortex simulation for turbulence 2193

15 — T T 110" T —r—1 — T
810°

610°

¥, ®

410*

| " (]

210°

010°

210 b—
-100 -50 0 50 100 200 -100 0 100 200

FIG. 1. Quintic spline waveleg; ;(x) for scalej=7 and positiori =0 in physical spacéeft) and in Fourier spacgight).

tual straining of coherent vortices, while the rest correspondfor the spline wavelet of order 6 we have chosehn Fig. 1).
to the stretching of the vorticity filaments in the background.Now we verify a posteriorithat the retained strong wavelet
We then comparécf. Table ) the compression obtained coefficients actually correspond to the coherent vortices. We
by wavelet thresholding with the compression obtained usingbserve that the spatial distributions of both vortidiBig.
a linear Fourier filtering, as used in LES. Note that it is not2(a)] and velocity[Fig. 2(b)] reconstructed from these strong
possible to retain exactly the same number of resolvegvavelet coefficients are very well preserved. The coherent
modes due to the fact that the two-dimensional Fourier defields have the same inhomogeneity as the original fields and
composition is done by tensor product of two one-exhibit very similar structures. On the contrary, the incoher-
dimensional decompositions, therefole. should be a ent fields are homogeneous; moreover the incoherent veloc-
square number in this case. We decided to retain a few morg; induced by the incoherent vorticity distribution is essen-
Fourier modes than wavelet mod¢22® = 484 vs 458, |y zero. The coherent streamfunction is exactly the same

which gives a slight advantage to the Fourier filtering. De-5g the total streamfunction, therefore the incoherent stream-
spite this, the Fourier compression retains less enstropty,ction is almost zergef. Fig. 20)].

(90.8% ofZ) and palinstrophyonly 36% ofP) than wavelet The pointwise correlations between vorticity and

compressior(94.3% ofZ and 55% ofP). streamfunctior?, which is a discrete version of the coher-
ence functiono=F(¥), are almost identical for both the
total flow and the coherent floycf. Fig. 2d)]. Both the

Our algorithm is based on the sole assumption that thereoherent and total flows have the same scatter plots corre-
should be somémaybe only a feywcomponents of the flow sponding to a superposition of coherent vortices, each vortex
which correspond to a Gaussian probability distribution. Webeing characterized by a functidh The same scatter plot
have checked that the algorithm’s performance does not ddor the background flow(i.e., from the vorticity w. and
pend on the choice of the wavelet, as long as the wavelet hagream function¥ _ reconstructed from the weakest wavelet
enough smoothness and vanishing moments, as is the caseefficient3 does not show any correlation, which confirms

C. Coherent vortex extraction

TABLE |l. Statistical properties of the statistically stationary vorticity field &t75 s using wavelet threshold-
ing (er=(2(w?)logN)?=13.75s 1),

w - (0P
Quantity Definition total coherent incoherent
# of coefficients N 65536 458 65078
% of coefficients 100% 0.7% 99.3%
Second momen(variance M,=(w?)=(1N)Z] ;| w? 20 19 1
Third moment M= (IN)=N, P 8 8 0
Fourth moment M,=(1N)=N | w} 1736 1659 4
Fifth moment Ms=(1N)=] | w? 1903 2911 0
Sixth moment Mg=(1N)=N | w? 282763 276 378 28
Skewness S=M;/M3? 0 0 0
Flatness F=M,/M3 5 5 3
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FIG. 3. Comparison of nonlinear wavelet filterifigft) with linear Fourier filtering(right) of vorticity for the same compression rdtéN- = 143. Top: total
vorticity w. Middle: resolved partv-.. Bottom: unresolved paib .



