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Summary

In this paper we introduce and compare two adaptive wavelet-based Navier Stokes
solvers. The first one uses a Petrov-Galerkin vaguelette approach for the vorticity for-
mulation of the Navier stokes equations, while the second one is a collocation method
for the pressure-velocity formulation. Both codes are applied to the 2D mixing layer
test problem and their results are compared to Fourier spectral solutions.
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1 Introduction

Turbulent flows are characterized by their large number of active scales of motion in-
creasing with the Reynolds number. Hence, for the numerical simulation of fully devel-
oped turbulence the complexity has to be considerably reduced and turbulence models
are unavoidable. In current approaches the fine scales of the flow are replaced by a
subgrid scale model, e.g. in Large Eddy Simulation (LES), using a linear cut–off filter
which therefore does not depend on the actual flow realization.

Wavelets are functions with simultaneous localization in physical and in Fourier
space which correspond to filters having a constant relative bandwidth. They allow
adaptive filtering of signals and are well suited for investigating unsteady, inhomoge-
neous or intermittent phenomena like those encountered in turbulence.

In the past we have shown that wavelets are an efficient basis to represent turbulent
vorticity fields, see e.g. [13, 30, 14]. By means of nonlinear filtering of the wavelet co-
efficients of vorticity, we can separate the dynamical active part of the flow (i.e. the co-
herent vortices) from the incoherent background flow. This filtering technique is much
more efficient than linear low pass filtering employed in LES, because it retains much
more enstrophy and energy for the same number of modes.

From a numerical point of view wavelets constitute optimal bases to represent func-
tions with inhomogeneous regularity, such as intermittent turbulent flow fields. The
existence of fast pyramidal algorithms (with linear complexity), to transform the com-
puted fields between lacunary wavelet coefficients and structured adaptive grids, allows
to design efficient methods for solving nonlinear PDEs [16, 18, 22, 29].



We will present two different wavelet schemes to solve the Navier–Stokes equa-
tions. We will compare their performances for computing a two–dimensional tempo-
rally growing mixing layer, which is a good test–case because it is a typical configura-
tion encountered in many turbulentflows. The results are compared with those obtained
with a classical Fourier pseudo–spectral method.

The remainder of this paper is organized as follows: In the next section we give a
brief introduction to wavelets and we present the general adaptive time stepping method
which is used by both wavelet solvers. In section three and four further details of the
two wavelet schemes are given. In particular the differences between them are pointed
out. In section 5 we describe the setup of the mixing layer experiment and we present
the results of both schemes compared to Fourier spectral simulations.

2 Adaptive Wavelet Methods for Time-Dependent PDEs

In the following, we give a brief introduction to wavelets and our notation used. We
first deal with one–dimensional wavelets and then consider two variants for its gener-
alization to the multivariate case. Finally, we describe how wavelets can be used in the
adaptive spatial discretization of time stepping methods for e.g convection–diffusion
problems or the Navier Stokes equations.

2.1 Univariate Wavelets

In this subsection, we explain the main features of our approach in a simple notation
using wavelets defined on . We give brief comments on wavelets on the interval later
on.

We start with a sequence of spaces which are spanned by dilates/translates
of a single function . A simple example for is the hat function

. We have

span

Here, denotes the level of refinement and is a certain given coarsest level. The
function should have the following properties:

(P1) has compact support or decays sufficiently fast such that it can be truncated.
Hence, supp .

(P2) There is a which depends on the particular such that polynomials of
degree less than can be written as linear combinations of for all

. E.g for the hat function we have .

(P3) is the solution of a so-called scaling equation

(2.1)
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with explicitly known coefficients . Therefore, the functions and are
called scaling functions. An analytic description of is often not available, but it
is also not needed. All we have to know about from the practical point of view
are its scaling coefficients . An immediate consequence of (2.1) is: .

Now, associated functions, so–called wavelets, can be defined as follows: Wavelets are
the basis functions of the complementary spaces :

span

In our setting the wavelets are also dilates/translates of a single
function

(2.2)

Again, the coefficients are all what is needed to use and in practice. Fur-
thermore, we can assume that also has compact support or decays quite fast. Repeated
decomposition of yields a so-called multi-resolution analysis (MRA) of with the
wavelet basis

where and

Consider successive approximations and of a function and
their difference

Then, a Taylor argument using (P1) and (P2) shows that the coefficients are sig-
nificant (i.e. ’large’) only if their associated wavelets lie in the vicinity of a sin-
gularity or a quasi-singularity of . Therefore, for any which has only a few (quasi-)
singularities, the number of active degrees of freedom required to achieve a desired
accuracy is substantially less in a wavelet basis compared to a scaling function basis .

