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We decompose turbulent flows into two orthogonal parts: a coherent, inhomogeneous, non-Gaussian
component and an incoherent, homogeneous, Gaussian component. The two components have
different probability distributions and different correlations, hence different scaling laws. This
separation into coherent vortices and incoherent background flow is done for each flow realization
before averaging the results and calculating the next time step. To perform this decomposition we
have developed a nonlinear scheme based on an objective threshold defined in terms of the wavelet
coefficients of the vorticity. Results illustrate the efficiency of this coherent vortex extraction
algorithm. As an example we show that in a 2562 computation 0.7% of the modes correspond to the
coherent vortices responsible for 99.2% of the energy and 94% of the enstrophy. We also present a
detailed analysis of the nonlinear term, split into coherent and incoherent components, and compare
it with the classical separation, e.g., used for large eddy simulation, into large scale and small scale
components. We then propose a new method, called coherent vortex simulation~CVS!, designed to
compute and model two-dimensional turbulent flows using the previous wavelet decomposition at
each time step. This method combines both deterministic and statistical approaches:~i! Since the
coherent vortices are out of statistical equilibrium, they are computed deterministically in a wavelet
basis which is remapped at each time step in order to follow their nonlinear motions.~ii ! Since the
incoherent background flow is homogeneous and in statistical equilibrium, the classical theory of
homogeneous turbulence is valid there and we model statistically the effect of the incoherent
background on the coherent vortices. To illustrate the CVS method we apply it to compute a
two-dimensional turbulent mixing layer. ©1999 American Institute of Physics.
@S1070-6631~99!04608-5#
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I. INTRODUCTION

In this article we introduce a new approach for comp
ing turbulence which is based on the observation that tur
lent flows contain both an organized part~the coherent vor-
tices! and a random part~the incoherent background flow!.
The direct computation of fully developed turbulent flow
involves such a large number of degrees of freedom that
out of reach for the present and near future. Therefore s
statistical modeling is needed to drastically reduce the c
putational cost. The problem is difficult because the stati
cal structure of turbulence is not Gaussian, although m
statistical models assume simple Gaussian statistics. The
proach we propose is to split the problem in two:~i! the
determinist computation of the non-Gaussian component
the flow and ~ii ! the statistical modeling of the Gaussia
components~which can be done easily since they are co
pletely characterized by their mean and variance!. We
2181070-6631/99/11(8)/2187/15/$15.00
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present a wavelet-based method which performs such a s
ration. The non-Gaussianity of turbulent fields results fro
the nonlinear dynamics of Navier–Stokes equations, wh
produces strong gradients and organized vortices. We
checka posteriori that the non-Gaussian components ac
ally correspond to the coherent vortices.

Of course this approach is only of interest if the Gau
ian part~to be modeled! is responsible for the vast majorit
of degrees of freedom and if the coherent vortex part~to be
computed! contains a small number of degrees of freedo
which are responsible for most of the nonlinear term~and
hence the cascade!. We have found this to be the case wh
we apply our method to two-dimensional turbulence. No
that, although we apply our method in two dimensions, it c
also be applied to three-dimensional flows. In fact, the
namics of two- and three-dimensional turbulence may no
as different as is usually assumed, since in two dimensi
7 © 1999 American Institute of Physics
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vorticity gradient stretching and palinstrophy producti
plays a dynamical role similar to that of vortex stretchi
and enstrophy production in three dimensions. Moreo
Biot–Savart’s law, Kelvin’s theorem, and Helmholtz’s the
rem are valid regardless of the dimension, and they form
basis of our computational scheme, which is written us
the vorticity–velocity formulation of the Navier–Stoke
equations.

Coherent vortices are localized concentrations of vor
ity, tending to vortex spots in two dimensions and to vort
tubes in three dimensions. They are produced by the non
ear dynamics of incompressible Navier–Stokes equatio
The main difference between two and three dimension
that vortices are much more stable in two dimensions du
the lack of vortex stretching. The velocity associated with
coherent vortex is less local than the vorticity, because of
Biot–Savart kernel. Therefore, as soon as coherent vort
are present in turbulent flows, one achieves higher comp
sion by filtering the vorticity field rather than the veloci
field, since the vorticity field is more intermittent and hen
better suited for adaptive computation. This motivates
choice of the vorticity–velocity formulation of Navier–
Stokes equations instead of the velocity–pressure form
tion.

In the case of two-dimensional flows, we have show1

that the strain imposed by the coherent vortices on the b
ground flow inhibits the development of nonlinear instab
ties and the formation of new vortices in the backgrou
This led us to conjecture that, for large Reynolds num
flows, the density of coherent vortices should be roug
constant~and is probably quite small!. If this conjecture is
verified, it will guarantee that the number of resolved mod
of our method will remain bounded for any Reynolds nu
ber. However, this inhibition is not present if coherent vo
tices have not yet formed, which is the case in wall regio
for bounded flows, or during the early evolution of u
bounded flows initialized with random conditions.

In this paper we propose a new way of computing a
modeling turbulence, called coherent vortex simulat
~CVS!, which is based on the conjecture that coherent vo
ces are generic in incompressible turbulent flows, in two a
three dimensions. It assumes that only the degrees of f
dom attached to the coherent vortices are deterministic
active and need to be computed exactly. In two dimensi
vortices correspond to the elliptical regions of the flow whe
rotation dominates strain and thus are not well mixed. Th
experience strain and mixing only during close encoun
with other vortices, which results in vorticity filament emi
sion and vortex merging or tearing. However, these eve
are too rare to allow the coherent vortices to reach a sta
tical equilibrium state, and thus the central limit theore
does not apply so that meaningful averages cannot be
fined. Therefore, one is forced to compute their evolution
exactly as possible, in particular their shape and position.
the other hand, we suppose that all remaining degree
freedom have reached a quasi-equilibrium state and there
can be modeled statistically, because they are attached t
well-mixed background flow, which corresponds to hyp
bolic regions where strain dominates rotation. Their avera
r
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are well defined, thanks to the central limit theorem whi
remains valid as long as the coherent vortex strain inhi
any nonlinear instability from developing in the incohere
background flow.1

