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Abstract—We present an adaptive wavelet method to integrate the velocity–
vorticity formulation of the two-dimensional Navier–Stokes equations coupled with
a penalisation technique to handle efficiently solid boundaries of arbitrary shape. We
demonstrate the validity of this method, called coherent vortex simulation (CVS), to
compute the flow around an impulsively started cylinder at high Reynolds number
and compare the results with a classical vortex method.  2002 Elsevier Science (USA)
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1. INTRODUCTION

The computation of turbulent flows in complex geometries is one of the main challenges
in computational fluid dynamics. Hereby the grid generation and adaption play a crucial
role. Furthermore turbulent flows are characterized by a wide range of spatial and
temporal scales. Hence, multiscale techniques are a suitable tool to get insights into
the physics of turbulence. Wavelets have been used so far for analyzing, modeling, and
computing turbulent flows; for a review we refer, e.g., to [4–6, 13, 14]. Recently, several
adaptive wavelet methods have been developed to solve the two-dimensional Navier–
Stokes equations [3, 8, 9, 15, 16]. All presented methods suffer from the drawback that
they are limited to simple geometries, i.e., squares or rectangles, mostly assuming periodic
boundary conditions.
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The penalisation technique, introduced by Arquis and Caltagirone [2], offers an elegant
solution to take into account complex geometries. Therewith walls or solid obstacles, even
if their shape varies in time, are modelled as a porous medium with porosity η tending to
zero. A mathematical justification proving convergence of this physically based approach
has been given by Angot et al. [1]. This technique has been applied in the context of
low order methods (finite difference/volume schemes, e.g., [11]) and also with spectral
methods, e.g., [7, 10]. The motivation for coupling the penalisation technique with an
adaptive wavelet solver comes from the fact that adaptive wavelet methods automatically
refine the grid in regions of strong gradients. Hence, we expect the solver to adapt
automatically, not only to the evolution of the flow, but also to the geometry.

After a short presentation of the governing equations together with the penalisation
method, we present the adaptive wavelet scheme for the penalized equations. For more
details on the numerical scheme we refer to [6, 9, 17]. To validate this new method, called
coherent vortex simulation (CVS), we study a prototype of unsteady separated flows, an
impulsively started cylinder at high Reynolds number. We illustrate the self-adaptive grid
evolution and compare the results with these obtained with a vortex method [12]. Finally,
we give some conclusions and perspectives for turbulence modelling.

2. PENALISATION MEETS WAVELETS

In this section we present the governing equations together with the penalisation
technique and introduce its coupling with the adaptive wavelet method.

2.1. Physical Problem

The vorticity transport equation

∂tω + �v · ∇ω − ν∇2ω = 0 (1)

describes the unsteady incompressible flow of a viscous fluid, where �v(�x, t) =
(u(x, y, t), v(x, y, t)) is the velocity, ω = ∇ × �v is the vorticity, and ν is the kinematic
viscosity. The incompressibility, i.e., ∇ · �v = 0, together with the definition of vorticity,
implies that �v is related to ω by the Biot–Savart relation

∇2�v = ∇⊥ω, (2)

with ∇⊥ = (−∂y, ∂x). By considering a flow around a solid obstacle 
s (here a cylinder)
translating with velocity �V0, the velocity of the fluid is equal to the velocity of the obstacle
at its boundary; i.e., �v|∂
s = �V0. Far from the obstacle, for |�x| → ∞, we have �v(�x) → �V∞,
where �V∞ is the free-stream velocity.

The Reynolds number of the flow is defined based on the size of the obstacle D (here
the diameter of the cylinder) and the mean velocity �V = �V0 − �V∞; i.e., Re = | �V |D/ν.
The time is non-dimensionalized with the radius (R = D/2) of the cylinder, T = | �V |t/R.
Prandtl’s classical wall law yields for the boundary layer a thickness δ ∝ 1/

√
Re, which

thus requires a strong grid refinement near the wall.
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2.2. The Penalisation Technique

The physical idea of the penalisation technique is to model solid walls or obstacles as a
porous medium with porosity η tending to zero [2]. The complex geometry is then simply
described by a mask function χ(�x) set to 1 inside the solid regions and to 0 elsewhere.
Hence, the penalisation method can also take into account obstacles with time-varying
shapes by simply introducing a time-varying mask function. The Navier–Stokes equations
are modified by adding a supplementary term containing the mask function. For η → 0 the
flow evolution is governed by Navier–Stokes equations in the fluid regions and by d’Arcy
law (velocity proportional to pressure gradient) in solid regions where the obstacles or
walls are.

For an impulsively started obstacle with velocity �V0 and free-stream velocity �V∞ we
obtain in vorticity–velocity formulation

∂tω + (�v + �V∞) · ∇ω − ν∇2ω + ∇ ×
(

1

η
χ(�v − �V0)

)
= 0 (3)

with

χ
s (�x) =
{

1 for �x ∈ �
s

0 else.
(4)

It has been shown rigorously that the above equations converge in the limit when η tends
to zero towards the Navier–Stokes equations with no-slip boundary conditions, with order
η3/4 inside the obstacle and with order η1/4 elsewhere [1]. In numerical simulations an
improved convergence of order η has been reported [1, 10].

To compute the resulting forces �F on the obstacle, the penalized velocity has to be
integrated over the obstacle’s volume [1]

�F = lim
η→0

∫

s

∇Pη d �x = − lim
η→0

1

η

∫

s

�Vη d �x =
∫
∂
s

S( �V ,P ) · �ndγ, (5)

where 
s denotes the volume of the obstacle, ∂
 denotes its boundary, �n denotes its
outer normal pressure and S( �V ,P ) = (1/2ν)(∇ �V + (∇ �V )T) − PI is the stress tensor
with I the identity. Therefore the drag and the lift (forces parallel and perpendicular to �V0,
respectively) induced by the obstacle are easy to compute as volume integrals instead of
contour integrals.

