
“farge”
2001/11/20
page 450

�

�

�

�

�

�

�

�

COURSE 9

ANALYSING AND COMPUTING
TURBULENT FLOWS
USING WAVELETS

M. FARGE K. SCHNEIDER

LMD-CNRS,
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ANALYSING AND COMPUTING
TURBULENT FLOWS
USING WAVELETS

M. Farge1 and K. Schneider2

Abstract

These lecture notes are a review on wavelet techniques for analyzing
and computing fully-developed turbulent flows, which correspond to
the regime where nonlinear instabilities are dominant. The wavelet-
based techniques we have been developing during the last decade
are explained and the main results are presented. After introduc-
ing the continuous and discrete wavelet transforms we present classi-
cal and wavelet-based statistical diagnostics to study turbulent flows.
We then present wavelet methods for extracting coherent vortices in
two- and three-dimensional turbulent flows. Afterwards we present an
adaptive wavelet solver for the two-dimensional Navier–Stokes equa-
tions and apply it to compute a time-developing turbulent mixing
layer. Finally we draw some conclusions and present some perspec-
tives for turbulence modelling.

1 Introduction

This chapter will focus on fully-developed turbulence in incompressible
flows. By fully-developed turbulence we mean the limit for which the non-
linear advective term of Navier–Stokes equations is larger by several orders
of magnitude than the linear dissipative term. The ratio between both
terms is defined as the Reynolds number Re, which is related to the ratio
of the large excited scales and the small scales where dissipation damps
any instabilities. In practically relevant applications (e.g. aeronautics, me-
teorology, combustion...) Re varies in between 106 and 1012. For Direct

1LMD-CNRS, École Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05,
France.

2CMI, Université de Provence, 39 rue Joliot–Curie, 13453 Marseille Cedex 13, France.

c© EDP Sciences, Springer-Verlag 2001
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454 New Trends in Turbulence

Numerical Simulation (DNS), where all scales are resolved, the number of
degrees of freedom to be computed scales as Re for two-dimensional flows
and as Re9/4 for three-dimensional flows. Consequently one cannot in-
tegrate Navier–Stokes equations in the fully-developed turbulence regime
with present computers without using some ad hoc turbulence model. Its
role consists in reducing the dimension of the system of equations to be
computed. Typically the degrees of freedom are split into two subsets: the
active modes to be computed and the passive modes to be modelled. The
number of active modes should be as small as possible while the number of
passive modes should be as large as possible.

A classical approach to compute fully-developed turbulent flows is Large
Eddy Simulation (LES) [37] where the separation is done by means of linear
filtering between large-scale modes, assumed to be active, and small-scale
modes, assumed to be passive. This means that the flow evolution is cal-
culated deterministically up to the cutoff scale, whereas the influence of
the subgrid scales onto the resolved scales is statistically modelled, e.g.
using Smagorinsky’s parametrization. As consequence vortices in strong
nonlinear interaction are smoothed and instabilities which may develop at
subgrid scales are ignored. Indeed LES models have problems to deal with
backscatter, i.e. transfers from subgrid scales towards resolved scales due
to nonlinear instabilities. The dynamical LES model [32] takes into ac-
count backscatter, but only in a locally averaged way. A further step in the
hierarchy of turbulence models are the Reynolds Averaged Navier–Stokes
(RANS) equations where the time-averaged mean flow is computed while
fluctuations are modelled, in which case only steady state solutions are pre-
dicted. This leads to turbulence models such as k-ε or Reynolds stress mod-
els, extensively used in industry. It should be stressed that such low-order
turbulence models are lacking universality, in the sense that one should ad-
just the parameters of the model from laboratory measurements for each
flow configuration, and sometimes different parameters are even needed for
different regions of the flow.

Turbulent flows are characterized by their unpredictability, namely each
flow realization is different although the statistics are reproductible as long
as the flow configuration and parameters are the same. One observes in each
flow realization the formation of localized coherent vortices whose motions
are chaotic, resulting from their mutual interactions. The statistical theory
of homogeneous and isotropic turbulence [2, 35, 36, 43] is based on L2-norm
ensemble averages and therefore is unsensitive to the presence of coherent
vortices which contribute too weakly to the L2-norm. In opposition to this
approach one can consider that coherent vortices are the fundamental com-
ponents of turbulent flows [49] and therefore both numerical and statistical
models should take them into account. In the present lecture notes we
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propose a new semi-deterministic approach which reconciles both, the sta-
tistical and the deterministic points of view. This technique is based on the
space and scale decomposition of the flow using the wavelet representation.

Wavelet methods have been introduced during the last decade to analyze,
model and compute fully-developed turbulent flows [6,14,17,28,29,51]. For
recent overview of wavelets and turbulence, we refer the reader to [20,22,53].
The main result is that the wavelet representation is able to disentangle
coherent vortices from incoherent background flow in two-dimensional tur-
bulent flows. Both components are multiscale but present different statis-
tics with different correlations. The coherent vortex components present
non-Gaussian distribution and long-range correlation, while the incoherent
background flow components are characterized by Gaussian statistics and
short-range correlation [16,19,21]. This leads to propose a new way to split
turbulent dynamics into: active coherent vortex modes, to be computed
in a wavelet basis dynamically adapted to follow their motion, and passive
incoherent modes, to be statistically modelled as a Gaussian random pro-
cess. This new approach, called Coherent Vortex Simulation (CVS) [21],
differs significantly from LES. LES is based on linear filtering (defined ei-
ther in physical space or in Fourier space) between large and small scales,
but without a clearcut separation between Gaussian and non-Gaussian be-
haviours. CVS uses nonlinear filtering (defined in wavelet space) between
Gaussian and non-Gaussian modes having different scaling laws, but with-
out any clearcut scale separation. The advantage of CVS method com-
pared to LES is to reduce the number of computed active modes for a given
Reynolds number [16] and to control the Gaussianity of the passive degrees
of freedom to be statistically modelled [21].

These lecture notes are organized in three parts: wavelet transforms, tur-
bulence analysis and turbulence computation. In the first part we present
both the continuous and the orthogonal wavelet transforms in one and sev-
eral dimensions, together with the corresponding algorithms. In the second
part, after a brief review of classical statistical tools for analysing turbu-
lence, we present wavelet-based statistical tools, such as local and global
wavelet spectra and discuss their relation with the Fourier spectrum. We
also introduced several wavelet-based measures to characterize and quan-
tify the intermittency, property which is generic for turbulence. In the last
part, we present a new approach, called Coherent Vortex Simulation (CVS),
which computes turbulent flows for regimes where their dynamics is domi-
nated by coherent vortices. We first show how to extract coherent vortices
out of turbulent flows, and we illustrate this method for a 3D turbulent
mixing layer. Then, after a brief review of classical methods for computing
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turbulent flows, we expose the principle of CVS. Finally we describe the al-
gorithm for computing 2D Navier–Stokes equations in an adaptive wavelet
basis and we apply it to simulate a 2D turbulent mixing layer.

Part I

Wavelet Transforms

2 History

Wavelets have been developed in the beginning of eighties in France [31].
This recent mathematical technique is based on group theory and square
integrable representations, which allows the decomposition of a signal, or a
field, into both space and scale, and possibly directions [14]. To motivate
the use of wavelets in relation with turbulence, we briefly recall some funda-
mental ideas and mention several fields of applications. For details we refer
the reader to textbooks [8,39,42]. From an abstract point of view wavelets
constitute new “atoms” and “molecules”, i.e. basic building blocks of vari-
ous function spaces out of which some can be used to contruct orthogonal
bases. The starting point is a function ψ(x), called mother wavelet. This
function is assumed to be well-localized, i.e. ψ exhibits a fast decay for |x|
tending to infinity, is oscillating, i.e. ψ has at least a vanishing integral
(the mean value is zero) or better the first m moments of ψ vanish, and is
smooth, i.e. ψ̂ the Fourier transform of ψ exhibits fast decay in wavenumber
space |k|.

The mother wavelet then generates a family of wavelets ψl,x(x′) by di-
latation (or contraction) by the parameter l > 0 and translation by the
parameter x ∈ R, i.e. ψl,x(x′) = l−1/2ψ(x

′−x
l ), where all wavelets be-

ing normalized in L2-norm. An example of such a family (for discrete l
and x) is depicted in Figure 1. The wavelet transform of a function f is
then defined as a convolution of the analysing wavelet with the signal f ,
f̃(l, x) =

∫
f(x′)ψl,x(x′)dx′. The wavelet coefficients f̃(l, x) measure the

fluctuations of f around the point x and scale (frequency) l. The function
f can be reconstructed as a linear combination of wavelets ψl,x(x′) with co-
efficients f̃(l, x) [31], e.g. f(x) = 1/Cψ

∫ ∫
f̃(l, x)ψl,x(x′)l−2dldx, Cψ being

a constant which depends on the wavelet ψ. Let us mention that due to
the localization of wavelets in physical space the behaviour of the signal at
infinity does not play any role. Therefore the wavelet analysis and synthe-
sis can be performed locally as opposed to the Fourier transform where a
global behaviour is intrinsically implicated through the nonlocal nature of
the trigonometric functions.
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Fig. 1. Example: discrete wavelets ψj,k(x) = l
j/2
0 ψ(lj0x

′ − kx0) with l0 = 2 and

x0 = 1 and l = lj0, x = kx0l
j
0 for the case of orthogonal quintic spline wavelets

ψ5,6(x
′), ψ6,32(x

′) ψ7,108(x
′).

The origin of wavelets is interdisciplinary. Wavelets come from different
fields such as engineering (subband coding, quadrature mirror filters, time-
frequency analysis), theoretical physics (coherent states of affine groups
in quantum mechanics) and mathematics (Calderon–Zygmund operators,
characterization of function spaces). Meanwhile a large spectrum of ap-
plications has grown and is still developing, ranging from signal or image
analysis and processing, to numerical analysis.

3 The continuous wavelet transform

3.1 One dimension

3.1.1 Analyzing wavelet

Starting point for the wavelet transform is a real or complex valued function
ψ(x), called wavelet, which has to fulfill the admissibility condition,

Cψ =
∫ ∞

0

∣∣∣ψ̂(k)
∣∣∣2 dk

|k| <∞ (3.1)
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where

ψ̂(k) =
1
2π

∫ ∞

−∞
ψ(x)e−i2πkxdx (3.2)

denotes the Fourier transform. If ψ is integrable this implies that ψ has
zero mean, ∫ ∞

−∞
ψ(x)dx = 0 or ψ̂(k = 0) = 0. (3.3)

In practice however one also requires that the wavelet ψ should be well-
localized in both physical and Fourier spaces, which implies smoothness.
We also require that higher order moments of ψ vanish, i.e.∫ ∞

−∞
xmψ(x)dx = 0 for m = 0,M (3.4)

which means that monomials up to degree M are exactly reproduced. In
Fourier space this property is equivalent to

dm

dkm
ψ̂(k)|k=0 = 0 for m = 0,M (3.5)

so that the Fourier transform of ψ decays smoothly at k = 0.

3.1.2 Wavelet analysis

From this function ψ, the so-called mother wavelet, we generate a family of
continuously translated and dilated wavelets, normalized in L2–norm

ψl,x(x′) = l−1/2ψ

(
x′ − x

l

)
for l > 0 and x ∈ R (3.6)

where l denotes the scale dilation parameter, corresponding to the width of
the wavelet and x the translation parameter, corresponding to the position
of the wavelet.

In Fourier space this reads

ψ̂l,x(k) =
√
lψ̂(lk)e−i2πkx (3.7)

where the contraction with 1/l is reflected in a dilation with l and the
translation with x implies a rotation in the complex plane.