If one can guarantee that the background flow ha
Gaussian probability density function~PDF!, its total statis-
tical effect can be calculated from its mean and variance.
remaining components exhibit a non-Gaussian PDF and
check that they do indeed correspond to the coherent v
ces. In fact, we propose to define the incoherent backgro
flow as those components associated with a Gaussian P
and the coherent vortices as all other remaining compone

The paper is organized as follows. In Sec. II we brie
recall the essential features of wavelets and describe th
gorithm used to separate the Gaussian~incoherent back-
ground! and non-Gaussian~coherent vortex! parts of the
flow. We propose a new wavelet-based method to comp
turbulent flows ~the coherent vortex simulation method!,
which is presented in Sec. III. The results are discusse
Sec. IV and the paper ends with some conclusions in Sec

II. COHERENT VORTEX EXTRACTION BASED ON
THEIR NON-GAUSSIANITY

A. Wavelet representation to study turbulent flows

Inspired by the work of Grossmann and Morlet,2 we
have proposed using wavelets to study turbulent flows3,4

Wavelets are functions which are well localized in bo
physical and spectral space. In addition, their smoothn
~which determines the number of times they can be differ
tiated! and their number of vanishing moments~which deter-
mines the number of times they can be integrated! can be
controlled. They can efficiently represent data which is n
ther completely particle-like nor wave-like~e.g., multiscale
localized structures!. Furthermore, fast wavelet algorithm
exist and wavelet bases are available for von Neumann
Dirichlet boundary conditions.5 The characteristics men
tioned above mean that wavelets are suitable for detec
and analyzing the coherent vortices that emerge out of
dom Gaussian initial conditions, or are created in bound
layers.

The shape of these vortices results from a competit
between the Biot–Savart kernel~used to compute to the non
linear advection term of the Navier–Stokes equation! and the
heat kernel~used to compute the linear dissipation term!. If
one considers initially a Gaussian random field, then
Biot–Savart kernel selects the strongest local maxi
~namely the tails of the vorticity PDF which correspond
the strongest singularities, in the sense of Ho¨lder9! and lo-
cally organizes the flow into vortices whose centers cor
spond to these initial local maxima. As a result, there are a
small scales in the vortex cores, which we have shown us
two-dimensional continuous wavelet analyses
two-dimensional3,4 and three-dimensional6 turbulent flows.
Consequently the coherent vortices are multiscale structu
which are excited all along the inertial range~i.e., from the
integral to the dissipative scales!.

The Biot–Savart kernel is an integral operator~with 1/r
decay in dimension two!. It is therefore global in physica
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space and couples all coefficients of a collocation~i.e., grid-
point! projection of the fields. Using a wavelet representat
this operator becomes increasingly localized at small sc
due to the vanishing moments of the wavelet. The nonlin
term of the Navier–Stokes equations~3! is optimally local-
ized in a grid-point projection, because the collocation p
jection commutes with the nonlinear operator. On the c
trary, the nonlinear term is delocalized in a Four
projection where it becomes a convolution. It has be
shown7 that using wavelets one recovers the locality of t
nonlinear operator at small scales. Meneveau8 has studied the
dynamics in space and scale of three-dimensional turbu
flows, and the associated energy transfers, by projecting
Navier–Stokes equations onto an orthogonal wavelet ba

B. Classical vortex extraction methods

One needs a method to extract coherent vortices ou
turbulent flows, in order to compute their circulation, spat
support, vorticity and velocity PDFs, and study their dyna
ics. However, at present there is no consensus on the pr
definition of a coherent vortex. The only definition whic
seems objective is a locally metastable state. In two dim
sions a coherent vortex can be unambiguously character
by a functional relation between the vorticityv and the
streamfunctionC in the form v5F(C), whereF is called
the coherence function.9 One technique to extract cohere
vortices from two-dimensional turbulent flows would thus
to plot the pointwise scatter plot ofv versusC and extract
the branches which can be fitted by some functionF. The
points belonging to these branches would correspond to
cations where the vorticity fieldv. is coherent, while the
scattered points which do not belong to any branch wo
correspond to locations in the incoherent background fl
v, . In practice this method is not feasible because it
quires that the computation ofF be performed in a frame o
reference moving with each coherent vortex.

Other techniques to extract coherent vortices are less
jective than the one described above because they depen
a threshold value which has to be defineda priori. The sim-
plest method is to choose a vorticity threshold, for instan
eC5Z1/2 with enstrophyZ5 1

2* v2 dx, and retain as coheren
the regions whereuvu.eC , while the remainder forms the
background flow. The drawback of this clipping method
that it does not preserve the smoothness ofv, and both in-
coherent and coherent fields will contain spurious disco
nuities which will affect their time evolution and their energ
spectrum. To avoid this problem we suggest replacing
grid-point representation by a wavelet representation, wh
does not introduce discontinuities and therefore preserves
spectral properties of the flow when we truncate in t
wavelet basis.

Since the wavelet transform is invertible, it is alwa
possible to select a subset of the coefficients and recons
a filtered version of the field from them. Using this proper
we have proposed10 using the continuous wavelet represe
tation to extract coherent vortices by discarding all wave
coefficients outside the influence cones~i.e., the spatial sup-
port of the wavelets! attached to the local maxima of th
n
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vorticity field which correspond to the centers of cohere
structures.

We have also tried11,12to use orthonormal bases made
either wavelets, wavelet packets, or adaptive local cos
~Malvar wavelets! to separate coherent vortices from bac
ground flow. We showed that the local cosine representa
does not compress the enstrophy as well as wavelet
wavelet packets. First, it smoothes the coherent struct
and therefore loses enstrophy, and second, it introduces
rious oscillations in the background, due to the loss of
phase information attached to the weak coefficients. Th
drawbacks are shared by any Fourier or windowed Fou
representation, because each Fourier component con
nonlocal information and we need the phase information
all Fourier components to reconstruct precisely a given
gion of the field. Therefore no Fourier technique can pro
erly extract coherent vortices, because as the vorticity fiel
compressed the coherent vortices disappear and becom
creasingly mixed with the background flow.11,12 This is why
we prefer to use wavelet or wavelet packet bases.