2196 Phys. Fluids, Vol. 11, No. 8, August 1999 Farge, Schneider, and Kevlahan

10° ey S S — TABLE IIl. Comparison of the statistical properties of the nonlinear term
2 Pw) N and its components using Fourier low pass filterikg<11 m ) and wave-
T Rws) (WD) FAY let thresholding &= (2(w?)log N)*2=13.75 1),
. — - P(w_<) (WL) R
1077 & e Gaussian ; E -
E . Fourier Wavelet
Quantity
s ) # of coefficientsN. 484 (0.7% 458 (0.7%
[ W0 3 # of coefficientsN_ 65 052 (99.3% 65078 (99.3%
L2-norm  Flatness L2-norm  Flatness
10° | 4
: 1 ] w 4.4 4 4.4 4
: ; i ] w- 4.2 5 4.3 5
1074 [i1 L |':.. L Ll 1 . W 1.3 4 1.1 3
20 15 10 5 0 5 10 15 20
v u 0.8 3 0.8 3
Us 0.7 3 0.7 3
10° T U 0.1 4 0.1 3
E —Péw)
. T»:EW)) gfougilli_lr;) ’\ v 0.8 3 0.8 3
] p— Gadsaan" oS ] D5 0.8 3 0.8 3
F v 0.1 5 0.05 3
= 2 Iy 27.0 6 27.0 6
Z 10°° | J
& dyw~ 16.2 4 20.2 5
Oy~ 214 9 18.7 6
100} b 3 dyw 27.0 8 27.0 8
- B . Ay 16.1 3 20.0 5
[ i P g 216 10 19.2 8
1074 ! | ML N B (| i
20 15 -10 -5 0 5 10 15 20 v-Vo 12.1 9 12.1 9
w v--Vo. 7.8 5 11.9 12
" . o ) v.-Vo- 0.9 26 0.9 13
FIG. 4. PDF of vorticity. Top: nonlinear wavelet filtering. Bottom: linear
Fourier filtering. The solid [i d to the total vorticiy th v>-Vos 1.2 9 12.0 12
ourier filtering. The solid lines correspond to the total vorticity the v Vo 10 10 14 11

dashed lines to the coherent part , the dotted-dashed lines to the inco-
herent partw_ , and the dotted lines to a Gaussian fit.

o ) PDF of the incoherent vorticity has a parabolic shape similar
that the background flow is incoherent and contains no Cogg the PDF of a Gaussian distribution plotted in log—lin co-

herent vortices. Note that the scatter plot of the incohereng,ginates. When we compare on Fig(bbttom these results
components has been rescaled and actually corresponds tQ\fih those obtained with the Fourier decomposition, we ob-
very small cloud of points located at the center of the scattegane that the PDFE of the high wave number modes is not

plot of the original fields. _ o perfectly Gaussian and has a flatness 4, while flatness is 3 for
If we perform the separation using Fourier filterifvgith the wavelet filtering(cf. Table 1.

the same compression rdtéN-. = 143), we observe that the Using the Biot—Savart kernel4) we reconstruct the
vorticity field (w-)" reconstructed from the large scales IS three velocity fieldsv, V¥, andV" , induced by the three

smoother than the vorti_ci'Fy fielda(_>)‘” reconstructed fror_n corresponding vorticity fields. The coherent veloch§t’
the strong wavelet coefficientsf. Fig. 3). We also ascertain —(u,0)" has the same Gaussian PDF as the total velocity
that the incoherent fieldv is more homogeneous and V=(u,0), and the incoherent velocity" =(u,0)¥ has a

smoother for the wavelet filtering than for the Fourier filter- 55 ,ssian PDF with a much smaller variarice Table IlI).
ing, because ¢.)" presents localized strong gradient re-

: The vorticity and velocity PDFs of the high wave num-
gions.

ber Fourier modes are not Gaussian, with flatness 4ifor
and w_, and flatness 5 fow. (cf. Table Il and Fig.

D. Vorticity PDF 4—bottom. This may have important implications for LES,
because in this method the high wave number modes are not
computed but instead modeled statistically assuming that
they are quasi-Gaussian.

In Table Il we verify a posteriori that the incoherent
components are Gaussian with skewn&s=0, flatness
F¥=3 and odd moment#}_=M¢_=0. The superscript
(-)¥ denotes the wavelet filtering, while the superscript
(-) f denotes the Fourier filtering. In contrast to the incoher-
ent components, the coherent components have non- In Fig. 5we compare the energy spectra associated with
Gaussian statistics essentially identical to those of the totdhe coherent and incoherent components of the wavelet fil-
vorticity, with SY¥=S=0.1, F¥=F=5, and M)_=M,,.  tering with the energy spectra associated with the low wave
This is also illustrated at the top of Fig. 4 where we havenumber and high wave number modes of the Fourier filter-
superimposed the three PDFs, for the total vortieitythe  ing. It has been shown that, when using wavelet filtering,
coherent vorticityw-. , and the incoherent vorticity. . The  both coherent and incoherent components are multis@ale,