The most important analytical property of the wavelet basis is the following: Sobolev
norms of e.g. can be characterized in terms of the wavelet coefficients :
There are such that for there are with

(2.3)
Here and mainly depends on the particular basis of

. Such norm equivalences are at the heart of the wavelet theory and are also the
foundation for efficient preconditioning techniques for linear systems [6, 27, 19, 23] or
reliable control of errors [5].

Furthermore, the so–called dual scaling functions and the dual wavelets
can be considered. They have to fulfill the following biorthogonality relations
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Here, is usually the scalar product; if the dual functions are linear combinations
of Dirac functionals, then denotes a dual pairing. From the theoretical point of
view the dual functions are required for both, the understanding of (2.3) and for the al-
gorithms later on: They can be used as test functions in a Petrov-Galerkin discretization
scheme. There, the biorthogonality relations lead to strong simplifications which make
programming easy. Again, the dual functions are in general only known by their mask
coefficients in scaling relations similar to (2.1) or (2.2).

Note that everything described in this subsection can be generalized to wavelets on
an interval as well. There, the wavelets and scaling functions, respectively, are
defined by appropriately chosen linear combinations of ,
see [21] and the references therein. In this way it is also possible to incorporate e.g.
homogeneous Dirichlet or Neumann boundary conditions required for the solution of
PDEs. In case of wavelets on the interval, the spaces and have a finite dimension.
More precisely and .

2.2 Multivariate Wavelets

The simplest way to obtain multivariate wavelets is to employ anisotropic or isotropic
tensor products:

(MRA- ) Here, the multivariate wavelets are defined by

analogous.

Note that for certain choices of , f.e. , the support of may be
very anisotropic.

(MRA) Here, anisotropy is avoided . The wavelets are defined for
and by

where and . The size of the
support of is in each direction, i.e. the basis functions are rather
isotropic. The idea behind the above definition can be seen clearly in the 2D case.
The scaling functions are simply the tensor products of the univariate scaling
functions. Then,

Obviously, plays the role of in the one–dimensional case and
plays that of . Hence,

plays the role of .
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In case of the (MRA)-approach we have a linear order of the approximation spaces
similar to the one–dimensional case while for the

(MRA- )-approach the underlying approximation spaces form a
–dimensional array [27]. This explains our naming convention (MRA - ).
The constructions for the dual scaling functions/wavelets are the same as for the

(primal) scaling functions/wavelets.
To unify the notation we denote by and the wavelets and the wavelet coeffi-

cients for both, the (MRA- )- and the (MRA)-approach. In the first case and
in the second case .

A problem closely related to the efficiency of adaptive methods is the best -term
approximation for a given function . Here, one is interested in the order such
that for all and a suitable constant independent of there holds

and arbitrary, but (2.4)

Since we can represent each by wavelets the order for
the (MRA- )-approach is at least arbitrarily close to the order for the (MRA)-
approach. Of course the constant may be substantially different from .
However, the point is that under some relatively mild assumptions on the smoothness of

, the (MRA- )-approach yields a significantly larger order of approximation than the
(MRA)-approach: . Further information on this topic can be found
in e.g. [27, 10, 9, 17, 34].

Finally, some comments on the geometry of the considered domain are in order. Due
to the intrinsic tensor product construction of both multivariate approaches, rectangular
domains are the only geometries for which the (MRA- )- and the (MRA)-wavelets can
be used directly. Thus, complicated geometries pose a serious problem.

With respect to the implementational effort, the simplest solution is to embed a given
non-rectangular domain into an enclosing rectangular domain and to solve
here a modified PDE, where the boundary conditions on are included in the right
hand side. See [12] and the references therein for the special case of the Navier-Stokes
equations. However, a drawback of this approach is the additional adaptive refinement
needed in the vicinity of in order to resolve the forcing term sufficiently accurate.