C. A new wavelet-based vortex extraction method

In this paper we propose a new procedure to extr
coherent vortices which uses the projection of the vortic
onto an orthonormal wavelet basis. This extraction schem
based on the assumption that coherent vortices are res
sible for the non-Gaussianity of the PDF of vorticity. Ther
fore it is designed such that the discarded vorticity coe
cients have a Gaussian PDF. This is the onlya priori
assumption we make, apart from the choice of the wav
basis. Note that we do not assume any shape or intensit
the vortices. The coherent vortices correspond to all mo
remaining after discarding those with a Gaussian PDF.
other words, we define the coherent vortices to be the n
Gaussian part of the vorticity field. Although the method
verified here only for a two-dimensional flow, it can also
used for three-dimensional flows and analyses of such fl
are currently in progress.

Our method is inspired by a theorem of Donoho13 which
states that the optimal way to denoise a signalf, sampled on
N points and perturbed by an additive Gaussian white no
of variance^n2& ~where^•& denotes the average!, is to take
its orthonormal wavelet transformf̃ , and then select only
those coefficients with absolute value larger than the thre
old eD5(2^n2& logN)1/2 before reconstructing the denoise
signal f . . In many cases~e.g., turbulent signals! it is not
possible to guaranteea priori the Gaussianity of the nois
and to know its variancên2&. Moreover, the statistica
theory of homogeneous turbulence suggests that the n
may have some correlation, which corresponds to a sca
law steeper than for a white noise~i.e., k25/3 in three dimen-
sions andk23 in two dimensions!. Therefore we propose th
following algorithm ~the wavelet decomposition and reco
struction is explained in Sec. II D!:

~1! Decompose the signalf into orthonormal wavelet coeffi-
cients f̃ .

~2! Select the coefficients larger than the thresholdeT
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5(2^f2&logN)1/2, where we overestimate the variance
the Gaussian noise we want to remove, by taking
variance^ f 2& of the total signal instead of̂n2&, there-
fore eT>eD .

~3! Reconstruct the signalf . from the wavelet coefficients
u f̃ u.eT .

~4! Reconstruct the signalf , from the wavelet coefficients
u f̃ u<eT and test Gaussianity by computing the odd m
mentsMm,5^ f ,

2m11&, with m51, 2 or 3, the skewnes
S,5^ f ,

3 &/^ f ,
2 &3/2, and the flatnessF,5^ f ,

4 &/^ f ,
2 &2 of

the signal f , reconstructed from the discarded coef
cients f̃ , .

~5! If Mm,.0, S,.0 and F,.3, f , is Gaussian and
therefore the remaining partf . is the non-Gaussian de
noised signal we wanted to extract.

~6! If uS,u.« and uF,23u.«, wheree is the prescribed
precision of the algorithm, we do another iteration@start-
ing in ~2!# with the new threshold eT8
5(2^ f ,

2 & logN)1/2, which is based on the variance^ f ,
2 &

of the signal reconstructed from the discarded coe
cients of the previous iteration. If further iterations a
necessary, we use a new thresholdeT95

1
2(eT1eT8), in-

termediate between the previous ones, together wit
classical bisection type algorithm.

The iterative process is stopped, either if the discarded c
ficients are Gaussian, or if there are no Gaussian coefficie
In the second case all wavelet coefficients are retain
which means that there was no Gaussian noise present i
signal.

D. Application to two-dimensional turbulent flows

To extract coherent vortices in two-dimensional turb
lent flows we take the vorticity fieldv(x,y) as the signal to
be denoised and apply the algorithm described above.
developv(x,y) as an orthogonal wavelet series from t
largest scalel max520 to the smallest scalel min52J21 (N
522J) using a two-dimensional multiresolution analys
~MRA!:5,4

v~x,y!5v̄0,0,0f0,0,0~x,y!

1 (
j 50

J21

(
i x50

2 j 21

(
i y50

2 j 21

(
m51

3

ṽ j ,i x ,i y
m c j ,i x ,i y

m ~x,y!, ~1!

with f j ,i x ,i y
(x,y)5f j ,i x

(x)f j ,i y
(y), and

c j ,i x ,i y
m ~x,y!5$c j ,i x

~x!f j ,i y
~y!~m51!,

f j ,i x
~x!c j ,i y

~y!~m52!, c j ,i x
~x!c j ,i y

~y!~m53!%, ~2!

wheref j ,i andc j ,i are the one-dimensional scaling functio
and the corresponding wavelet, respectively. Due to the
thogonality, the scaling coefficients are given byv̄0,0,0

5^v,f0,0,0& and the wavelet coefficients are given b
ṽ j ,i x ,i y

m 5^v,c j ,i x ,i y
m ), where^•,•& denotes theL2-inner prod-

uct.
Using the above algorithm, we split the vorticity fie

into v.(x,y) and v,(x,y) by applying the thresholdeT

5(2^v2& logN)1/2, where^v2&5^v,v&52Z with Z the total
f
e
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enstrophy andN the number of grid points. The advantage
our method is that this threshold is objective and theref
has no adjustable parameters. The two fields thus obtai
v. andv, , are orthogonal, which ensures a separation
the total enstrophy intoZ5Z.1Z, because the interactio
term ^v. ,v,& is zero.

In Sec. III we propose a new method of computing tu
bulent flows which is based on the coherent vortex extrac
algorithm we have just described.

III. COHERENT VORTEX SIMULATION „CVS…

A. Turbulent flow computation: Direct numerical
simulation versus modeled numerical simulation

In contrast to the statistical theory and to most laborat
experiments, which deal withL2-norm averaged quantities
numerical experiments deal with nonaveraged instantane
quantities. We compute deterministically the evolution
one flow realization at a time, and perform the desired av
ages afterwards. There are two ways of computing turbu
flows: either by direct numerical simulation~DNS!, or by
modeled numerical simulation~MNS!.