E. Energy spectrum
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10% T — . same as the PDF of the total nonlinear term, which is not true
. Iy ] for the Fourier filtering. This difference is confirmed by plot-
100 | IR wEw 4 ting the components of the nonlinear term split iMoV w
L ] =V.-Vo-+V.-Vo_+V_-Vo-+V_.-Vw_. for both
102§ ] Fourier and wavelet filtering&f. Fig. 6 and Table II\.
§ 3 _’ First, we observe that for both Fourier and wavelet fil-
104} 1 terings the cross ternV_.-Vw. and the Reynolds term
L ] V_-Vw. are negligible(less than 10% of|V-Vo|,, cf.
108 ] Table 1ll). But the Reynolds ternV_-Vw_ is more non-
. i Gaussian, with flatness 26, for Fourier filtering than for
108 ¢ A wavelet filtering, with flatness 1&f. Fig. 6 and Table II).
! 10 100 In Fig. 6 we compare the two other terids -V w-. and
¥ V. -Vw_. They are similafin amplitude and regularijyfor
e - — the wavelet filtering, while the ter- -V o is smaller(cf.
E ] Table Ill) and smoother than the tervh. -V w_ for the Fou-
ey TEN o rour| rier filtering.
2 N R B w.<FOUR| 1 In summary, the Fourier filtering tends to have the re-
o2k solved term ¥~ -Vw-)" smoother and more Gaussian than
3 3 ] the unfiltered nonlinear ternv-Vw. The wavelet filtering
“ oy ] has the opposite behavior: the resolved nonlinear term
3 3 (V~-Vw.)* retains the pronounced gradients and is more
e ] non-Gaussian than the unfiltered nonlinear te¥mVo,
3 ] while the unresolved termM_-Vw_.)® is more Gaussian
108 P L 3 than with Fourier filtering. This is an advantage of the wave-
1 10 100 let filtering, because it is important that the resolved nonlin-
K earity, which is deterministically computed, should be less

FIG. 5. Energy spectrurik(k). Top: nonlinear wavelet filtering. Bottom: Gaussian, while the unresolved nonllnearlty, whose effect is

linear Fourier filtering. The solid lines correspond to the total fiélathe  Statistically modeled, should be more Gaussian.
dashed lines to the resolved p#rt , and the dotted lines to the unresolved
partV_ .

G. Vorticity gradients
although the coherent part dominates at low wave numbers

and the incoherent part dominates at high wave numbers. " Fig. 8 we have plotted the PDF of the vorticity gra-
(Fig. 5—top. This behavior comes from the fact that the dients in thex direction(gradients in they direction are simi-

energy spectrum is the Fourier transform of the two-point@r @nd are therefore omittgch order to understand the dis-
correlation and is less sensitive to localized events at smafi’€Pancy we have observed in the behavior of the nonlinear
scales. In fact, the energy spectruas all otherL2-norm term depending on the segmentation we operate. As before,

statistical quantitiesis poorly adapted to study intermittent W€ find that the PDF of vorticity gradients, computed from
flow fields. In particular, the small scales associated with thethe coherent wavelet modes, are very similar to the PDF of

coherent vortices have a spatial support too small to be welthe vorticity gradients of the original flow, but this is not the

detected by the two-point correlation: this explains why theC@S€ for the Fourier filtering, because the tdixtreme

incoherent component, which is homogeneous and therefofevenB of the original flow PDF have been lost. This is also

tends to be dense in space, dominates at high wave numbef ustrated by considering the? norm of the vorticity gradi-
ents(i.e., palinstrophyP), which is weaker for the retained

Fourier modes than for the discarded Fourier mo(kfs
Tables | and IIJ. Ideally one would like the opposite to be

At the top of Fig. 6 we have plotted the nonlinear termtrue, in order to guarantee the performance of the LES
V- (0V)=V-Vo together with its PDFcf. Fig. 7—top,  method. This is in fact the case for the wavelet filtering
which is highly non-Gaussian. The fact that the PDF of thewhere the retained vorticity gradients are stronger than the
nonlinear term is non-Gaussian is not surprising since Gaugdiscarded vorticity gradient&f. Tables Il). The difference
sianity is stable under linear operations but not under multiis due to the space-scale adaptivity of the wavelet method
plication. The nonlinear term of the Navier—Stokes equatiorwhich allows a much more accurate representation of the
is responsible for the cascade mechanism and for the resuktrong gradients, while the global cutoff scale of the Fourier
ing non-Gaussianity of turbulent fields. Since this term isfilter destroys the strong gradients necessary to compute the
difficult to solve, it is essential for the performance of the nonlinear term. Moreover, for the Fourier filtering the vor-
computational scheme that the resolved modesVw-. re-  ticity gradients of the retained modes are quasi-Gaussian
tain as much of it as possible. This property is illustrated inwith flatness 4, while the vorticity gradients of the discarded
Fig. 7, which shows that the PDF of the nonlinear term com-modes are non-Gaussian with flatnes&® Tables ll)), al-
puted from the coherent wavelet modes is essentially théhough the reverse would be desirable.

