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In this paper we compare the geometrical alignment properties of Fourier- and wavelet-filtered statistically
stationary two-dimensional turbulence. The goal is to study the preferential alignment angle of vorticity
gradient with respect to the compressing eigenvector of the rate-of-strain tensor, and use this quantity as a
measure of how the two filtering methods affect the small scale geometric structure of the flow. The principal
result is that for the case of the incoherent part obtained through wavelet filtering the probability density
function of this angle is flat, meaning that this field is effectively unstructured and therefore dynamically
passive. On the contrary, the corresponding field obtained through Fourier filtering reveals a bump at the angle
p/4, which indicates the presence of dynamically active filament-type structures. These results provide evi-
dence that, unlike the wavelet filtering, the Fourier filtering does remove dynamically important information
from the flow.

DOI: 10.1103/PhysRevE.66.046307 PACS number~s!: 47.27.Eq, 47.27.Gs, 47.11.1j
eli
n
o
u
o

at
re
ar
d
a
it
r

e
d

th
ic
th
i

, a
te
o
le
-

ee
y
l-

o

ow
nd
ent
n.

-
t
eak
ul-

o-
to

sian

ion
ian

d

ve-
-

p-
vor-
e-

ds

is-
of

n
lds
I. INTRODUCTION

The paper addresses the issue of computing and mod
of infinite-dimensional dynamical systems when there is
spectral separability, and therefore multiscale behavior
curs. Such systems arise in many problems in continu
mechanics and, as an example, we will consider tw
dimensional statistically stationary turbulence. The ultim
objective is to compute high Reynolds number flows cor
sponding to fully developed turbulence. Although these
dissipative phenomena, they are dominated by nonlinear
namics, hence the number of degrees of freedom drastic
increases with the Reynolds number. Even though for fin
Reynolds numbers the number of degrees of freedom
mains finite, it is still computationally intractable. Therefor
it is necessary to distinguish between active and passive
grees of freedom. The latter are slaved to the former in
sense that they do not exhibit their own nonlinear dynam
The general approach is to deterministically compute
evolution of the active degrees of freedom, whereas the
fluence of the passive ones is only statistically modeled
their intrinsic dynamics is essentially negligible. Hereaf
we will compare two different approaches to the problem
separation of modes, namely, using the Fourier- and wave
filtering methods. A preliminary version of this work, includ
ing simulations at a lower resolution, appeared in Ref.@1#.

II. FOURIER AND WAVELET FILTERING

The Fourier filtering is based on the separation betw
low and high wave number modes and is characterized b
given cutoff wave number. This is one of the traditional fi
ters used in large Eddy simulation~LES! to compute high
Reynolds numbers flows. This classical approach relies
1063-651X/2002/66~4!/046307~5!/$20.00 66 0463
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the assumption of scale separability of the turbulent fl
dynamics. The validity of this hypothesis is still debated a
in the present work we propose and analyze a differ
method of filtering which no longer requires this assumptio
By means of nonlinear wavelet filtering~see Farge and co
workers @2–4#! we split a given flow field into a coheren
and an incoherent part, corresponding to strong and w
wavelet coefficients, respectively. Both components are m
tiscale, but exhibit distinct statistical behaviors. For tw
dimensional flows the coherent contribution corresponds
localized vortices which are characterized by a non-Gaus
vorticity probability density function~PDF! and a long range
correlation. On the other hand, the incoherent contribut
corresponds to a residual flow, which exhibits a Gauss
vorticity PDF and a short range correlation@3#.