In DNS we compute all degrees of freedom of the flo
whose numberN increases with the Reynolds number, as
in two dimensions and as Re9/4 in three dimensions. In this
case both the nonlinear dynamics and the linear dissipa
are fully resolved by computing the time evolution of the
N degrees of freedom. Unfortunately, with present compu
we cannot reach Reynolds numbers larger than a few th
sand. Therefore, to compute fully developed turbulent flo
(Re.104) we are forced to use some form of MNS.

In MNS @e.g., unsteady Reynolds averaged~URANS!,
large eddy simulations~LES!, or nonlinear Galerkin meth-
ods# one supposes that most of the modes can be discar
provided that some term~s! or some new equations~s! are
added to model the effect of the discarded modes@called
unresolved modes and denoted (•),] on the retained modes
@called resolved modes and denoted (•).]. Ideally, in order
to reduce the computational cost as much as possible,
number of resolved modesN. should be much smaller tha
the number of unresolved modesN, . Furthermore,N.

should increase more slowly with Re thanN does to be able
to compute fully developed turbulent regimes, i.e., the la
Re limit. We conjectured that this is the case for the wave
representation in two dimensions, because the numberN. of
retained modes is roughly proportional to the number of v
tices, which seems to increase more slowly with Re thanN.1

TheN. resolved modes are then computed deterministica
while it is assumed that theN, unresolved modes are pa
sive, namely that there is no nonlinear instability of som
unresolved modes that can grow in such a way that t
would deterministically affect the resolved modes. Theref
it must be ensured that the unresolved modes have reach
quasi-equilibrium state, characterized by a Gaussian P
and are sufficiently decorrelated. In this case it is no lon
necessary to compute the evolution of the unresolved mo
in detail because, if they are in Gaussian statistical equi
rium, they are characterized entirely by their mean and v
ance. The model describing the effect of the unresolv
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modes onto the resolved modes can then be specified c
pletely once the mean and variance of the unresolved mo
can be parametrized as a function of the resolved mode

We consider the incompressible two-dimension
Navier–Stokes equation in vorticity–velocity formulation,

] tv1“–~vV!2n¹2v5“3F
~3!

“–V50,

with F a forcing term and

V5“

'¹22v, ~4!

where“'5(2]y ,]x), ¹22 denotes the Green’s function o
the Laplacian, andn is the kinematic viscosity. The above s
of equations is completed by appropriate initial and bou
ary conditions.

Using the orthogonal wavelet decomposition we split
vorticity field into coherent and incoherent components,

v5v.1v, . ~5!

The corresponding velocity fields can be reconstructed u
the Biot–Savart kernel~4!:

V.5“

'¹22v.

~6!V,5“

'¹22v, ,

and it follows that

V5V.1V, . ~7!

Since the wavelet decomposition is orthogonal, we h
^v2&5^v.

2 &1^v,
2 &. However, the decomposition of the ve

locity field is only approximately orthogonal, i.e.,̂V2&
5^V.

2 &1^V,
2 &1« with «/^V2&!1 ~cf. Table II!. This is

due to the fact that wavelets are almost eigenfunctions
Biot–Savart kernel, i.e., their localization in physical spa
and in Fourier space is well preserved. Note that for
Fourier decomposition«50.

B. Principle of CVS

We now describe a new method, called coherent vor
simulation~CVS!, to solve the deterministic evolution of th
coherent vorticityv. , while modeling statistically the effec
of the incoherent vorticityv, . This method is in the spirit
of LES,14 but in contrast to LES it uses a nonlinear filter th
depends on each flow realization~using the wavelet thresh
olding procedure presented in Sec. II!. The wavelet filter
corresponds to an orthogonal projection, implying (v,).

50, and is hence idempotent, i.e., (v.).5v. , which is not
the case for all LES filters~e.g., the Gaussian filter!. We filter
the two-dimensional Navier–Stokes equations~3! using the
nonlinear wavelet filter and obtain the evolution equation
the coherent vorticityv. :

] tv.1“–~vV!.2n¹2v.5“3F.

~8!
“–V.50.

To model the effect of the discarded coefficients, which c
respond to the incoherent stress, we propose~as in LES! to
use a Boussinesq ansatz~cf. Sec. III D!.
m-
es

l

-

e

g

e

of
e
e

x

t

r

-

For the nonlinear term we use Leonard’s trip
decomposition,14 because the nonlinear term is comput
with the same adapted grid as the linear term~i.e., without
dealiasing!. Using ~5! and ~7! we decompose the nonlinea
term of ~8! into

~vV!.5v.V.1L1C1R, ~9!

where

L5~v.V.!.2v.V. ,

C5~v,V.!.1~v.V,!. ,

R5~v,V,!. ,

denoting the Leonard stressL, the cross stressC, and the
Reynolds stressR, respectively. The sum of these unknow
terms corresponds to the incoherent stress:

t5~vV!.2v.V.5L1C1R, ~10!

which describes the effect of the discarded incoherent te
on the resolved coherent terms. Note that, due to the lo
ization property of the wavelet representation, the Leon
stressL is actually negligible because (v.V.)..v.V. .15

The filtered Navier–Stokes equations~8! can be rewrit-
ten as:

] tv.1“–~v.V.!2n¹2v.5“3F.2“–t
~11!

“–V.50.

A detailed analysis of the nonlinear term“–(v.V.)
decomposed into wavelet space is provided in Sec. IV F.

C. DNS using CVS

If with the CVS method we consider a very small thres
old, there is no longer any need to model the effect of
incoherent part because the incoherent stress is then n
gible, and in this case CVS becomes DNS. Note that e
when the wavelet threshold tends to zero, the number
discarded incoherent modes may still be large~cf. Fig. 9 and
Sec. IV H!, due to the excellent compression properties
wavelets for turbulent flows. This is reflected in the fact th
many wavelet coefficients are essentially zero and can th
fore be discarded without losing a significant amount of e
strophy~cf. Sec. IV H!.