The continuous wavelet transform of a signal f is then defined as a
convolution of f with the wavelet family ψl,x

f̃(l, x) =
∫ ∞

−∞
f(x′)ψl,x(x

′)dx′ (3.8)
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where ψl,x denotes in the case of complex valued wavelets the complex
conjugate.

Using Parseval’s identity we also get

f̃(l, x) =
∫ ∞

−∞
f̂(k)ψ̂l,x(k)dk (3.9)

so that the wavelet transform may be interpretated as a frequency decom-
position using band pass filters ψ̂l,x centered at frequency k = k0

l , where
k0 denotes the center of the wavelet in Fourier space, and having variable
width ∆k

k , so for increasing scales the bandwidth is getting wider.

3.1.3 Wavelet synthesis

The admissibility condition (3.1) of ψ implies the existence of a finite energy
reproducing kernel, see e.g. [8], which is a necessary condition for being able
to reconstruct a function from its wavelet coefficients. The signal can thus
be reconstructed entirely from its wavelet coefficients,

f(x) =
1
Cψ

∫ ∞

0

∫ ∞

−∞
f̃(l, x)ψl,x(x′)

dldx
l2

(3.10)

which is the inverse wavelet transform.

3.1.4 Energy conservation

There also holds an energy conservation like for Fourier transforms, i.e. a
Plancherel identity, which means that the total energy of a signal can be
either calculated in physical space or in wavelet coefficient space,∫ ∞

−∞
|f(x)|2dx =

1
Cψ

∫ ∞

0

∫ ∞

−∞
|f̃(l, x)|2 dldx

l2
· (3.11)

This formula is also the starting point for the definition of wavelet spectra.

3.2 Higher dimensions

The theory of the continuous wavelet transform can be generalized in several
dimensions [44] using rotation in addition to dilatation and translation. For
a two-dimensional function f ∈ L2(R2) (constructions for higher dimensions
are analogous) we get

f̃(l, �x, θ) =
∫ ∫

R2
f(�x′)ψl,�x,θ(�x

′)d2�x′ for l > 0, θ ∈ [0, 2π[, �x ∈ R2

(3.12)
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where the family of functions ψl,�x,θ is obtained from a single one ψ by
dilatation with l−1, by translation by �x and by rotation of angle θ,

ψl,�x,θ(�x′) =
1
l
ψ

(
Rθ

(
�x′ − �x

l

))
(3.13)

where Rθ denotes a rotation matrix.
Analoguously to the one-dimensional case this transformation is invert-

ible and isometric, provided that ψ fulfills the admissibility condition

Cψ =
∫ ∫

R2

∣∣∣ψ̂(�k)
∣∣∣2 d2�k

|�k|2 <∞. (3.14)

In the following we restrict ourselves to isotropic real-valued wavelets, so
there is no more a dependence on θ. The wavelet coefficients can then be
calculated using the formula

f̃(l, �x) =
∫ ∫

R2
f̂(�k)lψ̂(l�k)ei2π�k·�xd2�k (3.15)

where the Fourier transform of the wavelet ψl is essentially supported on
an annulus a radius l−1.

The energy conservation reads∫ ∫
R2

|f(�x)|2d�x =
1
Cψ

∫ ∞

0

∫ ∫
R2

|f̃(l, �x)|2 dld2�x

l3
(3.16)

and the function f can be recontructed entirely from its wavelet coefficients
by the relation

f(�x′) =
1
Cψ

∫ ∞

0

∫ ∫
R2
f̃(l, �x)ψl(�x′ − �x)

d2�xdl
l3

· (3.17)

3.3 Algorithm

To illustrate the practical implementation of the continuous wavelet trans-
form we consider a one-dimensional signal f(x) sampled on a regular grid
with N = 2J points, i.e. f(i/2J) for i = 0, ..., 2J − 1 are given. We assume
the signal to be periodic and compute the wavelet coefficients by means
of the Fast Fourier Transform (FFT). The large scale corresponds to the
domaine size which is by construction equal to 1. The smaller scales are
discretized logarithmically,

lj = l−j0 j ≥ 0. (3.18)

The choise of l0 is determined by the reconstruction formula to ensure a
given precision for the reconstruction of the signal by a discretized version
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of formula (3.10). For wavelets being derivatives of Gaussians the choice of
l0 = 21/4 is sufficiently precise as discussed in [8]. The smallest scale of the
discretization corresponds to 2

N = 21−J .
To compute f̃(l, x) we discretize the formula (3.9). First we compute the

disrete Fourier transform of the signal samples. Then we multiply it with
the wavelet filter in Fourier space and we obtain subsequently at each scale
lj for j = 0 to J − 1 simultaneously at all positions xn = n

N , n = 0, N − 1
the wavelet coefficients by executing an inverse FFT

f̃(lj , xn) =
N/2−1∑
k=−N/2

f̂k
√
ljψ̂(ljk)e+i2πkn/N (3.19)

where f̂k denotes the discrete Fourier transform of the samples f
(
n
N

)
,

f̂k =
1
N

N−1∑
n=0

f
( n
N

)
e−i2πnk/N . (3.20)

Due to periodicity of the signal f no boundary effects are introduced by
using the FFT. The complexity of the algorithm is of order N logN at each
scale due to the use of the FFT.

The above algorithm can be applied analoguously in the two-dimensional
case using tensor product discretization together with 2D FFTs.

4 The orthogonal wavelet transform

4.1 One dimension

In this section we recall some essential features of the discrete wavelet ap-
proximation on the real line, i.e. in L2(R) that will be important in the
sequel. For an exhaustive treatment we refer the reader to [8, 39, 42].

4.1.1 1D Multi-Resolution Analysis

The discrete wavelet transform relies on the concept of Multi-Resolution
Analysis (MRA) which is a sequence of imbedded subspaces Vj verifying

Vj ⊂ Vj+1 ∀j ∈ Z (4.1)

⋃
j∈Z

Vj = L2(R) (4.2)

⋂
j∈Z

Vj = {0} (4.3)
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f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1. (4.4)

A scaling function φ(x) is required to exist. Their translates generate a
basis in each Vj , i.e.

Vj = span{φji}i∈Z (4.5)

where
φji(x) = 2j/2φ(2jx− i) j, i ∈ Z. (4.6)

In the classical case this basis is orthonormal, so that

〈φji, φjk〉R = δik (4.7)

with 〈f, g〉R =
+∞∫
−∞

f(x)g(x)dx being the inner product in L2(R). The main

issue of the wavelet approach now is to work with the orthogonal comple-
ment spaces Wj defined by

Vj+1 = Vj ⊕Wj . (4.8)

Based on the function φ(x) one can find a function ψ(x), the so-called
mother wavelet. Their translates and dilates constitute a orthonormal bases
of the spaces Wj ,

Wj = span{ψji}i∈Z (4.9)

where
ψji(x) = 2j/2ψ(2jx− i) j, i ∈ Z. (4.10)

Each function f ∈ L2(R) can now be expressed as

f(x) =
∑
i∈Z

f j0iφj0i(x) +
∞∑
j=j0

∑
i∈Z

f̃jiψji(x) (4.11)

where
f ji = 〈f, φji〉R f̃ji = 〈f, ψji〉R. (4.12)

In numerical applications the sums in (4.11) have to be truncated which
corresponds to the projection of f onto a subspace of VJ ⊂ L2(R). The
decomposition (4.11) is orthogonal, as, by construction,

〈ψji, ψlk〉R = δjl δik (4.13)
〈ψji, φlk〉R = 0 j ≥ l (4.14)

in addition to (4.7).
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4.1.2 Regularity and local decay of wavelet coefficients

The relation between the local or global regularity of a function and the
decay of its wavelet coefficients is well known. The global regularity di-
rectly determines the error being made when the wavelet sum is truncated
at some scale. Depending on the type of norm and whether global or lo-
cal characterization is concerned, various relations of this kind have been
developed, see e.g. [8, 39, 42] for an overview. As an example we consider
the case of an α-Lipschitz function, with α ≥ 1 [33]. Suppose f ∈ L2(R),
then for [a, b] ⊂ R the function f is α-Lipschitz for any x0 ∈ [a, b], i.e.
|f(x0 + h) − f(x0)| ≤ C|h|α, if and only if there exists a constant A such
that |〈f, ψji〉| ≤ A2−jα−

1
2 for any (j, i) with i

2j ∈]a, b[. This shows the rela-
tion between the local regularity of a function and the decay of its wavelet
coefficients in scale. The adaptive discretization discussed in the present
lecture notes is precisely based on taking into account spatially varying
regularity of the solution through a variable cut off in scale of its wavelet
series.

4.2 Higher dimensions

This section consists of an extension of the previously presented one-dimen-
sional construction to higher dimensions. For simplicity, we will consider
only the two-dimensional case, since higher dimensions can be treated anal-
ogously [8, 39, 42]. We start with a brief description of the construction
principle and then turn in more detail to the two-dimensional case with
periodicity, which is relevant for the subsequent applications.

4.2.1 Tensor product construction

Having developed a one-dimensional orthonormal basis ψji of L2(R) one
would like to use these functions as building blocks in higher dimensions.
One way of doing so is to take the tensor product of two one-dimensional
bases [8] and to define

ψjx,jy,ix,iy(x, y) = ψjx,ix(x)ψjy ,iy(y). (4.15)

The resulting functions constitute an orthonormal wavelet basis of L2(R2).
Each function f ∈ L2(R2) can then be developed into

f(x, y) =
∑
jx,ix

∑
jy ,iy

f̃jx,jy,ix,iyψjx,jy ,ix,iy(x, y) (4.16)

with djx,jy,ix,iy = 〈f, ψjx,jy,ix,iy〉. However in this basis the two variables
x and y are dilated separately and therefore no longer form a multiresolu-
tion analysis. This means that the functions ψjx,jy involve two scales, 2jx
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and 2jy , and each of the functions is essentially supported on a rectangle
with these side lengths. Hence the decomposition is often called rectan-
gular wavelet decomposition. This is closely related to the standard form
of operators using the nomenclature of Beylkin [3]. From the algorithmic
viewpoint this is equivalent to apply the one-dimensional wavelet transform
to the rows and the columns of a matrix representing an operator or a two-
dimensional function. For some applications such a basis is advantageous,
for others not. For exemple in turbulence the notion of a scale has an im-
portant meaning and one would like to have a unique scale assigned to each
basis function.

4.2.2 2D Multi-Resolution Analysis

A suitable concept which fulfills the above requirement of having a unique
scale is the construction of a truly two-dimensional MRA of L2(R2). It can
be obtained through the tensor product of two one-dimensional MRA’s of
L2(R) [42]. More precisely one defines the spaces Vj , j ∈ Z by

Vj = Vj ⊗ Vj (4.17)

and Vj = span{φj,ix,iy(x, y) = φj,ix(x)φj,iy (y), ix, iy ∈ Z} fulfilling analo-
gous properties as in the one-dimensional case (3.1–3.4).

Likewise, we define the complement space Wj to be the orthogonal
complement of Vj in Vj+1, i.e.

Vj+1 = Vj+1 ⊗ Vj+1 = (Vj ⊕Wj) ⊗ (Vj ⊕Wj) (4.18)
= Vj ⊗ Vj ⊕ ((Wj ⊗ Vj) ⊕ (Vj ⊗Wj) ⊕ (Wj ⊗Wj)) (4.19)
= Vj ⊕ Wj. (4.20)

It follows that the orthogonal complement Wj = Vj+1
Vj consists of three
different types of functions and is generated by three different wavelets

ψκj,ix,iy(x, y) =




ψj,ix(x)φj,iy (y); κ = 1
φj,ix(x)ψj,iy (y); κ = 2
ψj,ix(x)ψj,iy (y); κ = 3.