For two-dimensional flows the wavelet-filtering metho
consists in projecting the vorticity fieldv5]v /]x2]u /]y
(u and v are the two velocity components! onto a two-
dimensional orthogonal wavelet basis spanned by the wa
lets cm , with the multiindexm characterizing the scale, po
sition, and direction of each basis function@2#. In this study
we used the Coifman 12 wavelet which is compactly su
ported and has four vanishing moments. The coherent
ticity field v. is then reconstructed by taking only the wav
let coefficients with absolute value larger thanṽT
5(4Z ln N)21/2. This threshold in the wavelet space depen
only on the total enstrophyZ, which is half of theL2 norm of
vorticity, and on the resolutionN, which is directly related to
the Reynolds number, without anyad hocadjustable param-
eters@3#. The choice of the threshold is motivated by stat
tical theorems for optimal denoising in the presence
Gaussian noise@5#. The wavelet filtering is the basis for a
alternative approach to the computation of large Reyno
©2002 The American Physical Society07-1
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number flows called the coherent vortex simulation~CVS!
@3,6,7#. In this method the evolution of the active degrees
freedom is computed in an adaptive basis which dynamic
tracks the coherent part of the flow@4,7,8#. In short, in the
LES method theresolvedcomponents are the low wave num
ber modes, while for the CVS method the coherent mo
are resolvedregardless of their scale. Theunresolvedparts
correspond to the high wave number and the incohe
modes in the LES and CVS methods, respectively.

III. GEOMETRICAL ALIGNMENT

The objective of the present paper is to compare the
filtering methods in terms of the structural and dynami
properties of the resolved and unresolved fields obtained
result. It therefore constitutes a part of a larger effort wher
we seek to provide solid foundations for the CVS meth
We examine the geometrical statistics~see, e.g., Ashurs
et al. @9#, Constantin@10#, and Tsinober@11#! to analyze the
dynamical and structural properties of the filtered fields.
the context of two-dimensional~2D! turbulence the issue o
central interest is the interaction of thin, elongated filame
produced by vortex interactions, with the strain field gen
ated by coherent vortices. The unresolved part can be
garded as dynamically passive as long as its evolution
constrained by the resolved part. In this case the unreso
part should not exhibit its own dynamics. If, on the oth
hand, the background field does contain some filamen
structures then, as shown by Kevlahan and Farge@12#, this
field undergoes instability and may reveal dynamically s
nificant behavior. As argued by Weiss in Ref.@13#, this phe-
nomenon is described by the equation for the evolution
vorticity gradients¹v ~tensor quantities are underlined!,

d

dt
¹v5S ]

]t
1V•“ D¹v52~“V!T

•¹v, ~1!

where (“V)T denotes the transpose of the velocity gradi
tensor. In the above we neglect the viscous term, as its ro
only to limit the growth of vorticity gradients, whereas w
are interested in the nonlinear effects associated with t
stretching and folding. In Ref.@13# it was also argued tha
amplification of vorticity gradients is intrinsically related t
the stretching term on the right-hand side of Eq.~1! and
takes place in the hyperbolic~i.e., strain dominated! regions
of the flow. They are characterized by the Weiss param
Q5s11

2 1s12
2 2v2 being greater than zero (s1152]u/]x5

22]v/]y and s125]u/]y1]v/]x are the strain compo
nents!. Conversely, the elliptic regions of the flow, i.e., whe
Q,0, remain neutral with respect to the global dynamics
vorticity gradients. As demonstrated by Protaset al. in Ref.
@14#, the dynamics of vorticity gradients can be quantified
examining their normalized instantaneous production rae
defined as

e5
2mTSm

~S:S!1/2
, ~2!
04630
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where m5¹v/u¹vu, and S is the strain tensor,S5 1
2 (“V

1“VT). The above relation simplifies to

e5
A2

2
cos~2a!, ~3!

wherea is the angle between the vorticity gradient¹v and
the compressing eigenvectors2 of the strain tensorS. The
above formula clarifies the relation that holds between
alignment of vorticity gradient with the principal axes o
strain and the dynamics of vorticity filaments: vorticity gr
dients are steepened by the strain field when they lie wit
the range ofp/4 from the principal direction of compressio
s2 . An equivalent analysis can be formulated in terms
divorticity h5“3(vk) which is the dual vector with re-
spect to vorticity gradient and is always tangent to vortic
isolines. Herek denotes the unit vector perpendicular to t
plane of motion. In this casea would correspond to the
angle between divorticityh and the principal direction of
stretchings1 .