Another solution to the geometry problem is the use of parametric mappings, i.e. the
computational domain is mapped to the real domain . Topological complicated
situations are handled by structured blocks. This approach is quite common in engineer-
ing applications. In context of the Navier Stokes equations this approach has a further
advantage: The underlying curvilinear grid is aligned to the surface of . Now, since
the flow is approximately also aligned to the surface of , the flow is approximately
aligned to the underlying grid. This is exactly the situation where we can expect the
(MRA- )-approach to work very well.

2.3 Time Dependent Problems and Adaptive Basis Selection

Consider the linear convection-diffusion problem
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(2.5)

which is a model for the evolution part of the Navier Stokes equations. A common way
to discretize (2.5) is to use a FD/E/V or wavelet method for the spatial discretization
and a time stepping (i.e. FD) method for the time discretization:

(2.6)

Here, is an explicit approximation to the convective term e.g. of Adams-Bashforth
or Runge-Kutta type. Note that in case of strongly time-dependent problems like turbu-
lence (our final goal) the additional effort for the implicit treatment of the convective
term does not pay off, since the time step size has to be quite small anyway.

An important question for our adaptive wavelet methods is how to select the adaptive
basis. A simple, but efficient strategy is the following:
For the initial condition we use an appropriately chosen initial adaptive basis .
Usually is the set of with or less than a maximum level . Then, the time
evolution of and is calculated as follows:

(Adaptive Time Stepping Method)
given are the initial adaptive index set and

for to do

// Time Step:

Calculate the convective term

Solve

// Adaptivity: new adaptive basis

Determine

Determine such that

// Adaptivity: prolongation to new basis

Set

end

The first part of this algorithm is the time stepping method (2.6). Here, we used an
Euler scheme for the sake of simplicity. Note however, that other higher order time
discretization methods can be plugged in straightforwardly.
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In the second part, first we determine the set of active basis functions. The
analog of this step in adaptive FE/V methods would be the selection of elements which
should be refined. The refinement criterion we use is whether or not the magnitude of a
particular wavelet coefficient is larger than a given threshold, i.e. .

The use of the magnitude of the wavelet coefficients can also be interpreted as a
traditional method of local error estimation. If one takes (P1) and (P2) into account it
is quite easy to see that the magnitude of a wavelet coefficient is a measure of the
magnitude of a local finite difference approximation of some higher order derivative of

, i.e. we work with a gradient type error indicator.
Now consider the second step of the adaptivity strategy, i.e. the determination of

by insertion of basis functions which are in space and scale close to the active
basis functions of . We assume that the current solution is quite accurate and
we want to preserve this property also for the next time slice . For the sake of sim-
plicity, let us assume that we calculate by the following explicit Petrov–Galerkin
scheme:

The best index set with a given number of degrees of freedom is that with
the largest entries . Now, the a priori known locality properties of the
differential operator show that can only be
significant if is near to one of the significant . In this sense, the above method
is closely related to the works of Cohen, Dahmen and DeVore [5] or the work of Becker
and Rannacher [1, 2].

The last issue of the section is the conservation of mass or energy. We may assume
that the wavelets have a vanishing mean value, except for the wavelets on the coars-
est level which are always kept in the adaptive basis. Then, the remeshing step does
not change the mass budget . Unfortunately, things are more complicated for the
energy . For -orthogonal wavelets (which are used in method I described in
the next section) there is no problem, but for all other types of wavelet-approaches we
usually have only an estimate for the change of energy (see eq. (2.3)) introduced by the
remeshing step. Of course this change will be quite small, but we can not say whether
the energy defect is positive or negative.

However, in our numerical experiments [23] with non- -orthogonal Interpolet wave-
lets (see section 4) it turned out that the dominant contribution of the energy defect does
not come from remeshing but from the discretization of the convective term which is
not energy conservative in the adaptive case, since telescope or partial summation ar-
guments fail. Nevertheless, we observed a very good prediction of the rate of energy
dissipation. Figure 1 shows the energy and the number of degrees of freedom (DOF)
for the Molenkamp test of a rotating hill (see e.g. [24] pp. 248) with the quite small
diffusion of , i.e , using (MRA- )-Interpolet wavelets.

Another possible strategy would be to choose the largest wavelet coefficients, where is a fixed given
number. In this case the work count would be almost constant for all time steps.
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Figure 1 DOF and energy for adaptive Molenkamp test. The maximum #DOF for ( ) is
.