To obtain the coherent variablesv. and V. we deter-
ministically integrate~11! with t 50, since the variables ar
non-Gaussian and correspond to a dynamical system ou
statistical equilibrium. We propose to solve these equati
in an adaptive wavelet basis.15–17The separation into coher
ent and incoherent components is performed at each
step. The adaptive wavelet basis retains only those wav
modes corresponding to the coherent vortices and i
remapped at each time step in order to follow their motio
in both space and scale. In fact, this numerical scheme c
bines the advantages of both the Eulerian representation~be-
cause it projects the solution onto an orthonormal basis! and
the Lagrangian representation~because it follows the coher
ent vortices by adapting the basis at each time step!.
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D. MNS using CVS

Up to now no modeling has been done, and Eq.~11! is
not closed as long ast depends on the incoherent unresolv
terms. To close it we propose two possibilities.

~1! A Boussinesq ansatz as for the LES method,14 which
assumes thatt is proportional to the negative gradient of th
coherent vorticity:t52nT“v. with nT a turbulent viscos-
ity coefficient. The turbulent viscositynT can be estimated
either using Smagorinsky’s model,14 or taking nT propor-
tional to the enstrophy fluxes in wavelet space, such t
where enstrophy flows from large to small scales,nT is posi-
tive, and, where enstrophy flows from small to large sca
~i.e., backscatter!, nT becomes negative. This second meth
for estimating the turbulent viscosity is in the spirit of Ge
mano’s dynamical procedure used for LES.14

~2! t can otherwise be modeled as a Gaussian stoch
forcing term, proportional to the variances^v,

2 & and ^V,
2 &

computed at the previous time steps~the means^v,&
5^V,&50). This modeling is made possible since the tim
evolution of the incoherent background, characterized by
time scalet,5(Z,)21/2, is much slower than the characte
istic time scalet.5(Z.)21/2 of the coherent vortex motions
becauseZ.@Z, ~cf. Table I!. This behavior of the incoher
ent background had already been noticed, and discusse
comparison to Fourier filtering in Refs. 10 and 15.

The CVS method relies on the assumption that the in
herent part of the flow remains Gaussian, which is true
long as the nonlinear interactions between the incohe
modes remains weak. This assumption is valid in regi
where the density of coherent vortices is sufficient, beca
the strain they exert on the incoherent background flow t
inhibits the development of any nonlinearity there.1 How-
ever, there may be regions, although of small spatial supp
where the density of coherent vortices is not sufficient
control the incoherent nonlinear term. In this case, there
two solutions.

~1! To locally refine the wavelet basis in these regions
order to deterministically compute the effect of the inc
herent nonlinear term~no longer neglected!, which will

TABLE I. Comparison of the statistical properties ofL2-norm quantities
using Fourier low pass filtering (kc511 m21) and wavelet thresholding
(eT5(2^v2& log N)1/2513.75 s21).

Fourier Wavelet

# of coefficientsN 65536 ~100%! 65 536 ~100%!
N. 484 ~0.7%! 458 ~0.7%!
N, 65052 ~99.3%! 65 078 ~99.3%!

EnergyE5
1
2* uVu2 dx 0.591 ~100%! 0.591 ~100%!

E. 0.588 ~99.4%! 0.586 ~99.2%!
E, 3.331023 ~0.6%! 2.631023 ~0.4%!

EnstrophyZ5
1
2* uvu2 dx 9.82 ~100%! 9.82 ~100%!

Z. 8.92 ~90.8%! 9.26 ~94.3%!
Z, 0.90 ~9.2%! 0.56 ~5.7%!

PalinstrophyP5
1
2* u¹vu2 dx 725 ~100%! 725 ~100%!

P. 261 ~36%! 404 ~55%!
P, 464 ~64%! 360 ~49%!
t,
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lead to the formation of new coherent vortices by no
linear instability of the incoherent background flow.

~2! To directly model the formation of new coherent vor
ces by adding locally to the wavelet coefficients t
amount of coherent enstrophy which should be tra
ferred from the incoherent enstrophy by nonlinear ins
bility. This procedure is similar to the wavelet forcin
proposed by Schneider and Farge.18

IV. RESULTS

In this section we present the separation into coher
and incoherent components applied to a two-dimensional
mogeneous turbulent flow. We then show the analysis of
nonlinear terms of the two-dimensional Navier–Stokes eq
tions for the coherent and incoherent contributions. Fina
to illustrate our approach we use the CVS method to co
pute a two-dimensional mixing layer.

A. Turbulent flow to be analyzed

We consider a two-dimensional homogeneous isotro
turbulent flow, forced at wave numberkI54 m21, consider-
ing the same parameters as the simulation of Legraset al.19

We compute its evolution by DNS using a fully dealias
pseudospectral code with Newtonian dissipation. The res
tion is N52562, which corresponds to a Reynolds number
1000. The flow has reached a statistically steady state c
acterized by the fact that the energy spectrum no lon
changes. We analyze one flow realization chosen at timt
575 s ~which corresponds to 17 eddy-turnover times!. In
principle, when the flow is statistically steady, all flow rea
izations are equivalent~in the classical statistical sense bas
on L2-norm quantities, such as the energy spectrum! and we
would obtain the same statistical results with any other re
ization. We decompose this vorticity field into coherent a
incoherent components, using the algorithm presented in
previous paragraph with Battle–Lemarie´ spline wavelets of
order 6~cf. Fig. 1!. We then compare these results with tho
obtained using a classical decomposition of vorticity, in
low wave number modes~i.e., large eddies as used for LES!
and high wave number modes~i.e., small eddies!, before
reconstructing the vorticity field from these two componen
In both cases, using either the wavelet decomposition or
Fourier decomposition, the compression ratio is the sa
the number of modes retained@i.e., coherent or low wave
number modes denoted (•).] represents 0.7% of the tota
number of modesN.

B. Vorticity compression

We apply our wavelet segmentation algorithm~cf. Sec.
II C! to split the vorticity fieldv into coherent component
v. and incoherent componentsv, . The coherent flow can
be reconstructed from only 0.7% of the total number
wavelet modesN, equivalent to a compression ratio o
N/N.5143. Table II shows that these few~N. 5 0.7% of
N! coherent modes retain most of the energy~E.