(4.21)

Observe that here the scale parameter j simultaneously controlls the dilata-
tion in x and in y. We recall that in d dimensions this construction yields
2d − 1 types of wavelets spanning Wj.

Using (4.21) each function f ∈ L2(R2) can be developed into an MRA
basis as

f(x, y) =
∑
j

∑
ix,iy

∑
κ=1,2,3

f̃κjx,jy,ix,iyψ
κ
j,ix,iy(x, y) (4.22)
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with dκjx,jy,ix,iy = 〈f, ψκj,ix,iy 〉. The wavelets ψκj,ix,iy are the basis functions
of the so-called square wavelet decomposition. The algorithmic structure
of the one-dimensional transforms carries over to the two-dimensional case
by simple tensorisation, i.e. applying the filters at each decomposition step
to rows and columns. Applying this kind of transform to matrices rep-
resenting operators (differential, integral, integro-differential) leads to the
non-standard form in the terminology of Beylkin [3].

Remark: The described two-dimensional wavelets and scaling functions are
separable. This advantage facilitates the generation of a multidimensional
MRA from several one-dimensional MRA’s. However the main drawback of
this construction is that three wavelets are needed to span the orthogonal
complement space Wj in two dimensions and seven in three dimensions.
Another property should be mentioned. By construction the wavelets are
anisotropic, i.e. horizontal, diagonal and vertical directions are preferred.
This could be an advantage in digital signal processing to recognize corners
and edges.

4.2.3 Periodic 2D Multi-Resolution Analysis

Using the tensor product construction of two-dimensional wavelets on the
real line and the periodization technique, see e.g. [46], we now recall the
essential features of periodic two-dimensional wavelets of L2(T2). For no-
tational ease we drop from now on the tilde introduced to distinguish the
periodic wavelets from those on the real line. In the latter applications the
periodic basis is used throughout unless otherwise explicitly stated.

A two-dimensional MRA of L2(T2) is a sequence of embedded subspaces
Vj ⊂ Vj+1, j ∈ N0. It can be obtained through the tensor product of two
one-dimensional MRA’s of L2(T) [42]. This induces a decomposition of
L2(T2) into mutually orthogonal hierarchical subspaces

L2(T2) = V0 ⊕j≥0 Wj. (4.23)

The space Vj is generated by the bivariate scaling functions

Vj = span{φj,ix,iy(x, y) = φj,ix(x)φj,iy (y)}ix,iy=0,...,2j−1 (4.24)

and the orthogonal complement space Wj = Vj+1 
 Vj , j ≥ 0 by three
different wavelets

Wj = span{ψκj,ix,iy (x, y)}ix,iy=0,...,2j−1,κ=1,2,3 (4.25)

with ψκj,ix,iy defined as in (4.21) using the periodic analogons.
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Correspondingly, any function f ∈ L2(T2) which is at least continuous
can be projected onto VJ by collocation

fJ(x, y) =
2J−1∑
ix=0

2J−1∑
iy=0

f

(
ix
2J
,
iy
2J

)
SJ,ix,iy (x, y) (4.26)

using the two-dimensional cardinal Lagrange function

Sj,ix,iy(x, y) = Sj,ix(x)Sj,iy (y). (4.27)

It can then be expressed as

fJ(x, y) = f0,0,0φ0,0,0(x, y) +
J−1∑
j=0

2j−1∑
ix=0

2j−1∑
iy=0

3∑
κ=1

f̃κj,ix,iyψ
κ
j,ix,iy(x, y) (4.28)

with coefficients

f̃κj,ix,iy = 〈f, ψκj,ix,iy〉, f0,0,0 =
∫

T2
f(x, y)dxdy (4.29)

using that φ0,0,0 = 1.
Representing a function in terms of wavelet coefficients has the following

advantages. Smooth functions yield rapid decay of the coefficients in scale
(depending on the number of vanishing moments of ψji). At locations where
u develops a singularity or an “almost singularity” only local coefficients
have to be retained (depending on the decay of ψji in space). Second, all
employed basis functions are mutually orthogonal, a property which is the
keystone of the algorithms.

4.3 Algorithm

In case of a regular sampling and periodic functions, computations can
be done in physical space by periodizing the required filters (defined below)
using Mallat’s algorithm [39]. For long filters it is more economical, however,
to use fast convolution in Fourier space employing FFT. Following [46] we
describe such a transformation together with a computational trick for its
acceleration [26]. The algorithm is based on the application of three discrete
filters. The scaling coefficients cJ,k are computed by application of the
interpolation filter

IJn = 〈SJ,n, φJ,0〉, ÎJ = 2−3J/2Î

(
k

2j

)
, Î(k) = Ŝ(k)/φ̂(k) (4.30)

to the sampled values {f( i
2J )}i.
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The filters

Gjn = 〈φj,n, ψj−1,0〉, Hj
n = 〈φj,n, φj−1,0〉 (4.31)

are classically used for computing the wavelet transform. They can be
obtained in physical space for compactly supported bases and in Fourier
space through

Ĥ(k) = φ̂(2k)/φ̂(k), Ĝ(k) = ψ̂(2k)/φ̂(k). (4.32)

The algorithm then reads

Step 0. FFT of the values {fi}i=0,...,2J−1 at the points {xi = i
2J }i=0,...,2J−1

to the Fourier coefficients {f̂k}k=0,...,2J−1.

Step 1. Interpolation using the Lagrange function SJ(x) of the space VJ
by computation in Fourier space: application of ÎJ gives (f̂J )k, k =
0, . . . , 2J − 1.

Step 2. Application of Filters G and H in Fourier space (* indicating dou-
ble length sequences)

̂(
f
∗
J−1

)
k

= Ĥk

(
f̂J

)
k

k = 0, . . . , 2J − 1 (4.33)

(̂
f̃∗
J−1

)
k

= Ĝk

(̂̃
fJ

)
k

k = 0, . . . , 2J − 1. (4.34)

Step 3. Instead of setting

fJ−1,i = f
∗
J−1,2i f̃J−1,i = f̃∗

J−1,2i i = 0, . . . , 2J−1 − 1 (4.35)

in physical space, downsampling can be done directly in Fourier space
through

(̂
fJ−1

)
k

=
̂(
f
∗
J−1

)
k

+
̂(
f
∗
J−1

)
k+2J−1

k = 0, . . . , 2J−1 (4.36)

(̂
f̃J−1

)
k

=
(̂
f̃∗
J−1

)
k

+
(̂
f̃∗
J−1

)
k+2J−1

k = 0, . . . , 2J−1. (4.37)

Step 4. Inverse FFT of lenght 2J−1 to get {f̃J−1,i}i=0,...,2J−1−1.

Iterate steps 2 to 4 replacing J by j = J−1, . . . , 0. Observe that in the
last step 2−1 is replaced by 0 and (f̂0)0 = f0,0.
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The use of (4.36, 4.37) instead of (4.35) leads to a speed up by a factor 6 with
respect to extracting the coefficients in physical space. The inverse trans-
form is obtained by executing the above steps in reversed order omitting
the conjugate complex in (4.33, 4.34) and replacing Step 3 with upsampling
in Fourier space.

Part II

Statistical Analysis
5 Classical tools

5.1 Methodology

Turbulence research is based on either laboratory or numerical experiments.
Typical quantities measured to characterize turbulent flows are scalar fields
(temperature, concentration, pressure, etc.), vector fields (velocity, vorticity,
etc.), tensor fields (stress, strain, etc.).

5.1.1 Laboratory experiments

Laboratory experiments are done (e.g. in wind tunnels or water tank) us-
ing flow visualisations and time measurements performed in few points of
the flow (e.g. hot-wire anemometry, laser velocimetry). Flow visualiza-
tions give mostly qualitative information. Time measurements give quan-
titative information by accumulating well-sampled and well-converged time
statistics, although only at very few spatial locations. By checking Taylor’s
hypothesis, namely that the time fluctuations are small compared to the
mean flow velocity, one assumes that the time statistics can be identified
with the space statistics. This allows to compare laboratory measurements
with the predictions of the statistical theory of turbulence, and also with
the statistics obtained from numerical experiments.

5.1.2 Numerical experiments

Numerical experiments are based on the accepted assumption that Navier–
Stokes is the fundamental equation of fluid dynamics whatever the flow
regime. The turbulent regime is reached when the nonlinear advective term
dominates the linear dissipative term (limit ν → 0 or Re ∝ 1/ν → ∞). In
this highly nonlinear regime, Navier–Stokes solutions can only be computed
by numerical approximation. The computation predicts the time evolution
of one flow realization only. Statistical analyses are performed afterwards
in three different ways:
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• by computing spatial statistics of instanteneous turbulent fields, which
is valid only if the computational domain is much larger than the
integral scale where turbulence is produced;

• by computing time statistics of long flow history, which is valid only
if the time evolution is much larger than the eddy turn over time
characteristic of turbulent flow instabilities;

• by running a large number of numerical simulations for the same pa-
rameter and flow configuration, but with different initial conditions.
The ensemble averages are computed afterwards. This procedure re-
quires a number of independant realisations sufficient to ensure the
stationarity of the probability distribution.

5.2 Averaging procedure

Turbulent flows are characterized by their unpredictability, namely each
flow realization is different, although the statistics are reproducible as long
as the flow configuration and parameters are the same. This is the reason
why turbulence models predict only statistical quantities.

Another essential characteristic of turbulent flows is their intermittency,
i.e. the fact that we observe in each flow realization well localized strong
events (bursts). This intermittent behaviour is not very pronounced in
the velocity field, but becomes dominant when one considers the velocity
gradients or the vorticity fields. They are characterized by non-Gaussian
probability distribution functions, whose tails correspond to the intermit-
tent bursts. We think that the flow intermittency comes from the nonlinear
dynamics of turbulent flows which, for incompressible fluids, tend to form
well localized coherent vortices (vortex spots in two dimensions and vortex
tubes in three dimensions) which move around in a chaotic way resulting
from their mutual interactions.

A crucial difficulty in turbulence modelling is to define averages able
to take into account intermittency. Actually the L2-norm averages, i.e.
(
∫ |f(x)|2dx)1/2), classically used in turbulence (e.g. two-point correlations,

second order structure functions, spectra) are “blind” to intermittency, be-
cause the well localized strong events responsible for intermittency are too
rare to affect the L2-norm, their weight remaining negligible in the integral.

To define averages able to take into account intermittency there are two
possible strategies:

• either to consider Lp-norms, i.e. ((
∫ |f(x)|pdx)1/p) with p large

enough to have the values of the PDF tails (Probability Distribution
Function) contributing significantly to the integral;
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• or to extract the rare (intermittent) events, responsible for the heavy
tails of the PDF, from the dense (non-intermittent) events, which
contribute only to the center of the PDF, and perform classical L2-
norm averages for the dense events only.

The second approach corresponds to conditional averages and requires a
criterium to separate the rare events from the dense events. As we have
assumed that the intermittency of turbulent flows is due to the presence of
coherent vortices, responsible for the rare events, we first need to identify
them in order to then be able to extract them.

As we have shown [15,17] the coherent vortices can be characterized by
the fact that they correpond to the strongest wavelet coefficients of the vor-
ticity field. Based on this property we have defined a procedure to extract
them [19,21], which consists in retaining only those vorticity wavelet coeffi-
cients ω̃ which are larger than a threshold value ω̃T = (2Z log10N)1/2, with
Z the total enstrophy and N the resolution (i.e. the number of grid points
or wavelet coefficients). We then verify that the PDF of the discarded co-
efficients, i.e. those smaller than the treshold ω̃T which correspond to the
dense non-intermittent events, is actually Gaussian.