3 Method I

For the numerical simulation of two–dimensional turbulence we consider the Navier–
Stokes equations written in velocity–vorticity formulation

(3.7)

with the velocity field , the vorticity and the kinematic viscosity
. We assume periodic boundary conditions in both directions.
For the time discretization we use finite differences with a semi–implicit scheme,

i.e. backward-Euler for the viscous term and Adams–Bashforth extrapolation for the
nonlinear term, both of second order. We obtain

where (3.8)

with time step , and representing the identity.
For the spatial discretization we use a Petrov–Galerkin scheme. Therefore the vor-

ticity is expanded into a set of trial functions and the minimization of the weighted
residual of (3.8) requires that the projection onto a space of test functions vanishes.

As space of trial functions we employ a multiresolution analysis in two dimensions,
i.e. the (MRA)-approach, and expand at time step into an orthonormal wavelet
series, from the largest scale to the smallest scale :

where (3.9)

Here, the wavelets stem from one–dimensional orthogonal wavelets [7] with pe-
riodic boundary conditions. Thus, the wavelets also form a -orthogonal basis, i.e.
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One consequence of this is that we know exactly what amount of enstrophy is lost in
the remeshing step.

The test functions used for the transport equation are then defined as solutions of
the linear part of equation (3.8), i.e.

(3.10)

Hence,

This avoids the assembly of the stiffness matrix and the solution of a linear equation at
each time step. The functions , called vaguelettes, are explicitly calculated in Fourier
space and have localization properties similar to wavelets.

The solution of (3.8) therewith reduces to a simple change of basis,

(3.11)

An adaptive discretization is obtained by the Adaptive Time Stepping Method of the
previous section using a nonlinear wavelet thresholding technique which retains only
wavelet coefficients with absolute value above a given threshold , where

. The nonlinear term is evaluated by partial collocation on
a locally refined grid. The vorticity is reconstructed in physical space on an adap-
tive grid from its wavelet coefficients using the adaptive wavelet reconstruction
algorithm [3]. Using the adaptive vaguelette decomposition with , we
solve ( being the stream function), get and finally reconstruct

on the refined grid. By means of centered finite differences of 4th order we finally
compute and on the adaptive grid and we evaluate the non-
linear term pointwise. Subsequently (3.11) can be solved using the adaptive vaguelette
decomposition. A complete description of this algorithm is given in e.g. [29]. Finally
let us mention that the total complexity of the algorithm is of order , where
denotes the number of wavelet coefficients retained in the adapted basis.

4 Method II

For this method we used Deslaurier-Dubuc Interpolets [8, 22] together with the (MRA-
) construction and their dual counterparts as trial and test functions. The advantage of

Interpolets is that not only the scaling functions, but also the wavelets are interpolating.
This allows for the efficient evaluation of non-linear terms. Besides of its potential ad-
vantages with respect to an efficient approximation (2.4), the (MRA- ) technique leads
to a very simple structure of the algorithms in the multivariate case: All operations we
require (adaptive wavelet transform, its inverse, the adaptive evaluation of differential
operators) boil down to the corresponding adaptive operations for the 1D case. As an
example we consider the evaluation of the part of the Laplacian:
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A description of the complete scheme and of all adaptive algorithms is given in [22].
These algorithms have a work count which is proportional to . An analysis of the
consistency order of the Interpolet Petrov-Galerkin scheme is contained in [20].

Now, we consider the Navier-Stokes equations in primitive variable formulation:

with appropriate boundary conditions. The time discretization is achieved by means of
a Chorin-type projection method:

(Transport step) (4.12)

(Projection step) (4.13)

The projection step involves a saddle problem which can be treated by solving

with appropriate boundary conditions for the pressure. If periodic boundary conditions
are prescribed for the velocity, then and have periodic boundary conditions. If
Dirichlet boundary conditions are prescribed for , then these boundary condi-
tions are also used for and homogeneous Neumann boundary conditions are used for

to ensure that on at least. There is a controversy about Neu-
mann boundary conditions for in the literature (see e.g. [15] sec. 3.8.2) but at least for
boundary layer flows they are the physically correct ones. For all other cases we can use
the modified projection method of [28] which overcomes the problems of the Neumann
boundary conditions.

All boundary conditions are implemented by employing Interpolet–wavelets as trial
functions which fulfill the boundary conditions.