5 99.2% of E5 1
2* uVu2 dx) and most of the enstroph

~Z. 5 94.3% of Z5 1
2* uvu2 dx). About half of the palin-

strophy~P. 5 55% of P5 1
2* u“vu2 dx) is due to the mu-
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FIG. 1. Quintic spline waveletc j ,i(x) for scalej 57 and positioni 50 in physical space~left! and in Fourier space~right!.
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tual straining of coherent vortices, while the rest correspo
to the stretching of the vorticity filaments in the backgroun

We then compare~cf. Table I! the compression obtaine
by wavelet thresholding with the compression obtained us
a linear Fourier filtering, as used in LES. Note that it is n
possible to retain exactly the same number of resol
modes due to the fact that the two-dimensional Fourier
composition is done by tensor product of two on
dimensional decompositions, thereforeN. should be a
square number in this case. We decided to retain a few m
Fourier modes than wavelet modes~222 5 484 vs 458!,
which gives a slight advantage to the Fourier filtering. D
spite this, the Fourier compression retains less enstro
~90.8% ofZ! and palinstrophy~only 36% ofP! than wavelet
compression~94.3% ofZ and 55% ofP!.

C. Coherent vortex extraction

Our algorithm is based on the sole assumption that th
should be some~maybe only a few! components of the flow
which correspond to a Gaussian probability distribution. W
have checked that the algorithm’s performance does not
pend on the choice of the wavelet, as long as the wavelet
enough smoothness and vanishing moments, as is the
s
.
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for the spline wavelet of order 6 we have chosen~cf. Fig. 1!.
Now we verify a posteriori that the retained strong wavele
coefficients actually correspond to the coherent vortices.
observe that the spatial distributions of both vorticity@Fig.
2~a!# and velocity@Fig. 2~b!# reconstructed from these stron
wavelet coefficients are very well preserved. The coher
fields have the same inhomogeneity as the original fields
exhibit very similar structures. On the contrary, the incoh
ent fields are homogeneous; moreover the incoherent ve
ity induced by the incoherent vorticity distribution is esse
tially zero. The coherent streamfunction is exactly the sa
as the total streamfunction, therefore the incoherent stre
function is almost zero@cf. Fig. 2~c!#.

The pointwise correlations between vorticityv and
streamfunctionC, which is a discrete version of the cohe
ence functionv5F(C), are almost identical for both the
total flow and the coherent flow@cf. Fig. 2~d!#. Both the
coherent and total flows have the same scatter plots co
sponding to a superposition of coherent vortices, each vo
being characterized by a functionF. The same scatter plo
for the background flow~i.e., from the vorticityv, and
stream functionC, reconstructed from the weakest wave
coefficients! does not show any correlation, which confirm
-
TABLE II. Statistical properties of the statistically stationary vorticity field att575 s using wavelet threshold
ing (eT5(2^v2& log N)1/2513.75 s21).

Quantity
# of coefficients
% of coefficients

Definition
N

v
total

65 536
100%

v.

coherent
458

0.7%

v,

incoherent
65078
99.3%

Second moment~variance! M 25^v2&5(1/N)( i 51
N v i

2 20 19 1
Third moment M35(1/N)( i 51

N v i
3 8 8 0

Fourth moment M45(1/N)( i 51
N v i

4 1 736 1 659 4
Fifth moment M55(1/N)( i 51

N v i
5 1 903 2 911 0

Sixth moment M65(1/N)( i 51
N v i

6 282 763 276 378 28
Skewness S5M3 /M2

3/2 0 0 0
Flatness F5M4 /M2

2 5 5 3
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FIG. 2. Wavelet filtering of vorticity. Left: total field. Middle: coherent part. Right: incoherent part.~a! Vorticity v. ~b! Modulus of velocityuVu. ~c! Stream
function C. ~d! Coherence scatter plotv vs C.
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FIG. 3. Comparison of nonlinear wavelet filtering~left! with linear Fourier filtering~right! of vorticity for the same compression rateN/N.5143. Top: total
vorticity v. Middle: resolved partv.. Bottom: unresolved partv,.
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that the background flow is incoherent and contains no
herent vortices. Note that the scatter plot of the incoher
components has been rescaled and actually corresponds
very small cloud of points located at the center of the sca
plot of the original fields.

If we perform the separation using Fourier filtering~with
the same compression rateN/N.5143), we observe that th
vorticity field (v.) f reconstructed from the large scales
smoother than the vorticity field (v.)w reconstructed from
the strong wavelet coefficients~cf. Fig. 3!. We also ascertain
that the incoherent fieldv, is more homogeneous an
smoother for the wavelet filtering than for the Fourier filte
ing, because (v,) f presents localized strong gradient r
gions.

D. Vorticity PDF

In Table II we verify a posteriori that the incoheren
components are Gaussian with skewnessS,

w .0, flatness
F,

w .3 and odd momentsM3,
w >M5,

w .0. The superscript
(•)w denotes the wavelet filtering, while the superscr
(•) f denotes the Fourier filtering. In contrast to the incoh
ent components, the coherent components have n
Gaussian statistics essentially identical to those of the t
vorticity, with S.

w 5S50.1, F.
w 5F55, and Mn.

w .Mn .
This is also illustrated at the top of Fig. 4 where we ha
superimposed the three PDFs, for the total vorticityv, the
coherent vorticityv. , and the incoherent vorticityv, . The

FIG. 4. PDF of vorticity. Top: nonlinear wavelet filtering. Bottom: linea
Fourier filtering. The solid lines correspond to the total vorticityv, the
dashed lines to the coherent partv. , the dotted-dashed lines to the inco
herent partv, , and the dotted lines to a Gaussian fit.
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PDF of the incoherent vorticity has a parabolic shape sim
to the PDF of a Gaussian distribution plotted in log–lin c
ordinates. When we compare on Fig. 4~bottom! these results
with those obtained with the Fourier decomposition, we o
serve that the PDF of the high wave number modes is
perfectly Gaussian and has a flatness 4, while flatness is
the wavelet filtering~cf. Table III!.