The above analysis is based on the assumption that
strain field remains frozen in time. The validity of this crite
rion was questioned by Basdevant and Philipovitch in R
@15#. However, in our investigation we perform space av
ages of instantaneous intensities of vorticity gradient prod
tion. Therefore, we do not have to resort to linearization
order to compute the magnitude of the nonlinear term. C
sequently, the question of how long this linearization rema
valid is not relevant here. The investigations of Hua, Kle
and Lapeyre~e.g., Refs.@16–18#! improve the Weiss crite-
rion to account for temporal variation of the strain tensor

In Ref. @14# it was shown by Protaset al. that the 2D
forced turbulence exhibits, in the mean, preferential alig
ment of the vorticity gradient with the principal direction o
compressions2 . Magnitude of this alignment was shown t
depend on the Reynolds number and the dissipation m
~Newtonian or hyperviscous dissipation!. Herein we use the
same diagnostics to explore the internal structure of the v
ticity fields obtained with the two different filtering method
In the case of the Fourier filtering we consider the alignm
property observed in the fields corresponding to high a
low wave numbers. Similarly, for the case of the wave
filtering we analyze the alignments in the coherent and
background part. We also provide results concerning the t
field which was used for filtering.

IV. NUMERICAL RESULTS

Here we analyze the vorticity fields obtained in a dire
numerical simulation of the two-dimensional incompressi
Navier-Stokes equations with periodic boundary conditio
in both directions. We used a fully-dealiased pseudospec
code with constant forcing in Fourier space at the wave nu
ber ki54 and Newtonian dissipation. Due to the inverse e
ergy cascade specific to 2D turbulent flows, we also had
add large scale dissipation in the form of Rayleigh fricti
~i.e., proportional to the streamfunction!. Time stepping was
carried out using the second order backward finite-differe
scheme on the viscous terms and the Adams-Bashforth
7-2
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TABLE I. Comparison of theL2 norms of several flow quantities and the average alignment parameters^e& for the resolved and
unresolved fields obtained using the two different filters.

Filtering method Number of coefficientsN E5
1
2 * uVW u2dx Z5

1
2 * uvu2dx P5

1
2 * u¹vu2dx ^e&

Fourier
Low-pass 0.7% 99.4% 90.8% 36% 0.16065
High-pass 99.3% 0.6% 9.2% 64% 0.00158

Wavelet
Coherent

Incoherent
0.7%
99.3%

99.2%
0.4%

94.3%
5.7%

55%
49%

0.13316
0.00127
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trapolation scheme on the advection terms. Computat
were performed at the resolutionN55122 for time long
enough to ensure that a statistically steady regime
reached~characterized by the fact that the energy spectr
no longer changes!. In Table I we compare theL2 norms of
the relevant dynamic quantities and the field-averaged va
of the alignment parametere for the Fourier and wavele
filter. In both cases we have the same fraction of retai
modes, which is equal to 0.7% of the total number of mo
N. Note that, as explained above, the averages ofe are re-
stricted to hyperbolic parts of the flow domain only. O
should observe that for the case of wavelet filtering the
ergy and palinstrophy fractions in the resolved and un
solved parts do not add up to 100%. This is due to the
that the wavelet decomposition is orthogonal for the vortic
field, but only approximately orthogonal for its gradient a
for the velocity. We observe in Table I that the wavelet filt
captures more enstrophy and palinstrophy in the reso
fields than the Fourier filter. As regards the average valu
the alignment parametere, we find different behaviors in the
resolved and unresolved fields. In the latter case the va
are smaller by two orders of magnitude comparing to
total field.