5.3 Statistical diagnostics

5.3.1 Probability Distribution Function (PDF)

To motivate the introduction of a probability space (Ξ,F ,P) we consider:

• the set of all possible configurations of the flow, i.e. the phase space
of the Navier–Stokes equations, denoted by Ξ;

• the collection F of all experiments with a definite outcome which have
been performed, called the flow realisations;

• a probability measure P assigned to F , such that P(Ø) = 0 and
P(Ξ) = 1, which assigns a probability to each experiment which has
been performed.

We consider a stationary, homogeneous and isotropic random field
f(ξ, �x, t) ∈ F , with ξ ∈ Ξ, �x ∈ Rn and t ∈ R+

0 . For fixed ξ the func-
tion f(�x, t) is called a realization of the random field or a sample, e.g. one
component of the velocity field.

Definition of the PDF: Using the probability measure P we define the dis-
tribution function F (g) = P(−∞ < f ≤ g, f ∈ Ξ) which measures the
probability of f having a value less or equal to g.



“farge”
2001/11/20
page 471

�

�

�

�

�

�

�

�

M. Farge and K. Schneider: Lectures on Wavelets and Turbulence 471

5.3.2 Radon–Nikodyn’s theorem

If the probability measure P is absolutely continuous, there exists a proba-
bility density p of P such that p(f) = dP

df , which corresponds to the deriva-
tive dF

dg of the distribution F , i.e. p(f)df = P(f < g ≤ f + df, g ∈ Ξ).

The probability density is normalized such that
∫

R
p(x)dx = 1.

5.3.3 Definition of the joint probability

Let f and g be two random fields, one can define the joint probability

F (f, g) = P(−∞ < f ′ ≤ f, −∞ < g′ ≤ g, [f ′, g′] ∈ Ξ).

The corresponding joint probability density function is given by p(f, g) =
p(f)p(g) − p(f ∩ g) (Bayes’ theorem). If f and g are independent and
identically distributed (i.i.d.), then p(f, g) = p(f)p(g).

5.3.4 Statistical moments

The q-th order moments of the random field f are defined as

Mq(f) = 〈f q〉 =
∫
f qp(f)df. (5.1)

If f ∈ Ξ is ergodic the moments can also be expressed as space averages

Mq(f) =
∫

(f(�x))qdn�x, (5.2)

where the integral is defined as

∫
= lim

L→∞
1
L3

∫ L

0

∫ L

0

∫ L

0

, (5.3)

L being the size of the domain.
Ratios of moments are defined, such as

Qp,q(f) =
Mp(f)

(Mq(f))p/q
· (5.4)
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Classically one chooses q = 2, which leads to define statistical quantitities
such as:

• skewness S = Q3,2(f);

• flatness F = Q4,2(f);

• hyperskewness Sh = Q5,2(f);

• hyperflatness Fh = Q6,2(f).

5.3.5 Structure functions

The p-th order structure function of a random scalar field f is defined as

Sp,f (�l) =
∫

(f(�x +�l) − f(�x))pdn�x. (5.5)

5.3.6 Autocorrelation function

The autocorrelation function of the random scalar field f is defined as

R(�l) =
∫
f(�x)f(�x+�l)dn�x (5.6)

and for vector fields �f we get the two-point correlation tensor

Rij(�l) =
∫
fi(�x)fj(�x+�l)dn�x. (5.7)

Note that in turbulence the above quantity computed for the velocity field is
called Reynolds stress tensor, and plays a key role in turbulence modelling.

5.3.7 Fourier spectrum

Definition of the spectrum: The spectrum of the random scalar field f is
the Fourier transform of its autocorrelation function:

Φ(�k) =
1

(2π)n

∫
R(�l)e−i�k·�ldn�l. (5.8)

For vector fields we obtain analogously

Φij(�k) =
1

(2π)n

∫
Rij(�l)e−i

�k·�ldn�l. (5.9)

One can integrate Φ(�k) on shells of radius k = |�k| which gives the one-
dimensional spectrum

E(k) =
∫

Φ(�k)kn−1dθ. (5.10)
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5.3.8 Wiener–Khinchin’s theorem

For a function R(l) ∈ L1(R), to be the correlation function of a homogeneous
field f(x) which satisfies the condition S2(l) → 0 for l → 0, it is necessary
and sufficient that it has a representation of the form R(l) =

∫
R
E(k)eikldk

where E(k) ≥ 0 is the spectral density of the random variable f(x).

Remark: If R(l) is not in L1(R), then Wiener–Khinchin holds in a distribu-
tional sense only, e.g. for a Gaussian white noise R(l) = δl,0 therefore it is
not in L1 and E(k) = 1.

The spectrum E(k), the second order structure function S2,f (l) and the
autocorrelation function R(l) fulfill the following relations:

R(l) =
∫
f(x+ l)f(x)dx = 2

∫ ∞

0

cos(2πkl)E(k)dk (5.11)

and hence we get

S2,f (l) = 〈(f(x+ l) − f(x))2 = 2R(0) − 2R(l)〉
= 2

∫ ∞

0

(1 − cos(2πkl))E(k)dk. (5.12)

Remark: The above relation illustrates that the structure function corre-
sponds to a high pass filtered spectrum although the corresponding filter
is not very selective. We will propose wavelet tools to improve the filter
selectivity.

6 Statistical tools based on the continuous wavelet transform

6.1 Local and global wavelet spectra

When analyzing velocity signals of turbulent flows one should calculate en-
semble averages of the energy spectra from many realizations. In practice,
to avoid performing ensemble averages, one assumes ergodicity of the tur-
bulent motions and averages only one flow realization split into many pieces
whose lengths are larger than the integral scale (which is the largest cor-
related scale in a turbulent signal). In statistical theory of homogeneous
turbulence, only the modulus of the Fourier transform is used (e.g. the
energy spectrum) and thus the phase information is lost. This is probably
a major weakness of the traditional way of analyzing turbulence since it
neglects any spatial organization of the turbulent fields, which happens in
each flow realization although the averages are homogeneous. For statis-
tically inhomogeneous flows the standard statistical tools, e.g. the energy
spectrum which is the Fourier transform of the two-point correlation of the
velocity increments, are too limited to analyze and model turbulence.
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The wavelet transform extends the concept of energy spectrum so that
one can define a local energy spectrum Ẽ(x, k) using the wavelet transform
(which, as we have seen conserves, the L2–norm of a function), such that

Ẽ(k, x) =
1

2Cψkψ

∣∣∣∣f̃
(
kψ
k
, x

)∣∣∣∣2 for k ≥ 0 (6.1)

where kψ is the peak wave number of the analyzing wavelet ψ and Cψ as
defined in (3.1). By measuring Ẽ(k, x) at different places in a turbulent flow
one might estimate what parts of the flow contribute most to the overall
Fourier energy spectrum and how the energy spectrum depends on local flow
conditions. For example, one can determine the type of energy spectrum
contributed by coherent structures, such as isolated vortices, and the type
of energy spectrum contributed by the unorganized part of the flow.

Although the wavelet transform analyses the flow into wavelets rather
than complex exponentials one shows [47] that the mean wavelet energy
spectrum converges to the Fourier energy spectrum provided the analyz-
ing wavelets have enough cancellations. More precisely the mean wavelet
spectrum Ẽ(k)

Ẽ(k) =
∫ +∞

0

Ẽ(k, x)dx (6.2)

gives the correct Fourier exponent for a power-law Fourier energy spectrum
E(k) ∝ k−β if the analysing wavelet has at least n > (β − 1)/2 vanishing
moments. This condition is the same as that for detecting singularities
derived in the previous section since β = 1+2α for isolated cusps. Thus, the
steeper the energy spectrum the more vanishing moments of the wavelet we
need. The inertial range in turbulence has a power-law form. The ability to
correctly characterize power-law energy spectra is therefore a very important
property of the wavelet transform (which is related to its ability to detect
and characterize singularities).

6.2 Relation with Fourier spectrum

The mean wavelet energy spectrum Ẽ(k) is a smoothed version of the
Fourier energy spectrum E(k). This can be seen from the following relation
between the two spectra

Ẽ(k) =
1

2Cψk0

∫ +∞

0

E(k′)
∣∣∣∣ψ̂

(
k0k

′

k

)∣∣∣∣2 dk′ (6.3)

which shows that the mean wavelet spectrum is an average of the Fourier
spectrum weighted by the square of the Fourier transform of the analysing
wavelet shifted at wavenumber k. Note that the larger k is, the larger the
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averaging interval, because wavelets are bandpass filters at ∆k
k constant.

This property of the mean wavelet energy spectrum is particularly useful for
turbulent flows. Indeed, the Fourier energy spectrum of a single realization
of a turbulent flow is too spiky to be able to clearly detects a slope, but it
is no more the case for the mean wavelet energy spectrum which is much
smoother.

The Mexican hat wavelet

ψ̂(k) = k2 exp(−k2/2) (6.4)

has only two vanishing moments and thus can correctly measure energy
spectrum exponents up to β < 5. Only the zeroth order moment of the
Morlet wavelet

ψ̂(k) =
1
2π

exp(−(k − kψ)2/2) for k > 0

ψ̂(k) = 0 for k ≤ 0 (6.5)

is zero, but the higher n-th order moments are very small (∝ knψ exp(−k2
ψ/2))

provided that kψ is sufficiently large. Therefore the Morlet wavelet trans-
form gives accurate estimates of the power-law exponent of the energy spec-
trum at least for approximately β < 7 (if kψ = 6).

There is also a family of wavelets [47] with an infinite number of cancel-
lations

ψ̂n(k) = αn exp
(
−1

2

(
k2 +

1
k2n

))
, n ≥ 1, (6.6)

where αn is chosen for normalization. The wavelets defined in (6.6) can
therefore correctly measure any power-law energy spectrum. Furthermore,
these wavelets can detect the difference between a power-law energy spec-
trum and a Gaussian energy spectrum (E(k) ∝ exp(−(k/k0)2)). It is im-
portant to be able to determine at what wavenumber the power-law energy
spectrum becomes exponential since this wavenumber defines the end of the
inertial range of turbulence and the beginning of the dissipative range.

6.3 Application to turbulence

The first measurements of local energy spectra in turbulence were reported
in [18] and [40]. Farge et al. [18] used a Morlet wavelet to obtain the lo-
cal and global energy spectra for a 3D mixing layer computed by DNS.
They showed that the deviation from the mean energy spectrum was very
large due to intermittency and increased with the scales. Therefore they
conjectured that the intermittency of the flow increases for increasing Re.
Meneveau [40] used the discrete wavelet transform to measure local energy
spectra in experimental and Direct Numerical Simulation (DNS) flows. He
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found that the standard deviation of the local energy (a measure of the spa-
tial fluctuation of energy) was approximately 100% throughout the inertial
range. He also calculated the spatial fluctuation of T (k) which measures
the transfer of energy from all wavenumbers to wavenumber k. On average
T (k) is negative for the large scales and positive for the small scales, indicat-
ing that in three-dimensional turbulence energy is, in average, transferred
from the large scales to the small scales where it is dissipated. However,
he found that at many locations in the flow the energy cascade actually
operates in the opposite direction, from small to large scales, indicating a
local inverse energy cascade (called back-scattering) which concerns a very
important part of the transferred energy. This local spectral information,
which links the physical and Fourier representations of turbulence, can be
obtained using the wavelet transform but not with the Fourier transform.