Using the Biot–Savart kernel~4! we reconstruct the
three velocity fieldsV, V.

w , andV,
w , induced by the three

corresponding vorticity fields. The coherent velocityV.
w

5(u,v).
w has the same Gaussian PDF as the total velo

V5(u,v), and the incoherent velocityV,
w 5(u,v),

w has a
Gaussian PDF with a much smaller variance~cf. Table III!.

The vorticity and velocity PDFs of the high wave num
ber Fourier modes are not Gaussian, with flatness 4 foru,

and v, , and flatness 5 forv, ~cf. Table III and Fig.
4—bottom!. This may have important implications for LES
because in this method the high wave number modes are
computed but instead modeled statistically assuming
they are quasi-Gaussian.

E. Energy spectrum

In Fig. 5 we compare the energy spectra associated w
the coherent and incoherent components of the wavelet
tering with the energy spectra associated with the low w
number and high wave number modes of the Fourier filt
ing. It has been shown that, when using wavelet filterin
both coherent and incoherent components are multisca10

TABLE III. Comparison of the statistical properties of the nonlinear te
and its components using Fourier low pass filtering (kc511 m21) and wave-
let thresholding (eT5(2^v2& log N)1/2513.75 s21).

Quantity
# of coefficientsN.

# of coefficientsN,

Fourier Wavelet

484
65 052

~0.7%!
~99.3%!

458
65078

~0.7%!
~99.3%!

L2-norm Flatness L2-norm Flatness

v 4.4 4 4.4 4
v. 4.2 5 4.3 5
v, 1.3 4 1.1 3

u 0.8 3 0.8 3
u. 0.7 3 0.7 3
u, 0.1 4 0.1 3

v 0.8 3 0.8 3
v. 0.8 3 0.8 3
v, 0.1 5 0.05 3

]xv 27.0 6 27.0 6
]xv. 16.2 4 20.2 5
]xv, 21.4 9 18.7 6

]yv 27.0 8 27.0 8
]yv. 16.1 3 20.0 5
]yv, 21.6 10 19.2 8

v–“v 12.1 9 12.1 9
v.–“v. 7.8 5 11.9 12
v,–“v, 0.9 26 0.9 13
v.–“v, 11.2 9 12.0 12
v,–“v. 1.0 10 1.4 11
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although the coherent part dominates at low wave numb
and the incoherent part dominates at high wave numb
~Fig. 5—top!. This behavior comes from the fact that th
energy spectrum is the Fourier transform of the two-po
correlation and is less sensitive to localized events at sm
scales. In fact, the energy spectrum~as all otherL2-norm
statistical quantities! is poorly adapted to study intermitten
flow fields.7 In particular, the small scales associated with
coherent vortices have a spatial support too small to be w
detected by the two-point correlation; this explains why
incoherent component, which is homogeneous and there
tends to be dense in space, dominates at high wave num

F. Nonlinear term

At the top of Fig. 6 we have plotted the nonlinear ter
“–(vV)5V–“v together with its PDF~cf. Fig. 7—top!,
which is highly non-Gaussian. The fact that the PDF of
nonlinear term is non-Gaussian is not surprising since Ga
sianity is stable under linear operations but not under mu
plication. The nonlinear term of the Navier–Stokes equat
is responsible for the cascade mechanism and for the re
ing non-Gaussianity of turbulent fields. Since this term
difficult to solve, it is essential for the performance of t
computational scheme that the resolved modesV.–“v. re-
tain as much of it as possible. This property is illustrated
Fig. 7, which shows that the PDF of the nonlinear term co
puted from the coherent wavelet modes is essentially

FIG. 5. Energy spectrumE(k). Top: nonlinear wavelet filtering. Bottom
linear Fourier filtering. The solid lines correspond to the total fieldV, the
dashed lines to the resolved partV. , and the dotted lines to the unresolve
part V, .
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same as the PDF of the total nonlinear term, which is not t
for the Fourier filtering. This difference is confirmed by plo
ting the components of the nonlinear term split intoV–“v
5V.•“v.1V.–“v,1V,–“v.1V,–“v, for both
Fourier and wavelet filterings~cf. Fig. 6 and Table III!.

First, we observe that for both Fourier and wavelet
terings the cross termV,–“v. and the Reynolds term
V,–“v, are negligible~less than 10% ofiV–“vi2 , cf.
Table III!. But the Reynolds termV,–“v, is more non-
Gaussian, with flatness 26, for Fourier filtering than f
wavelet filtering, with flatness 13~cf. Fig. 6 and Table III!.

In Fig. 6 we compare the two other termsV.–“v. and
V.–“v, . They are similar~in amplitude and regularity! for
the wavelet filtering, while the termV.–“v. is smaller~cf.
Table III! and smoother than the termV.–“v, for the Fou-
rier filtering.

In summary, the Fourier filtering tends to have the
solved term (V.–“v.)F smoother and more Gaussian th
the unfiltered nonlinear termV–“v. The wavelet filtering
has the opposite behavior: the resolved nonlinear te
(V.–“v.)v retains the pronounced gradients and is m
non-Gaussian than the unfiltered nonlinear termV–“v,
while the unresolved term (V,–“v,)v is more Gaussian
than with Fourier filtering. This is an advantage of the wav
let filtering, because it is important that the resolved nonl
earity, which is deterministically computed, should be le
Gaussian, while the unresolved nonlinearity, whose effec
statistically modeled, should be more Gaussian.