F. Nonlinear term
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FIG. 6. Comparison of nonlinear wavelet filteririgft) with linear Fourier filtering(right) of the nonlinear ternV-Vw for the same compression rate
N/N. =143. Top: total term. MiddleV--Vw- . Bottom:V.-Vo_ .
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) ) FIG. 8. PDF of the vorticity gradiend,» (dyw behaves similarly Top:
FIG. 7. PDF of the nonlinear terf-Dw. Top: total term. Middle: non-  total term. Middle: nonlinear wavelet filteringi{w)“. Bottom: linear Fou-
linear wavelet filtering ¥.-Dw.)®”. Bottom: linear Fourier filtering rier filtering (9,w)".
(V--Dw-)F.

o In Fig. 9 we show the coherent vorticity field.. at time

H. Application of CVS t=37.5s(i.e., nine eddy turnover timgsthe corresponding

We now use the CVS method to compute the evolutionwavelet coefficientso~. used for the computation, and the
of a temporally developing mixing layer. We take as initial associated refined grid in physical space. The time evolution
condition a hyperbolic-tangent velocity profile, which is of the coherent vorticity and the energy spectrum are similar
known to be inviscidly unstable. We superimpose in the vorto the evolution of the total vorticify and of the total energy
tical region a Gaussian white noise to trigger the Kelvin—spectrum(cf. Fig. 9 computed using a classical pseudospec-
Helmholtz instability. For more details on the numerical tral method at resolution 256 As soon as the vortices are
simulation we refer the reader to Ref. 20. The integration isormed by Kelvin—Helmholtz instabilityaroundt=7 s), the
done by computing only the evolution of the coherent parlnumber of retained wavelet coefficients remains quasicon-
(w~,V-), while discarding the incoherent paw( ,V_) at  stant for the rest of the simulation. The retained wavelet
each time step, which corresponds to Ed). This isa DNS  coefficients represent only 8% of the total number of coeffi-
since we choose a very small thresholds cer with ¢ cients necessary for a pseudospectral integration. To obtain a
=103, because we do not model the effect of the incoherhigher compression, a turbulence model wit#0 (cf. Sec.
ent modes on the coherent modes in takieD. IIID) is necessary to parametrize the effect of the discarded
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FIG. 9. Mixing layer computed with CVS in an adaptive wavelet basis. Top left: vorticity fiekd=&7.5 s. Top right: corresponding coherent wavelet
coefficients at=37.5 s.Note that only 8% of the 25%6wavelet coefficients represent the coherent part of the flow and are used in the computation. The
wavelet coefficientgégray entriegare plotted using a logarithmic scale. The coefficieiq‘ljsx,iy are placed ax=2(1— Sy ti, y= 2i(1- 6,2 *iy, 6being

the Kronecker tensor, with the origin in the upper left corner andytheordinate oriented downwards. The largest scales correspond to the smallest square
(top left). The smallest scales correspond to the largest sqlaot®m left for the horizontal direction, top right for the vertical direction and bottom right

for the diagonal direction Bottom left: corresponding adaptive grid in physical space=887.5 s).Note that it dynamically adapts to the flow evolution in
space and scale. Bottom right: corresponding energy spectrisi3at.5 s. Wecompare the same mixing layer computed with a Fourier pseudo-spectral code
(solid line) or with the CVS(dotted line fore=10"° and dashed line foe=1075).

coefficients, which then contain a non-negligible amount ofpart of vorticity corresponds to the coherent vortices, i.e.,
enstrophy. compact regions of strong vorticity and vorticity gradients
characterized by a local correlation between vorticity and
stream function. Furthermore, it turns out that the coherent
vortices can be represented by only a few modess than

In this paper we have introduced and validated a0.7% of the total for a resolution 25§ while the Gaussian
wavelet-based algorithm for separating the Gaussian anidicoherent field makes up the rest. Note that larger compres-
non-Gaussian parts of a turbulent flow. This algorithm leadsions are obtained at higher resolutions.
to a new definition of the coherent vortices: they are the = We have proposed a new method based on this vortex
components of the flow that contribute to the non-Gaussiaextraction algorithm for calculating two-dimensional turbu-
part of the vorticity PDF. The algorithm is applied to a two- lent flows. This method, called coherent vortex simulation
dimensional homogeneous turbulent flow and we show thatCVS), is described in detail and is applied to compute a
the Gaussian and non-Gaussian parts of the vorticity fielanixing layer. We discuss some of its potential advantages
can be well separated using the nonlinear wavelet filteringvith respect to classical methods.g., LES. Perhaps the
we have proposed. It is also proven that the non-Gaussiamost interesting aspect of this approach is that the separation

V. CONCLUSION
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