7 Statistical tools based on the orthogonal wavelet transform

7.1 Local and global wavelet spectra

In this section we describe some statistical tools based on the orthogo-
nal wavelet transform. We present them considering, as example, a two-
dimensional scalar field f(�x) which has vanishing mean and is periodic (the
extention to higher dimensions and vector fields is straightforward [54]).
Hence we employ a periodic two-dimensional Multi–Resolution Analysis
(MRA) [14, 42] and develop the field f , sampled on N2 = 22J points, as
an orthonormal wavelet series from the largest scale lmax = 20 to the small-
est scale lmin = 2−J :

f(x, y) =
J−1∑
j=0

2j−1∑
ix=0

2j−1∑
iy=0

3∑
κ=1

; f̃κj,ix,iyψ
κ
j,ix,iy(x, y), (7.1)

with

ψκj,ix,iy(x, y) =




ψj,ix(x)φj,iy (y); κ = 1,
φj,ix(x)ψj,iy (y); κ = 2,
ψj,ix(x)ψj,iy (y); κ = 3,

(7.2)

where φj,i and ψj,i are the 2π-periodic one-dimensional scaling function and
the corresponding wavelet, respectively. The wavelets ψκj,ix,iy correspond to
horizontal, vertical and diagonal directions, for κ = 1, 2, 3, respectively. Due
to orthogonality the coefficients are given by f̃κj,ix,iy = 〈f, ψκj,ix,iy〉 where 〈·, ·〉
denotes the L2 inner product.

We can define the scale distribution of energy, also called scalogram, as

Ej =
2j−1∑
ix=0

2j−1∑
iy=0

3∑
κ=1

|f̃κj,ix,iy |2. (7.3)
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Introducing the discrete mean square wavelet coefficient at scale 2−j and at
position xix,iy = 2−j(ix + 1/2, iy + 1/2) as

f̃(2−j, 2−j(ix, iy)) =
1
2
((f̃1

j,ix,iy)2 + (f̃1
j,ix+1,iy)2) +

1
2
((f̃2

j,ix,iy)2

+(f̃2
j,ix,iy+1)

2) + (f̃3
j,ix,iy)2 (7.4)

we define a discrete local wavelet spectrum [10] by

Ẽ(kj , xix,iy) = f̃(2−j , 2−j(ix, iy))
22j

∆kj
· (7.5)

This quantitiy allows to study the space dependent spectral behaviour of f .
By construction we have

Ẽ(kj) =
2j−1∑
ix=0

2j−1∑
iy=0

Ẽ(kj , xix,iy). (7.6)

7.2 Relation with Fourier spectrum

Owing to the orthogonality of the wavelet decomposition, the total energy
is preserved and we have E =

∑
j Ej . To be able to relate the scale distri-

bution to the Fourier spectrum, we introduce the mean wavenumber k0 of
the wavelet ψ, defined by

k0 =

∫ ∞
0 k|ψ̂(k)|dk∫ ∞
0

|ψ̂(k)|dk · (7.7)

Therewith each scale 2−j of the wavelet ψj is related to the mean wavenum-
ber kj = k02j. With ∆kj =

√
kjkj+1 − √

kjkj−1, describing the mean
radial wavenumber of the three two-dimensional wavelets ψκj,ix,iy , we define
the global wavelet spectrum as

Ẽ(kj) = Ej/∆kj (7.8)

which is related with the Fourier energy spectrum by

Ẽ(k) =
1
k

∫ ∞

0

E(k′)|ψ̂(k0k
′/k)|2dk′. (7.9)

The wavelet spectrum is a smoothed Fourier spectrum weighted with the
modulus of the Fourier transform of the analyzing wavelet [47]. Note that
for increasing wavenumbers the averaging interval becomes larger [14]. A
sufficient condition, guaranteeing the global wavelet spectrum to be able to
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detect the same power-law behaviour k−α as the Fourier spectrum, is that
ψ has enough vanishing moments [47], i.e.∫ +∞

−∞
xnψ(x)dx = 0 for 0 ≤ n ≤ α− 1

2
· (7.10)

If this condition is not fulfilled the global wavelet spectrum saturates at the
critical cancellation order n and shows a power-law behaviour with a slope
not steeper than −2(n+ 1).

7.3 Intermittency measures

Useful diagnostics to quantify the intermittency of a field are the moments
of its wavelet coefficients at different scales j [53, 54],

Mp,j(f) =
1

3 · 22j

2j−1∑
ix=0

2j−1∑
iy=0

3∑
κ=1

|f̃κj,ix,iy |p. (7.11)

The sparsity of the wavelet coefficients at each scale can be measured and
the intermittency of the field f can be quantified using ratios of the moments
at different scales,

Qp,q,j(f) =
Mp,j(f)

(Mq,j(f))p/q
, (7.12)

which may be interpreted as quotient norms between different Lp- and Lq-
spaces. Classically, one chooses q = 2 to define typical statistical quantities
as a function of scale. Recall that for p = 4 we obtain the scale dependent
flatness Fj = Q4,2,j which is equal to 3 for a Gaussian white noise at all
scales j, which proves that this signal is not intermittent. The scale depen-
dent skewness, hyperflatness and hyperskewness are obtained for p = 3, 5
and 6, respectively. For intermittent signals Qp,q,j increases with j.

Part III

Computation
8 Coherent vortex extraction

8.1 CVS filtering

In [21, 23] we have proposed a wavelet-based method, called Coherent
Vortex Simulation (CVS), to compute turbulent flows for regimes where
the coherent vortices dominate the nonlinear dynamics. We first present
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the CVS filtering, which extracts coherent vortices out of each flow real-
ization. We then describe the CVS computation, which calculates the time
evolution of turbulent flows by deterministically computing the dynamics of
coherent vortices, in an adaptive wavelet basis, and statistically modelling
the effect of the coherent velocity field onto the incoherent background flow.

8.1.1 Vorticity decomposition

We describe the wavelet algorithm to extract coherent vortices out of tur-
bulent flows and consider as example the 3D case (for the 2D case refer
to [21]). We consider the vorticity field �ω(�x) = ∇ × �v, computed at res-
olution N = 23J , N being the number of grid points and J the number
of octaves. Each component is developed into an orthogonal wavelet series
from the largest scale lmax = 20 to the smallest scale lmin = 2J−1 using a
3D multi-resolution analysis (MRA) [8, 14]:

ω(�x) = ω̄0,0,0φ0,0,0(�x)

+
J−1∑
j=0

2j−1∑
ix=0

2j−1∑
iy=0

2j−1∑
iz=0

2n−1∑
µ=1

ω̃µj,ix,iy ,izψ
µ
j,ix,iy,iz

(�x), (8.1)

with φj,ix,iyi,iz (�x) = φj,ix(x)φj,iy (y)φj,iz (z), and

ψµj,ix,iy,iz(�x) =




ψj,ix(x)φj,iy (y)φj,iz (z); µ = 1,
φj,ix (x)ψj,iy (y)φj,iz (z); µ = 2,
φj,ix (x)φj,iy (y)ψj,iz (z); µ = 3,
ψj,ix(x)φj,iy (y)ψj,iz (z); µ = 4,
ψj,ix(x)ψj,iy (y)φj,iz (z); µ = 5,
φj,ix (x)ψj,iy (y)ψj,iz (z); µ = 6,
ψj,ix(x)ψj,iy (y)ψj,iz (z); µ = 7,

(8.2)

where φj,i and ψj,i are the one-dimensional scaling function and the corre-
sponding wavelet, respectively. Due to orthogonality, the scaling coefficients
are given by ω̄0,0,0 = 〈ω, φ0,0,0〉 and the wavelet coefficients are given by
ω̃µj,ix,iy,iz = 〈ω, ψµj,ix,iy,iz 〉, where 〈·, ·〉 denotes the L2-inner product.

8.1.2 Nonlinear thresholding

We then split the vorticity field into �ωC(�x) and �ωI(�x) by applying a nonlinear
thresholding to the wavelet coefficients. The threshold is defined as ε =
(4/3Z logN)1/2 and it only depends on the total enstrophy Z and on the
number of grid points N without any adjustable parameters. The choice of
this threshold is based on theorems [11,12] proving optimality of the wavelet
representation to denoise signals in presence of Gaussian white noise, since
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Fig. 2. Total vorticity of the turbulent mixing layer.

this wavelet-based estimator minimizes the maximal L2-error for functions
with inhomogeneous regularity.

8.1.3 Vorticity and velocity reconstruction

The coherent vorticity field �ωC is reconstructed from the wavelet coefficients
whose modulus is larger than ε and the incoherent vorticity field �ωI from
the wavelet coefficients whose modulus is smaller or equal to ε. The two
fields thus obtained, �ωC and �ωI, are orthogonal, which ensures a separation
of the total enstrophy into Z = ZC + ZI because the interaction term 〈�ωC,
�ωI〉 vanishes. We then use Biot–Savart’s relation �v = −∇ × (∇−2�ω) to
reconstruct the coherent velocity �vC and the incoherent velocity �vI for the
coherent and incoherent vorticities respectively.

8.2 Application to a 3D turbulent mixing layer

In the present lecture notes we apply the above algorithm to a high resolu-
tion DNS (N = 512 × 256 × 128) of a forced turbulent mixing layer [48] to
check the potential for the CVS method in 3D shear flows. Figure 2 show
the modulus of vorticity for the total flow. We observe longitudinal vortex
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tubes, resulting from 3D instability and called ribs, which are wrapped onto
four transversal rollers, produced by the 2D Kelvin–Helmholtz instability.

The coherent part (see Fig. 3 top), which represents 3% of the total num-
ber of coefficients, captures most of the turbulent kinetic energy and 80%
of the enstrophy, even at high wavenumbers, and the PDF of its vorticity is
similar to that of the total flow (see Fig. 4). The incoherent part (see Fig. 3
bottom), which represents 97% of the total number of coefficients, contains
little of the turbulent kinetic energy and 20% of the enstrophy. It is nearly
homogenenous with a very low amplitude and contains no structure.

The corresponding 1D energy spectra in the streamwise direction shows
that the coherent part presents, all along the inertial range, the same corre-
lation as the total flow, while the incoherent part contains very little energy
and is well decorrelated.

8.3 Comparison between CVS and LES filtering

The CVS method is in the spirit of the Large Eddy Simulation (LES)
method [24, 37]. But, in contrast to LES, it uses a nonlinear filter that de-
pends on each flow relisation. The CVS filter corresponds to an orthogonal
projection, implying (�ωI)C = 0, and is hence idempotent, i.e. (�ωC)C = �ωC,
which is not the case for all LES filters (e.g. the Gaussian filter).

In Figure 4 we compare the CVS and the LES filterings for the same
number of retained coefficients (3%N). Since the LES filtering, chosen here
to be a Fourier low-pass filter, retains only the low wavenumbers (Fig. 4 top,
right), the coherent vortices are smoothed and as a result the variability of
vorticity is strongly reduced (see PDF in Fig. 4 bottom, right). In contrast
the CVS filtering retains the organized features, whatever their scales are,
and as a results the shape of the vorticity PDF is preserved, even for large
values of |�ω| (Fig. 4 bottom, left).

Concerning turbulence parametrization, i.e. the statistical modelling of
the effect of the discarded modes onto the retained modes, for CVS and
LES method we can draw the following conclusion:

• the LES filtering has the drawback that the high wavenumber modes
are not decorrelated and high amplitudes of vorticity are present. This
may lead to nonlinear instabilities which trigger backscatter;

• the CVS filtering allows to disentangle the organized and random
components of turbulent flows. As a results the discarded incoherent
modes have very weak amplitude, are almost homogeneous in space
and are well decorrelated.