G. Vorticity gradients

In Fig. 8 we have plotted the PDF of the vorticity gra
dients in thex direction~gradients in they direction are simi-
lar and are therefore omitted! in order to understand the dis
crepancy we have observed in the behavior of the nonlin
term depending on the segmentation we operate. As be
we find that the PDF of vorticity gradients, computed fro
the coherent wavelet modes, are very similar to the PDF
the vorticity gradients of the original flow, but this is not th
case for the Fourier filtering, because the tails~extreme
events! of the original flow PDF have been lost. This is als
illustrated by considering theL2 norm of the vorticity gradi-
ents~i.e., palinstrophyP!, which is weaker for the retained
Fourier modes than for the discarded Fourier modes~cf.
Tables I and III!. Ideally one would like the opposite to b
true, in order to guarantee the performance of the L
method. This is in fact the case for the wavelet filteri
where the retained vorticity gradients are stronger than
discarded vorticity gradients~cf. Tables III!. The difference
is due to the space-scale adaptivity of the wavelet met
which allows a much more accurate representation of
strong gradients, while the global cutoff scale of the Four
filter destroys the strong gradients necessary to compute
nonlinear term. Moreover, for the Fourier filtering the vo
ticity gradients of the retained modes are quasi-Gaus
with flatness 4, while the vorticity gradients of the discard
modes are non-Gaussian with flatness 9~cf. Tables III!, al-
though the reverse would be desirable.
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FIG. 6. Comparison of nonlinear wavelet filtering~left! with linear Fourier filtering~right! of the nonlinear termV–“v for the same compression rat
N/N.5143. Top: total term. Middle:V.–“v. . Bottom:V.–“v, .
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H. Application of CVS

We now use the CVS method to compute the evolut
of a temporally developing mixing layer. We take as init
condition a hyperbolic-tangent velocity profile, which
known to be inviscidly unstable. We superimpose in the v
tical region a Gaussian white noise to trigger the Kelvi
Helmholtz instability. For more details on the numeric
simulation we refer the reader to Ref. 20. The integration
done by computing only the evolution of the coherent p
(v. ,V.), while discarding the incoherent part (v, ,V,) at
each time step, which corresponds to Eq.~11!. This is a DNS
since we choose a very small threshold,e5ceT with c
51023, because we do not model the effect of the incoh
ent modes on the coherent modes in takingt50.

FIG. 7. PDF of the nonlinear termV–Dv. Top: total term. Middle: non-
linear wavelet filtering (V.•Dv.)v. Bottom: linear Fourier filtering
(V.•Dv.)F.
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In Fig. 9 we show the coherent vorticity fieldv. at time
t537.5 s~i.e., nine eddy turnover times!, the corresponding
wavelet coefficientsṽ. used for the computation, and th
associated refined grid in physical space. The time evolu
of the coherent vorticity and the energy spectrum are sim
to the evolution of the total vorticity20 and of the total energy
spectrum~cf. Fig. 9! computed using a classical pseudosp
tral method at resolution 2562. As soon as the vortices ar
formed by Kelvin–Helmholtz instability~aroundt57 s), the
number of retained wavelet coefficients remains quasic
stant for the rest of the simulation. The retained wave
coefficients represent only 8% of the total number of coe
cients necessary for a pseudospectral integration. To obta
higher compression, a turbulence model witht Þ0 ~cf. Sec.
III D ! is necessary to parametrize the effect of the discar

FIG. 8. PDF of the vorticity gradient]xv ~]yv behaves similarly!. Top:
total term. Middle: nonlinear wavelet filtering (]xv)v. Bottom: linear Fou-
rier filtering (]xv)F.
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FIG. 9. Mixing layer computed with CVS in an adaptive wavelet basis. Top left: vorticity field att537.5 s. Top right: corresponding coherent wave
coefficients att537.5 s.Note that only 8% of the 2562 wavelet coefficients represent the coherent part of the flow and are used in the computatio
wavelet coefficients~gray entries! are plotted using a logarithmic scale. The coefficientsṽ j ,i x,i y

m are placed atx52 j (12dm,1)1 i x , y52 j (12dm,2)1 i y,d being
the Kronecker tensor, with the origin in the upper left corner and they-coordinate oriented downwards. The largest scales correspond to the smallest
~top left!. The smallest scales correspond to the largest squares~bottom left for the horizontal direction, top right for the vertical direction and bottom ri
for the diagonal direction!. Bottom left: corresponding adaptive grid in physical space att537.5 s).Note that it dynamically adapts to the flow evolution i
space and scale. Bottom right: corresponding energy spectrum att537.5 s. Wecompare the same mixing layer computed with a Fourier pseudo-spectral
~solid line! or with the CVS~dotted line fore51025 and dashed line fore51026).
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coefficients, which then contain a non-negligible amount
enstrophy.

V. CONCLUSION

In this paper we have introduced and validated
wavelet-based algorithm for separating the Gaussian
non-Gaussian parts of a turbulent flow. This algorithm lea
to a new definition of the coherent vortices: they are
components of the flow that contribute to the non-Gauss
part of the vorticity PDF. The algorithm is applied to a tw
dimensional homogeneous turbulent flow and we show
the Gaussian and non-Gaussian parts of the vorticity fi
can be well separated using the nonlinear wavelet filter
we have proposed. It is also proven that the non-Gaus
f

a
nd
s
e
n

at
ld
g
an

part of vorticity corresponds to the coherent vortices, i
compact regions of strong vorticity and vorticity gradien
characterized by a local correlation between vorticity a
stream function. Furthermore, it turns out that the coher
vortices can be represented by only a few modes~less than
0.7% of the total for a resolution 2562), while the Gaussian
incoherent field makes up the rest. Note that larger comp
sions are obtained at higher resolutions.

We have proposed a new method based on this vo
extraction algorithm for calculating two-dimensional turb
lent flows. This method, called coherent vortex simulati
~CVS!, is described in detail and is applied to compute
mixing layer. We discuss some of its potential advanta
with respect to classical methods~e.g., LES!. Perhaps the
most interesting aspect of this approach is that the separa
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involves no adjustable parameters and guarantees the G
sianity of the discarded modes, which allows the statist
methods~that have been developed based on the assump
of Gaussian statistics! to be used only for that part of th
flow where they are actually valid. Since the backgrou
flow is homogeneous and Gaussian, the classical theor
homogeneous turbulence is valid there, which is not the c
for the coherent vortex flow, which is non-Gaussian and
homogeneous. The CVS method is not restricted to the t
dimensional case and can be extended to compute th
dimensional turbulent flows. It is based on deterministica
computing the coherent vortex flow using an adaptive wa
let basis, and modeling statistically the incoherent ba
ground flow. We believe that CVS combines statistical a
deterministic approaches in a simple and natural way.
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