Interesting information is revealed by the PDFs of t
alignment anglea computed for the different filtered fields

FIG. 1. PDFs of the alignment anglea between the vorticity
gradient¹v and the compressing eigenvectors2 for the total field,
the Fourier high-pass filtered field, and the wavelet-backgro
field.
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In Fig. 1 we show the PDFs for the Fourier high-pass filter
field, the wavelet background field and, for comparison,
total field. The total field has the distribution typical for th
2D turbulent flows~cf. Ref. @14#!, with large values for
angles close to zero and small for angles approachingp/2.
The PDF of the incoherent field is close to uniform distrib
tion implying that this field is almost structureless. On t
contrary, the Fourier high-pass filtered field reveals a disti
bump at the anglep/4. As illustrated in Fig. 2 and in the
derivation presented in the Appendix, this situation cor
sponds, in an average sense, to the case when an iso
vorticity filament is embedded in its own strain field, an
therefore the filament axis is at the anglep/4 with respect to
the principal axes of strain. This provides evidence that fi
mentary, dynamically active structures are present in
Fourier high-pass filtered field. These observations are
ther corroborated by the unresolved fields shown in Fig. 3
Fig. 3~a! we present the vorticity of the Fourier high-pa
filtered field with its own compressing eigenvectorss2 . We
note that well defined, elongated structures are present
in agreement with the data in Fig. 1, the correspond
eigenvectors form angles close top/4 with the filaments.
This confirms that the observed structures are indeed
mentary in nature. On the contrary, the unresolved field
tained from wavelet filtering is completely random and do
not reveal any preferential alignment with its compress
eigenvectors. This implies that filamentary structures are
sent here. As regards the resolved parts~Fig. 4!, i.e., the
coherent field in the case of wavelet filtering and the lo
pass filtered field in the case of Fourier filtering, they bo
fairly well capture the PDF of the alignment angle observ
for the total field. In the case of the wavelet filtering, how
ever, the PDF is slightly underestimated.

d
FIG. 2. Scheme showing the angle between the principal axe

strain s1 and s2 ~dashed lines! and the filament with an arbitrarily
shape~thick solid line!.
7-3
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V. CONCLUSION

We conclude by saying that, unlike the wavelet filterin
the Fourier filtering does remove some dynamically imp
tant information from the filtered field. It has the form o
filamentary structures present in the unresolved fie
Stretching and folding of such vorticity filaments is the ma
mechanism of the turbulent cascade in 2D flows. Con
quently, the unresolved field obtained from Fourier filteri
is not in statistical equilibrium and may therefore devel
nontrivial behavior. Unlike the Fourier filtering, the mult

FIG. 3. Vorticity magnitudeuvu in the unresolved fields with
compressing eigenvectors in hyperbolic regions. In order to m
nify details, only the@0,p/2#3@0,p/2# fraction of the whole field is
shown in both cases.
04630
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scale wavelet filtering allows one to effectively retain the
nonlinear effects in the resolved fields. These findings w
established using the concept of the geometrical statis
Similar ideas were recently used by Dubos in Ref.@19# for
the purpose of turbulence modeling. A natural extension
the present investigation would be to use similar diagnos
in order to study the filtering effect on 3D flows. First resu
concerning the wavelet filtering of 3D turbulent flows we
recently reported by Fargeet al. in Ref. @4#.
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FIG. 4. PDF of the alignment anglea between the vorticity
gradient¹v and the compressing eigenvectors2 for the total field,
the Fourier low-pass filtered field, and the wavelet-coherent fie

FIG. 5. Scheme showing the angle between the principal axe
strain s1 and s2 ~dashed lines! and a circular filament~solid line!.
This configuration is related to the arbitrarily shaped filame
shown in Fig. 2 through a conformal mapping.
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APPENDIX

In this appendix we show that the angle between the p
cipal axes of strain induced by a vorticity filament and t
axis of this filament is equal top/4 ~this angle is the same fo
both stretching and compressing directions, since due
symmetry of the strain tensor, they are mutually orthogon!.
In order to simplify calculations, we consider here the velo
ity field induced by a thin circular filament shown in Fig.
Using a conformal mapping~e.g., Nehari@20#!, this velocity
field can be transformed into the velocity field induced by
filament with an arbitrary shape~cf. Fig. 2!, while preserving
the angle between any two intersecting curves in the
representations. In particular, the angle between the filam
axis and the principal directions of strain will be unchang
This ensures generality of the derivation that follows. T
velocity field due to the circular filament is the same as t
induced by a uniform vorticity distribution within a circula
disk with radiusR and the same total circulationG, and is
given by