In conclusion we conjecture that the derivation of a turbulence model is
easier with a CVS filtering than with a LES filtering. However, the CVS
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Fig. 3. Top: coherent vorticity of the turbulent mixing layer reconstructed

from 3% of the wavelet coefficients and containing 80% of the total enstrophy.

Bottom: incoherent vorticity reconstructed from 97% of the wavelet coefficients

and containing 20% of the total enstrophy.
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Fig. 4. Comparison of CVS (left) with LES (right) filtering. Energy spectra (top)

and PDF of vorticity (bottom) of total, coherent and incoherent flow using CVS

filtering and of low wavenumber and high wavenumber components using LES

filtering.



“farge”
2001/11/20
page 484

�

�

�

�

�

�

�

�

484 New Trends in Turbulence

filtering requires a dynamically adaptive mesh refinement for solving Navier–
Stokes. In the next section we present such a method based on the wavelet
representation that we have developed for the 2D Navier–Stokes equations.

9 Computation of turbulent flows

9.1 Navier–Stokes equations

9.1.1 Velocity–pressure formulation

The Navier–Stokes equation written in primitive variable formulation (ve-
locity and pressure) describes the dynamics of a Newtonian (deformation
proportional to velocity gradients) fluid

∂t�v + (�v · ∇)�v − ν∇2�v +
1
ρ
∇p = �F (9.1)

and, if we suppose that the fluid is incompressible (constant density of the
fluid elements), it is complemented by the continuity equation

∇ · �v = 0 (9.2)

where �v = (v1(�x, t), v2(�x, t), v3(�x, t)) and p(�x, t) denote the fluid velocity
and the pressure respectively, at point �x = (x1, x2, x3) and time t. �F is
the field of external forces per unit mass, ρ the density and ν the constant
kinematic viscosity. This system of coupled PDE’s must be supplemented
by appropriate initial and boundary conditions.

9.1.2 Vorticity–velocity formulation

Taking the curl of (9.1), the pressure term can be eliminated and we get a
dynamical equation for the vorticity

∂t�ω + (�v · ∇)�ω − �ω · ∇�v − ν∇2�ω = ∇× �F . (9.3)

This is an advection-diffusion equation for the vorticity with an additional
term �ω · ∇�v, which is responsible for the vortex stretching mechanism, i.e.
vortex tubes can be stretched by velocity gradients, which leads to vorticity
production. In two dimensions this term vanishes, because the vorticity is
a pseudo-scalar �ω = (0, 0, ω3) perpendicular to the velocity gradients.

Taking the divergence of (9.1) and using the incompressibility of �v, we
get a Poisson equation for the pressure which is used in many numerical
schemes, such as projection methods or fractional step schemes [5, 56]

1
ρ
∇2p = −∇ · ((�v · ∇)�v). (9.4)
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The relation �ω = ∇× �v can be inverted for a star shaped domain D using
Poincaré’s lemma which leads to:

�v = −∇×∇−2�ω. (9.5)

The above relation can be expressed as a convolution product of the vorticity
with an operator K, called the Biot–Savart kernel, i.e. �v = K � �ω. As K
decays slowly in physical space, i.e. as |�x|−2 in three dimensions and as
|�x|−1 in two dimensions, the velocity is less localized than the vorticity.

9.2 Classical numerical methods

In the last 30 years the progress in numerical methods and the availability of
supercomputers have had a significant impact on turbulence research. For
example, the importance and role of coherent vortices in three-dimensional
turbulence has been established largely by high resolution numerical simula-
tions [1,57,58]. Von Neumann’s vision, who had suggested in 1949 [45] that
turbulence could be simulated numerically, has become a reality. In contrast
to the statistical theory of turbulence and to most laboratory experiments,
which deal with L2-norm averaged quantities, numerical experiments deal
with non-averaged instantaneous quantities. Numerical experiments deter-
ministically compute the evolution of one flow realization at a time, and
perform the desired averages afterwards. There are two ways of comput-
ing turbulent flows: either by Direct Numerical Simulation (DNS), or by
Modelled Numerical Simulation (MNS).

9.2.1 Direct Numerical Simulation (DNS)

In DNS one computes all degrees of freedom of the flow and both the nonlin-
ear dynamics and the linear dissipation are fully resolved by computing the
time evolution of all these degrees of freedom. The DNS schemes currently
in use may be classified into three categories:

• spectral and pseudo-spectral schemes;

• finite-difference, -volume, and -element methods;

• Lagrangian methods, e.g. vortex methods and contour dynamics.

The various methods are characterized by differences in their numerical
complexity, accuracy and flexibility. Using DNS the evolution of all scales
of turbulent flows can only be calculated for moderate Reynolds numbers
with present supercomputers. The severe limit of DNS is that the number of
degrees of freedom N for a regular discretization depends on the Reynolds
number Re, such that N ∼ Re for two-dimensional flows and N ∼ Re9/4
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for the three-dimensional case. At present only moderate Reynolds number
flows (Re ∼ 103 in three dimensions) can be simulated using DNS. Although
most flows of engineering interest have higher Reynolds numbers (Re ∼ 108),
some physical insight can be gained from studying DNS of only moderate
Re flows. However, laboratory experiments have shown that new behaviour
appears in the range Re ∼ 104−105 [9]. As the number of degrees of freedom
scales with Reynolds number, the simulation of such high Reynolds number
flows in two or three dimensions requires schemes employing some sort of
adaptive discretization.

To our knowledge no current non-wavelet DNS methods use a spatial
discretization that adapts to the dynamics and structure of the flow. In [30]
we have proposed an adaptive wavelet scheme for nonlinear PDE’s and we
have extended it to the two-dimensional Navier–Stokes equations [28, 51].
Since the wavelet basis functions are localized in both physical and spectral
spaces this approach is a compromise between grid-point methods and spec-
tral methods. The adaptive wavelet method is well suited for turbulence
simulations because the characteristic structures encountered in turbulent
flows are localized coherent vortices evolving under a multiscale nonlinear
dynamics. Thus the space- and scale-adaptivity of the wavelet basis should
be very efficient at representing turbulence structures and their dynamics.
The fact that the basis is adapted to the solution and follows the time evo-
lution of coherent vortices corresponds to a combination of both Eulerian
and Lagrangian approaches.

9.2.2 Modelled Numerical Simulation (MNS)

In MNS, e.g. Unsteady Reynolds Averaged Navier–Stokes (URANS), LES
and nonlinear Galerkin methods, one supposes that many modes can be
discarded, provided that some term(s) or some new equation(s) are added
to model the effect of the discarded modes onto the retained modes.

The time evolution of the resolved modes is deterministically computed
using the same numerical methods as for DNS. Concerning the discarded
modes, one supposes that they are slaved to the retained modes and pas-
sively follow their motion. Consequently the dynamics of the unresolved
modes cannot become unstable and grow in such a way that they would
deterministically affect the evolution of the resolved modes. To ensure this
one should check that the unresolved modes have reached a statistical equi-
librium state and are sufficiently decorrelated. In this case it is no longer
necessary to compute the evolution of the unresolved modes in detail be-
cause, if they are in statistical equilibrium, their effect onto the retained
modes can be entirely characterized by their averages. The model describing
the effect of the unresolved modes onto the resolved modes can be specified
once the averaged quantities of the unresolved modes can be parametrized
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as a function of the resolved modes.
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Remark: Ideally, in order to reduce the computational cost as much as
possible, the number of resolved modes should be much smaller than the
number of discarded modes and should increase more slowly with Re than
the total number of modes does.

9.3 Coherent Vortex Simulation (CVS)

9.3.1 Principle of CVS

Coherent Vortex Simulation (CVS) deterministically computes the evolution
of the coherent vorticity �ωC and statistically models the effect of the incoher-
ent vorticity �ωI and velocity �vI. In the following we apply the CVS method
to compute 2D turbulent flows. We filter the two-dimensional Navier–Stokes
equations using CVS filtering and obtain the evolution equation for the co-
herent vorticity ωC:

∂tωC + ∇ · (ω�v)C − ν∇2ωC = ∇× �FC (9.6)
∇ · �vC = 0.

To model the effect of the discarded coefficients, which corresponds to the
incoherent stress, we propose (as in LES) to use a Boussinesq ansatz. For
the nonlinear term we use Leonard’s triple decomposition, because the non-
linear term is computed with the same adapted grid as the linear term (i.e.
without dealiasing). We decompose the nonlinear term of (9.6) into

(ω�v)C = ωC�vC + L+ C +R, (9.7)

where

L = (ωC�vC)C − ωC�vC,

C = (ωI�vC)C + (ωC�vI)C,

and
R = (ωI�vI)C,

denoting the Leonard stress L, the cross stress C and the Reynolds stress R,
respectively. The sum of these unknown terms corresponds to the incoherent
stress:

τ = (ω�v)C − ωC�vC = L+ C +R, (9.8)

which describes the effect of the discarded incoherent terms on the re-
solved coherent terms. Note that, due to the localization property of the
wavelet representation, the Leonard stress L is actually negligible because
(ωC�vC)C � ωC�vC [53].
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The filtered Navier–Stokes equations (9.6) can be rewritten as:

∂tωC + ∇ · (ωC�vC) − ν∇2ωC = ∇× �FC −∇ · τ (9.9)
∇ · �vC = 0.

9.3.2 CVS without turbulence model

If we consider a very small threshold, there is no longer any need to model
the effect of the incoherent part because the incoherent stress is then negli-
gible, and in this case CVS becomes DNS. Note that even when the wavelet
threshold tends to zero, the number of discarded incoherent modes may
still be large, due to the excellent compression properties of the wavelet
representation for turbulent flows. This is reflected by the fact that many
wavelet coefficients are essentially zero and can therefore be discarded with-
out loosing a significant amount of enstrophy.

To obtain the coherent variables ωC and �vC we deterministically inte-
grate (9.6) since the variables are non-Gaussian and correspond to a dy-
namical system out of statistical equilibrium. We solve these equations in
an adaptive wavelet basis [30, 51, 53] (cf. the next section). The separation
into coherent and incoherent components is performed at each time step.
The adaptive wavelet basis retains only those wavelet modes corresponding
to the coherent vortices. It is remapped at each time step in order to follow
their motions, in both space and scale. In fact, this numerical scheme com-
bines the advantages of both the Eulerian representation, since it projects
the solution onto an orthonormal basis, and the Lagrangian representation,
since it follows the coherent vortices by adapting the basis at each time step.

9.3.3 CVS with turbulence model

Up to now no modelling has been done, and equation (9.9) is not closed
as long as τ depends on the incoherent unresolved terms. To close it we
propose two possibilities to model τ .

• A Boussinesq ansatz as for the LES method:

we assume that τ is proportional to the negative gradient of the co-
herent vorticity, i.e. τ = −νT∇ωC with νT a turbulent viscosity
coefficient. The turbulent viscosity νT can be estimated, either using
Smagorinsky’s model [24], or taking νT proportional to the enstro-
phy fluxes in wavelet space, such that, where enstrophy flows from
large to small scales, νT is positive, and, where enstrophy flows from
small to large scales (i.e. backscatter), νT becomes negative. This
second method for estimating the turbulent viscosity is in the spirit
of Germano’s dynamical procedure used for LES [24].
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• A Gaussian stochastic forcing term:

we choose τ to be proportional to the incoherent enstrophy ZI com-
puted at the previous time step. This modelling is made possible since
the time evolution of the incoherent background, characterized by the
time scale tI = (ZI)−1/2, is much slower than the characteristic time
scale tC = (ZC)−1/2 of the coherent motions, because ZC � ZI. This
behaviour of the incoherent background had already been noticed, and
discussed in comparison to Fourier filtering in [16, 53].