The convective term is discretized using a 3rd order Adams-Bashforth scheme.
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The operator in the pressure Poisson equation requires special attention. Instead
of the usual discrete Laplacian this operator is the nested application of the discrete
gradient operator for the pressure and the discrete divergence operator for the veloc-
ity. Only this structure ensures that the velocity is discretely divergence-free after
the projection step. A drawback of this operator is that it is not spectrally equivalent
to the continuous Laplacian. Spurious pressure oscillations and the breakdown of the
efficiency of the usual diagonal wavelet preconditioner are the result. In particular it can
be shown by the techniques of [22] (sec. 6) that the condition number of the precon-
ditioned operator is if is the finest level appearing in the adaptive
index set and the dimension of , i.e. . A solution to this problem is to
slightly modify (see [22]) both, the discrete gradient operator for the pressure and the
discrete divergence operator for the velocity. Then, the spectral equivalence with the
continuous Laplacian is established and the diagonal preconditioner yields a condition
number of . This can be further improved to by employing a more
sophisticated technique (see [22] sec. 6) which is based on the lifting scheme. However,
at least for the numerical experiments of the next section the latter improvement was
not necessary, since the number of iterations of the BiCGStab solver were quite low:
between 2-4 in each time step for the pressure Poisson equation and between 1-2 for
the transport equations.

5 Numerical Experiments

We consider a temporally developing mixing layer [25], schematically sketched in
Fig. 2. The initial velocity has a hyperbolic–tangent profile
which implies a vorticity thickness . From linear stability anal-
ysis the mixing layer is known to be inviscidly unstable. A perturbation leads to the
formation of vortices by Kelvin–Helmholtz instability, where the most amplified mode
corresponds to a longitudinal wavelength [26].

-U

!0

velocity
tanh profile

+U

x

y

Figure 2 Initial configuration for the mixing layer.

The initial vorticity thickness is chosen such that 10 vortices should develop in the
numerical domain of size . To trigger the instability we superimposed a weak
white noise in the rotational region. The velocity is and the viscosity is

.
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For the reference simulations two Fourier spectral codes were applied to the peri-
odized version of the problem with two mixing layers on . The first code
is based on the vorticity formulation of the Navier-Stokes equations and employs a 2nd
order Adams-Bashforth (AB2) scheme as in method I; the second code is based on the
pressure-velocity formulation and uses a 3rd order Adams-Bashforth (AB3) scheme as
in method II. The numerical resolution was for both codes.

5.1 Results for method I

For the numerical simulation we employ a maximal resolution of , which
corresponds to in (3.9), and cubic spline wavelets of Battle–Lemarié type. The
time step is . The threshold for the wavelet coefficients was .

In Fig. 3 (left) we compare the energy spectrum at for a reference computa-
tion using a classical pseudo-spectral method, and for two wavelet computations using
different thresholds ( and ).

10 -11

10 -9

10 -7

10 -5

10 -3

10 -1

10 0 10 1 10 2

Fourier
AWL1e6
AWL1e5

E(
K)

K

Figure 3 Left: energy spectra for the pseudo–spectral reference run and for the adaptive wavelet
simulations with thresholds . Right: adaptive grid reconstructed from the index
set of the retained wavelet coefficients. Both at time .

Fig. 3 (left) shows that all scales of the flow are well–resolved for both thresholds.
The underlying grid Fig. 3 (right) which corresponds to the centers of active wavelets
for the computation with at shows a local refinement in regions
of strong gradients where dissipation is most active. In Fig. 4 (bottom) we show the
evolution of the vorticity field for the adaptive wavelet simulation with threshold

and for the reference pseudo–spectral computation (top). In both simulations, as
predicted by the linear theory, 10 vortices are formed, which subsequently undergo
successive mergings. In Fig. 5 the active wavelet coefficients (gray entries) are plotted
using a logarithmic scale. The coefficients are placed at position

with the origin in the lower left corner and the -coordinate oriented
upwards, from coarser to finer scales. We observe that the basis dynamically adapts
to the flow evolution during the computation with only of the coefficients being
used. We observe that in the wavelet simulation the formation and evolution of vortices
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Figure 4 at . Top: spectral (vorticity-based). Bottom: method I (
).