V~z!5~u2 iv !~z!5
G

2p iz
, ~A1!
u

n,
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wherez5x1 iy is the complex coordinate andi the imagi-
nary unit. The center of the circular filament is located at
origin. The corresponding strain field is given by

S~z!5
1

2
~s112 is12!5

dV

dz
52

G

2p iz2
. ~A2!

The eigenvalues of the strain tensorS are now given by

l1/256As11
2 1s12

2 56AS(z)S(z) ~overbar denotes comple
conjugation! and the compressing eigenvector iss25

@2s12,l1s11#
T5@ Im(S),ASS̄1Re(S)#T. The angleb that

this eigenvector forms with the abscissa~cf. Fig. 5! can be
characterized as

cot~b!5
ASS̄1Re~S!

Im~S!
5

11cosS 2w2
p

2 D
sinS 2w2

p

2 D , ~A3!

where we used formula~A2! andw is the angle between th
normal to the filament and the abscissa. Using now the id
tity cot(a/2)5@11cos(a)#/sin(a) we see thatb5w2p/4,
which confirms that the compressing eigenvector forms
anglep/4 with the filament axis~and the normal to the fila-
ment!. An analogous result obviously concerns the stretch
eigenvectors1 .
s-
@1# B. Protas, K. Schneider, and M. Farge, inAdvances in Turbu-
lence, edited by C. Dopazoet al. ~CIMNE, Barcelona, 2000!,
Vol. VIII, pp. 793–796.

@2# M. Farge, Annu. Rev. Fluid Mech.24, 395 ~1992!.
@3# M. Farge, K. Schneider, and N. Kevlahan, Phys. Fluids11,

2187 ~1999!.
@4# M. Farge, G. Pellegrino, and K. Schneider, Phys. Rev. Lett.87,

054501~2001!.
@5# D. Donoho and I. Johnstone, Biometrika81, 425 ~1994!.
@6# M. Farge and K. Schneider, Flow Turbul. Combust.66, 393

~2001!.
@7# K. Schneider and M. Farge, inNotes on Numerical Fluid Me-

chanics, edited by E. H. Hirschel~Springer, New York, 2002!,
Vol. 82, pp. 261–270.

@8# K. Schneider, N. Kevlahan, and M. Farge, Theor. Comp
Fluid Dyn. 9, 191 ~1997!.

@9# W. T Ashurst, A.R. Kerstein, R.M. Kerr, and C.H. Gibso
Phys. Fluids30, 2343~1987!.
t.

@10# P. Constantin, SIAM Rev.36, 73 ~1994!.
@11# A. Tsinober, Eur. J. Mech. B/Fluids17, 421 ~1998!.
@12# N.K.R. Kevlahan and M. Farge, J. Fluid Mech.346, 49 ~1997!.
@13# J. Weiss, Physica D48, 273 ~1991!.
@14# B. Protas, A. Babiano, and N.K.-R. Kevlahan, Physica D128,

169 ~1999!.
@15# C. Basdevant and T. Philipovitch, Physica D73, 17 ~1994!.
@16# G. Lapeyre, P. Klein, and B.L. Hua, Phys. Fluids11, 3729

~1999!.
@17# P. Klein, B.L. Hua, and G. Lapeyre, Physica D146, 246

~2000!.
@18# G. Lapeyre, B.L. Hua, and P. Klein, Phys. Fluids13, 251

~2001!.
@19# T. Dubos, C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., A

tron. 329, 509 ~2001!.
@20# Z. Nehari, Conformal Mapping~McGraw-Hill, New York,

1952!.
7-5