The CVS method relies on the assumption that the incoherent velocity re-
mains Gaussian, which is true as long as the nonlinear interactions between
the incoherent modes remains weak. This assumption is valid in regions
where the density of coherent vortices is sufficient, because the strain they
exert on the incoherent background flow then inhibits the development of
any nonlinearity there [34]. However, there may be regions, although small,
where the density of coherent vortices is not sufficient to control the inco-
herent nonlinear term. In this case, there are two solutions:

• to locally refine the wavelet basis in these regions in order to deter-
ministically compute the effect of incoherent nonlinear term (no longer
neglected), which will lead to the formation of new coherent vortices
by instability of the incoherent background flow;

• to directly model the formation of new coherent vortices by adding
locally to the wavelet coefficients the amount of coherent enstrophy
which has been transferred from the incoherent enstrophy by the non-
linear instability. This procedure is similar to the wavelet forcing we
have proposed in [50].

10 Adaptive wavelet computation

10.1 Adaptive wavelet scheme for nonlinear PDE’s

This section presents in a general form the adaptive discretization proce-
dure for nonlinear parabolic PDE’s. We consider initial value problems and
restrict ourself to periodic boundary conditions. The time discretization is
done using a classical finite difference scheme of semi-implicit type. One
obtains a set of ODE’s or PDE’s in space which are then solved at each
time step with a method of weighted residuals. The particular choice of the
trial and test functions defines the different kinds of integration methods.

We consider nonlinear parabolic evolution equation

∂tu+Ku− F (u) = 0 (10.1)
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with an appropriate initial condition u(t = 0) = u0 and periodic boundary
conditions. In (10.1) K denotes a linear differential operator in space (e.g.
K = −∇2) and F a nonlinear function of u. Examples fitting in the above
framework are the Navier–Stokes or the reaction-diffusion equations.

10.1.1 Time discretization

Equation (10.1) is discretized in time by a semi-implicit finite difference
scheme of second order

Lun+1 = f(un, un−1), (10.2)

with

L = γI +K, (10.3)

f =
4
3
γun − 1

3
γun−1 + F (2un − un−1) (10.4)

time step ∆t, γ = 3/(2∆t), and I representing the identity. The solution
of nonlinear equations is avoided by using an explicit scheme, a modified
Adams–Bashforth extrapolation scheme, for the nonlinear function F . How-
ever, the restrictive stability condition of a pure explicit scheme is eliminated
by discretizing the linear terms K(u) with an implicit scheme of Euler–
Backwards type. A suitable first order scheme is employed to start the
computation.

The method is presented here considering the equation

Lu = f (10.5)

where L is an elliptic operator with constant coefficients. Typically L is
a one or two-dimensional Helmholtz operator (L = γI − C∂xx or L =
γI − C(∂xx + ∂yy)), which arises from the time-discretized Navier–Stokes
equation, using a semi-implicit scheme.

The symbol representing L in Fourier space is σ(k). In the case of the
Helmholtz operator we get σ(k) = γI + 4π2Ck2 and σ(kx, ky) = γI +
4π2C(k2

x + k2
y) for the one and two-dimensional case, respectively. Observe

that γ > 0 yields σ > 0, which is another way of expressing that L is an
elliptic operator with inhomogenous symbol. Hence, in each time step an
elliptic problem has to be solved.

10.1.2 Wavelet decomposition

To simplify our presentation we first describe in some detail the spatial
wavelet discretization for the one-dimensional case. The complete algo-
rithms together with a mathematical justification can be found in [30].
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For the spatial discretization we use a method of weighted residuals
(Petrov–Galerkin scheme). The trial functions are orthogonal wavelets and
the test functions are operator adapted wavelets, called vaguelettes [38]. To
solve the elliptic equation Lun+1 = f at time step tn+1 we develop un+1

into an orthogonal wavelet series, i.e. un+1 =
∑

ji ũ
n+1
ji ψji. Requiring that

the residuum vanishes with respect to all test functions θkl, we obtain a
linear system for the unknown wavelet coefficients ũn+1

j,i of the solution u.∑
j,i

ũn+1
ji 〈Lψji, θkl〉 = 〈f, θkl〉· (10.6)

The test functions θ are defined in such a way that the stiffness matrix
〈Lψji, θkl〉 turns out to be the identity, therefore the solution of equa-
tion (10.5) reduces to a simple change of the basis:

un+1 =
∑
kl

〈f, θkl〉ψkl. (10.7)

The right hand side f is then expanded into a biorthogonal vaguelette basis

f(x) =
∑
ji

〈f, θji〉µji(x) (10.8)

with θji = L�−1ψji and µji = Lψji (� denotes the adjoint operator). By
construction θ and µ are biorthogonal, 〈θji, µkl〉 = δj,kδi,l. We check that θ
and µ have actually similar localization properties in physical and in Fourier
space as ψ [26, 30].

To get an adaptive space discretization for the problem Lun = f we
consider only the significant wavelet coefficients of the solution, un =∑
ji ũ

n
jiψji, i.e. we retain only the coefficients ũnj,i which have an abso-

lute value larger than a given threshold ε. Hence the index set of all active
wavelet coefficients is restricted to some subset (j, i) ∈ Λnε , cf. Figure 5. The
light-grey entries correspond to those wavelet coefficients which are retained
for being larger than ε.

To be able to evolve the equation in time we have to account for the
evolution of the solution in wavelet coefficient space. Starting at time step
tn (light-grey entries in Fig. 5) with the index set Λnε = {(j, i)

∣∣∣|ũnji| > ε},
we switch on all neighbours in wavelet coefficient space (dark-grey entires
in Fig. 5) to obtain the new index set Λn+1

ε at time step tn+1. This strategy
is performed dynamically as it automatically follows the time evolution of
the solution in scale and space. The width of the security region (dark-grey
entries in Fig. 5) being added in each time step depends directly on the time
sampling ∆t which of course has to be sufficiently small (CFL condition) as
the nonlinear part of the equation is discretized explicitly.
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Fig. 5. Scale (vertical axis) and space (horizontal axis) representation of the

wavelet coefficients ũj,i. The light-grey entries correspond to the wavelet coeffi-

cients larger than the threshold ε. Their neighbors, the dark-grey entries, corre-

spond to the secutity region.

10.1.3 Evaluation of the nonlinear term

For the evaluation of the nonlinear term f(un) in (10.5), where the wavelet
coefficients of un are given, there are two possibilities.

• Evaluation in wavelet coefficient space:

This technique is appropriate for simple polynomial nonlinearities, but
can be extended to general cases using Taylor series expansion. As
illustration we consider a quadratic nonlinear term, i.e. f(u) = u2.
The wavelet/vaguelette coefficients of f can be calculated using the
connection coefficients, i.e. one has to calculate the bilinear expres-
sion,

∑
ji

∑
kl ũjiTjiklmnũkl with the interaction tensor Tjiklmn =

〈ψjiψkl, θmn〉. Although many coefficients of T are zero or very small,
the size of T leads to a computation which is quite untractable in
practice.

• Evaluation in physical space:

This approach is very similar to the pseudo-spectral evaluation of
nonlinear terms used in spectral methods, and therefore this method
is called pseudo-wavelet technique. The advantage of this scheme is
that more general nonlinear terms, e.g. f(u) = (1 − u)e−C/u, can be
treated more easily. The prerequesites however are that fast adap-
tive wavelet decomposition and reconstruction algorithms are avail-
able. This means that functions can be reconstructed on a locally
refined grid from a sparse set of their significant wavelet coefficients
and vice versa. The algorithms are described and analysed in detail
in [30]. The method can be summarized as follows: starting from the
significant wavelet coefficients of u, i.e. |ũji| > ε, one reconstructs
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Fig. 6. Scale space representation of the active wavelet coeffcients to be computed

(dark entries).

u on a locally refined grid, u(xkl). Then one can evaluate f(u(xkl))
pointwise and the wavelet coefficients of f can be calculated using the
adaptive decomposition to get f̃ji.

Finally, we have to calculate those scalar products of the r.h.s. f with the
test functions θ, ũji = 〈f, θji〉 for the reduced index set {(j, i) ∈ Λn+1

ε }, i.e.
the dark-grey and the light-grey entries in Figure 5, to advance the solution
in time.

10.1.4 Substraction strategy

The adaptive vaguelette decomposition is based on the hierarchical repre-
sentation of the r.h.s. We decompose f into

fJ =
∑
i

〈fJ , θJ−1,i〉µJ−1,i +
∑
i

〈fJ , θJ−2,i〉µJ−2,i + ... (10.9)

and introduce then hierarchical grids xJk = k/2J (see Fig. 7). Starting
with the function values on the locally refined grid fJ(xJk) we calculate
first the fine scale wavelet coefficients f̃J−1,i = 〈fJ , θJ−1,i〉 (Fig. 6) using
an interpolatory quadrature rule on the locally refined grid {xJk} (Fig. 7).
Then we coarsen the grid and subtract the fine scale contributions of f ,
i.e. we compute fJ−1 = fJ −

∑
i f̃J−1,iµJ−1,i on the grid {xJ−1,k} (Fig. 7).

Hence we get a coarser scale approximation fJ−1. Using fJ−1(xJ−1,k) the
wavelet coefficients on the next coarser scale f̃J−2,i = 〈fJ−1, θJ−2,i〉 (Fig. 6)
can be calculated using the grid {xJ−1,k} (Fig. 7). The above algorithm is
iterated down to the coarsest scale where then a regular grid can be used.

Remark: The above algorithm uses the cardinal function SL;J(x) of the
operator adapted approximation space, VL;J = span{µji}j<J . The quadra-
ture rule is based on the use of filters DJ

L;m = 〈SL;J,m, θJ−1,0〉 which are
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xJk xJ-1,k
xJ-2,k

Fig. 7. Corresponding hierarchical grid in physical space.

well localized and hence can be truncated for a given accuracy [30]. This
finite filter length leads to an O(N) algorithm where N denotes the number
of degrees of freedom, i.e. the number of light-grey wavelet coefficients in
Figure 6. Let us furthermore mention that the method works for arbitrary
index sets, i.e. no tree structure of the wavelet coefficients is required.

The algorithms for the vaguelette decomposition, sketched above, and
for the adaptive wavelet reconstruction, which is analogous, can be found
in [30].

10.1.5 Summary of the algorithm

The essential ingredients of the above algorithm can be summarized as fol-
lows:

• the use of orthogonal wavelets and of operator adapted vaguelettes
diagonalizes the stiffness matrix and avoids assembling and solving of
a linear system;

• the cardinal function allows an easy projection and a decomposition
compatible with the operator;

• the localization properties of wavelets lead to a fast decay of the func-
tions, and the associated filters which therefore can be truncated up
to a given precision;

• the hierarchical organisation of the basis enables the construction of
fast pyramidal algorithms, with O(N) complexity.

10.2 Adaptive wavelet scheme for the 2D Navier–Stokes equations

Using a two-dimensional Multi-Resolution Analysis (MRA) obtained throu-
gh tensor product of two one-dimensional MRA’s the above algorithm can
be extended to two dimensions. The solution is then developed into a two-
dimensional wavelet series u(x, y) =

∑
j

∑
ix,iy

∑3
κ=1 ũ

κ
j,ix,iy

ψκj,ix,iy (x, y).
Due to the fact that the operator L is not separable, i.e. L �= LxLy,

e.g. for L = Id − ∂xx − ∂yy the same holds for the operator adapted
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biorthogonal functions: θ(x, y) = L�−1ψ(x, y) �= θ(x)θ(y) and µ(x, y) =
Lψ(x, y) �= µ(x)µ(y) and similarly for the filters SL and DL.