Figure 5 Active wavelet coefficients at . Method I ( ).
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Figure 6 Left: evolution of enstrophy. Right: evolution of #DOF. Method I ( ).
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are well captured, although we find that at later times a slight phase shift appears with
respect to the reference run (top). This might be due to the fact that the retained wavelet
coefficients contain 94% of the total enstrophy, as observed in Fig. 6 (left) which shows
the time evolution of the total enstrophy using the different thresholds. The 6% loss of
enstrophy comes from the fact that in the wavelet simulations we have not modelled
the effect of the discarded modes onto the retained ones, similarly to the subgrid scale
model used in LES. This will be considered in future work, where the enstrophy of
the discarded wavelets will be reinjected into the coherent vortices using the wavelet
forcing method we have proposed [32].

Another explanation for the phase shift might be that the method discretizes the most
important term, i.e. the convective term, by central finite differences. Therefore, the
method behaves like a central finite difference method. It is well known [4] that in this
case the phase error is the dominating error.

Finally, we plot the time evolution of the number of degrees of freedom for the two
wavelet runs in Fig. 6 (right). First, we observe an initial phase, up to s, where
there is a strong reduction in the number of active modes, which corresponds to the
formation of the coherent vortices. Then the number of active modes remains almost
constant, and represent a significant reduction of the number of modes, with

for and for out of initial modes.

5.2 Results for Method II

For the numerical simulations we employed tensor products of 6th order Interpolets,
i.e. in (P2), see section 2. The values of the threshold parameter were set to

. Note that these values can not be directly compared to
used in method I, since there, the wavelets are normalized to , while the
Interpolet wavelets are normalized to . If we would normalize
them to then, the present threshold criterion corresponds to
, i.e. finer scales get a larger weight. This can be generalized to criteria of type:

with e.g.

In this case the threshold strategy is adjustable to different Sobolev norms by the pa-
rameter (compare (2.3)). Numerical experiments with respect to the impact of to the
performance of the adaptive scheme will be done in the future.

In the present numerical experiments with method II the finest level was to
take into account the expected anisotropy of the mesh. The time step was
which corresponds to a CFL number of with respect to the maximum velocity
encountered during the simulation. The initial velocity has been calculated in Fourier
space with modes from the initial vorticity field used for method I.

In Figure 7 we give the results for the velocity-based spectral code (top) and method
II (bottom). Both results agree very well. Only for there is a phase shift for the
right most two vortices. Despite of these slight differences in the instantaneous vorticity
fields, the agreement between the spectral and the adaptive solutions with respect to the
statistical quantity enstrophy is almost perfect as shown in Figure 9
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Figure 7 at . Top: spectral (velocity-based). Bottom: method II (
).

Figure 8 Adaptive grids . Method II ( ).
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(left). Note that we calculated the enstrophy only for . This explains the
kink at .

The evolution of the number of degrees of freedom (DOF) is shown in Figure 9
(right). The initial velocity is not very smooth because of the white noise added to
trigger the instability. Therefore, a large number of DOF is required to resolve the initial
velocity sufficiently well. Then, in a first phase the diffusion smooths the velocity very
fast which leads to the strong decay of the number of DOF. This process is stopped
by the development of the Kelvin-Helmholtz instabilities leading to an increase of the
number of DOF ( ). In the last phase ( ) the number of coherent
vortices constantly decreases by successive merging. (The final state are two counter-
rotating vortices which dissipate.) Therefore, in this stage the number of DOF decreases
almost constantly.

In Figure 8 adaptive grids are shown which are associated to the adaptive index sets
. Each corresponds to the node , .

6 Conclusion

We have shown that the two different adaptive wavelet methods presented here yield
reliable and very accurate results with a quite small number of degrees of freedom.
Although method I and II are Eulerian and are based on Petrov-Galerkin schemes, their
adaptive character in both space and scale allows us to track the displacements and
deformations of active flow regions as Lagrangian methods would do. These methods
can also be applied to compute other flow configurations, such as jets or wakes, where
coherent vortices play an important dynamical role.

Note that with respect to the instantaneous vorticityfields the results of method I and
II and their reference codes, respectively, differ significantly. In our opinion this is due
to the different spatial discretizations inherent in a vorticity- or velocity-formulation of
the Navier-Stokes equations and, consequently, the slightly different initial conditions.
We made further experiments with the velocity-based spectral solver and varied the
time step and also changed the time discretization from AB3 to AB2, but the results
were practically the same as those shown in Figure 7. This shows that the reason for the
difference between Figure 4 and Figure 7 is not the different time discretization (AB2
and AB3).
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