Now we extend the previouly described adaptive wavelet-vaguelette al-
gorithm to solve the two-dimensional Navier–Stokes equations written in
vorticity-velocity formulation. Using this method the vorticity is decom-
posed into a lacunary basis of orthogonal wavelets. Adaptivity means that
the simulation uses only the minimum number of wavelet modes necessary
to represent the vorticity field at any given time and position (within a given
precision ε). We will now use the reduced set of wavelet basis functions to
directly compute the evolution of the flow using the discretization procedure
described in the previous section.

We expand the vorticity ω into an orthogonal wavelet series (7.1) and
apply a Petrov–Galerkin scheme with test functions

θκj,ix,iy (x, y) = (γ − ν∇2)−1ψκj,ix,iy(x, y) (10.10)

where γ = 3/(2∆t) The vaguelettes θ defined in (10.10) can be calculated
explicitly in Fourier space and have localization properties similar to those
of wavelets [27,42], i.e. in the case of spline wavelets they have exponential
decay. The solution then reduces to the calculation of the coefficients

ω̃κ,n+1
j,ix,iy

= 〈ωn+1, ψκj,ix,iy 〉 (10.11)

=
〈

4
3
γωn − 1

3
γωn−1, θκj,ix,iy

〉
− 〈�v∗ · ∇ω∗, θκj,ix,iy〉

with �v∗ = 2�vn − �vn−1 and ω∗ = 2ωn − ωn−1, using an adaptive two-
dimensional vaguelette decomposition [4], i.e. only the coefficients ω̃κ,n+1

j,ix,iy
larger than the threshold ε are calculated. The pyramidal decomposition
algorithm is based on a subtraction strategy applied to hierarchical nested
grids using the cardinal Lagrange function of the operator-adapted multi-
resolution analysis [27]. Subsequently, the vorticity field is reconstructed on
a locally refined grid using the adaptive wavelet reconstruction.

The nonlinear term �v� ·∇ω� is computed by partial collocation [52]. This
pseudo-wavelet scheme can be sketched as follows: starting from the wavelet
coefficients of ωn, ωn−1 we obtain the values of ω� on a locally refined grid
through an inverse wavelet transform. Solving the Poisson equation using a
Petrov–Galerkin scheme with test functions (∇2)−1ψκj,ix,iy(x, y), we get the
wavelet coefficients of the stream function Ψ�. Note that these test functions
are rapidly decaying in physical space due to the vanishing moments of
the wavelets. Applying an inverse adaptive wavelet transform, the stream
function is reconstructed on a locally refined grid. Then the velocity �v�, the
vorticity gradient ∇ω� and the nonlinear term �v� ·∇ω� are calculated using
finite differences of 4th order on the adaptive grid. Finally, the right hand
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side of (10.11) is summed up in physical space using the adaptive grid and
then the wavelet coefficients of the vorticity ωn+1 are calculated using the
adaptive vaguelette decomposition [27].

If the smoothness of ω varies strongly in space and time, it is appropriate
to use an adaptive spatial discretization that is re-calculated at each time-
step. Adaptivity is also important in order to follow the strong gradients
produced by the coherent vortices as the move around. For the wavelet dis-
cretization used here the tracking procedure is accomplished by restricting
the full index set

ΛJ = {(j, ix, iy, κ)|(j = 0, . . . , J − 1), (ix = 0, . . . , 2j − 1), (iy = 0, 2j − 1),

(κ = 1, 2, 3)} (10.12)

to some subset Λnε ⊂ ΛJ which depends on the required tolerance ε. The
elements designated by Λnε are termed the “lacunary basis” and correspond
to the “compressed” wavelet coefficients |ω̃κ,nj,ix,iy | > ε. The orthogonality
of the basis and the decay of the wavelet coefficients relate this to the L2–
approximation error, which can therefore be evaluated.

The adaptivity algorithm then operates as follows: from the previous
time-step one determines those indices with coefficients larger than the
threshold ε. One prepares a “security zone”, to allow for the evolution
of the solution in time by adding to each index of this set its neighbouring
indices in wavelet space. The solution is then advanced in time by perform-
ing a reconstruction of the solution ω� onto the locally refined grid (this
minimizes energy loss due to re-gridding). The r.h.s. is then evaluated at
these points. Finally, the decomposition onto the operator-adapted basis
is applied to determine the new wavelet amplitudes ω̃n+1. Thus the adap-
tive algorithm calculates only those wavelet modes that are active (plus a
security zone), while the inverse transform ensures that the energy of the
neglected modes is re-injected back onto the locally refined grid. Recall that
in the inverse transform all wavelet coefficients which have been calculated
are evaluated, so that no coefficients are set to zero. The reduction of the
index set is only performed afterwards. Finally, let us mention that the
complexity of the algorithm is of O(Nc), where Nc denotes the number of
wavelet coefficients which are calculated.
Remark: In the case of two-dimensional turbulence the complexity of a
DNS increases like Re = CN (with C = 1 for Fourier and C = 3 to 7 for
grid point methods, depending on the order of the scheme employed). The
pseudo-spectral methods have a computational cost of O(N log2N), while
the adaptive wavelet method has a computational cost of only O(Nc).
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Fig. 8. Initial configuration for the mixing layer.

10.3 Application to a 2D turbulent mixing layer

10.3.1 Adaptive wavelet computation

In [21,55] we studied a temporally developing mixing layer, cf. Figure 8. The
initial velocity has a hyperbolic-tangent profile u(y) = U tanh(2y/δ0) which
implies a vorticity thickness δ0 = 2U/(du/dy)|y=0. From linear stability
analysis the mixing layer is known to be inviscidly unstable. A perturbation
leads to the formation of vortices by Kelvin–Helmholtz instability, where
the most amplified mode corresponds to a longitudinal wavelength λ = 7δ0.
The initial vorticity thickness δ0 is chosen such that 10 vortices should
develop in the numerical domain of size [0, 2π]2. To trigger the instability
we superimposed a weak white noise in the rotational region. The velocity is
U ≈ 0.1035 and the viscosity is ν = 5× 10−5. For the numerical simulation
we employ a maximal resolution of 256× 256, which corresponds to L = 8,
and cubic spline wavelets of Battle–Lemarié type. The time step is ∆t =
2.5×10−3. The threshold for the wavelet coefficients was ε0 = ε

√
Z = 10−6

and 10−5.
In Figure 9 (left) we compare the energy spectrum at t = 37.5 of a DNS

computation using a classical pseudo-spectral method, with two wavelet
computations using different thresholds (ε0 = 10−6 and 10−5).

Figure 9 (left) shows that all scales of the flow are well-resolved for both
thresholds. The underlying grid Figure 9 (right) which corresponds to the
centers of active wavelets for the computation with ε0 = 10−6 at t = 37.5
shows a local refinement in regions of strong gradients.

10.3.2 Comparison between CVS and Fourier pseudo-spectral DNS

In Figure 10 (bottom) we show the evolution of the vorticity field for the
adaptive wavelet simulation with threshold ε0 = 10−6 and for the refer-
ence pseudo-spectral computation (top). In both simulations, as predicted
by the linear theory, 10 vortices are formed, which subsequently undergo
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Fig. 9. Left: energy spectra for the pseudo-spectral reference run and for the

adaptive wavelet simulations with thresholds ε0 = 10−6, 10−5. Right: adaptive

grid reconstructed from the index set of the retained wavelet coefficients. Both at

time t = 37.5.

Fig. 10. ω at t = 12.5, 25, 37.5. Top: pseudo-spectral method. Bottom: adaptive

wavelet method (ε0 = 10−6).

successive mergings. In Figure 11 the active wavelet coefficients (gray en-
tries) are plotted using a logarithmic scale. The coefficients ω̃λ are placed
at position (x1, x2) = (2j(1− δd,1) + kx, 2j(1− δd,2) + ky) with the origin in
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Fig. 11. Active wavelet coefficients at t = 12.5, 25, 37.5 (ε0 = 10−6).
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Fig. 12. Left: evolution of enstrophy. Right: evolution of #DOF (ε0 =

10−6, 10−5).

the lower left corner and the y-coordinate oriented upwards, from coarser
to finer scales. We observe that the basis dynamically adapts to the flow
evolution during the computation with only 8% of the coefficients being
used. We observe that in the wavelet simulation the formation and evo-
lution of vortices are well captured, although we find that at later times a
slight phase shift appears with respect to the DNS (top). This might be due
to the fact that the retained wavelet coefficients contain 94% of the total
enstrophy, as observed in Figure 12 (left) which shows the time evolution of
the total enstrophy using the different thresholds. The 6% loss of enstrophy
comes from the fact that in the wavelet simulations we have not modelled
the effect of the discarded modes onto the retained ones. This will be
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considered in future work, where the enstrophy of the discarded wavelets
will be reinjected into the coherent vortices using the wavelet forcing method
we have proposed [50].

Finally, we plot the time evolution of the number of degrees of freedom
for the two wavelet runs in Figure 12 (right). First, we observe an initial
phase, up to t = 7 s, where there is a strong reduction in the number of
active modes, which corresponds to the formation of the coherent vortices.
Then the number of active modes remains almost constant, and represent a
significant reduction of the number of modes, withNad = 5000 for ε0 = 10−6

and Nad = 2000 for ε0 = 10−5 out of N = 65536 initial modes.

Part IV

Conclusion

In these lecture notes we have reviewed wavelet techniques for analyzing and
computing turbulent flows. We summarized the continuous and orthogonal
wavelet transforms and presented the algorithms for their numerical imple-
mentation. Furthermore we presented classical and some recently developed
wavelet-based statistical tools for analyzing turbulent flows.

We then described a wavelet-based method designed for computing tur-
bulent flows, called CVS (Coherent Vortex Simulation). The CVS filtering
consists of projecting the vorticity field onto an orthogonal wavelet basis and
decomposing it into two orthogonal components using a nonlinear threshold-
ing of the wavelet coefficients. The coherent vorticity field is reconstructed
from the few wavelet coefficients larger than a given threshold, which de-
pends only on the resolution and on the total enstrophy, while the inco-
herent vorticity is reconstructed from the many remaining weak wavelet
coefficients. The coherent and incoherent velocity fields are then derived
from the coherent and incoherent vorticity fields using Biot–Savart’s inte-
gral equation.

We applied the CVS filtering to a 3D turbulent mixing layer. We have
shown that few strong wavelet coefficients represent the coherent vortices,
the whole energy spectrum and the whole vorticity PDF. In contrast, many
weak wavelet coefficients represent the incoherent background flow, which is
structureless, exhibits an energy equipartition spectrum and an exponential
distribution for the vorticity PDF. This demonstrates the advantage of the
CVS filtering in comparison to the LES filtering, since we have shown that
the small scale flow, which is discarded in LES, exhibits many coherent
structures, has a much wider PDF of vorticity and does not present an
energy equipartition spectrum.
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We then presented an adaptive wavelet computation of a 2D mixing
layer and shown the dynamical adaption of the grid in physical space which
allows to follow the flow evolution with a reduced number of active degrees
of freedom. We showed that the adaptive wavelet method produces accurate
results with fewer active modes than the classical pseudo-spectral method,
since it exploits the vortical structure of turbulent flows, while the adaptive
wavelet method does, which leads to greater efficiency at high Reynolds
numbers.

In conclusion, although the numerical method we propose is Eulerian,
based on a Galerkin scheme, its adaptive character, in both space and scale,
allows to track the displacements and deformations of active flow regions,
as Lagrangian methods do.
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