2.3. Adaptive Wavelet Scheme

To solve (3) numerically we first discretize the equations in time using semi-implicit
finite differences, i.e., Euler–backwards for the viscous term and Adams–Bashforth
extrapolation for the nonlinear term, both of second order.

We obtain

(γ I − ν∇2)ωn+1 = 4

3
γωn − 1

3
γωn−1 −∇ · (ω∗(�v∗ + �V∞))+∇ ×

(
1

η
χ(�v∗ − �V0)

)
, (6)

where

ω∗ = 2ωn −ωn−1 and �v∗ = 2�vn − �vn−1, (7)

with time step �t , γ = 3/(2�t).
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For spatial discretization we use a Petrov–Galerkin scheme. Therefore the vorticity is
developed into a set of trial functions and the minimization of the weighted residual of
(6) requires that the projection onto a space of test functions vanishes. As space of trial
functions we employ a two-dimensional multiresolution analysis (MRA) and develop ωn

at time step n into an orthonormal wavelet series

ωn(x, y)=
∑
j

2j−1∑
kx=0

2j−1∑
ky=0

∑
µ=1,2,3

〈ωn,ψ
µ
j,kx ,ky

〉ψµ
j,kx ,ky

(x, y). (8)

The test functions θµj,ix ,iy are defined as solutions of the linear part of Eq. (6):

(γ I − ν∇2)θ
µ
j,ix ,iy

= ψ
µ
j,ix ,iy

. (9)

This avoids assembling the stiffness matrix and solving a linear equation at each time
step. The functions θ , called vaguelettes, are explicitly calculated and have localization
properties similar to those of wavelets [9]. The solution of (6) therewith reduces to a simple
change of basis

ω̃
µ,n+1
j,ix ,iy

= 〈ωn+1,ψ
µ
j,ix ,iy

〉 =
〈(

4

3
γωn − 1

3
γωn−1 − ∇ · (ω∗(�v∗ + �V∞))

+ ∇ ·
(

1

η
χ(�v∗ − �V0)

))
, θ

µ
j,ix ,iy

〉
. (10)

An adaptive discretization is obtained by applying at each time step a nonlinear wavelet
thresholding technique, retaining only wavelet coefficients ω̃

µ,n
j,ix ,iy

with absolute value

above a given threshold ε = ε0
√
Z, where ε0 is a constant and Z = 1

2

∫ |ω(�x)|2 d �x
the entrophy. For the next time step the index coefficient set (which addresses each
coefficient in wavelet space) is determined by adding neighbours to the retained wavelet
coefficients. Consequently only those coefficients ω̃ in (10) belonging to this extrapolated
index set are computed using the adaptive vaguelette decomposition [9]. The nonlinear
term −∇ · (ω∗(�v + �V ∗∞)) + ∇ × ( 1

η
χ(�v∗ − �V0)) is evaluated by partial collocation on a

locally refined grid. The vorticity ω∗ is reconstructed in physical space on an adaptive grid
from its wavelet coefficients ω̃∗ using the adaptive wavelet reconstruction algorithm [9].
From the adaptive vaguelette decomposition with θ = (∇2)−1ψ , we solve ∇2'∗ = ω∗
to get the stream function '̃∗ and reconstruct '∗ on a locally refined grid. By means of
centered finite differences of fourth order we compute ∇ω∗, �v∗ = (−∂y'

∗, ∂x'∗) and
∇ × ( 1

η
χ(�v∗ − �V0)) on the adaptive grid. Subsequently, the nonlinear term is summed up

pointwise and finally (10) is solved using the adaptive vaguelette decomposition.

3. NUMERICAL RESULTS

Here we present an application of the CVS method to compute a flow past an impulsively
started cylinder at Re = 3000, as proposed in [12]. The numerical difficulty comes from
the fact that, due to the impulsive start, a thin boundary layer develops and thus the drag
coefficient exhibits a t−1/2 singularity. The freestream velocity V∞ is set to zero and the
obstacle’s velocity �V0 is set to (1,0) at t = 0+. The computational domain is [0,4D]2,
where D = 1 is the diameter of the cylinder which is centered in the domain. We use
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FIG. 1. CVS of an impulsively started cylinder at Re = 3000. Left: Isolines of vorticity at T = 1,3,5. Right:
Center of the active wavelet coefficients in physical space. Note that at T = 1,3,5 only 18,781, 20,089, 20,764
out of 5122 = 262,144 wavelet modes are used.

a resolution of 5122, with a time step �t = 5 · 10−4, a threshold parameter ε0 = 10−5,
and a penalisation parameter η = 10−3. In Fig. 1 we show isolines of the vorticity field for
three instants (left) together with the corresponding locally refined grid (right). We observe
that the grid automatically adapts to the obstacle and follows the flow evolution, since it
is refined in regions of strong vorticity gradients. A comparison of the time evolution of
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FIG. 2. Top: Comparison of the time evolution of the drag coefficient between the adaptive wavelet method
(CVS), a spectral method with penalisation (DNS), and two different vortex methods [12]. Bottom: Time
evolution of the number of active wavelet modes (solid line) and of the total enstrophy �2-norm of norticity
(dashed line).

the drag coefficient, computed using the CVS method, direct numerical simulation (DNS)
with penalisation [17], and two different vortex methods [12], top shows the validity of the
adaptive wavelet method (Fig. 2, top). Note that compared with a spectral method (DNS)
only about 8% of the total number of modes are used (Fig. 2, bottom).

4. CONCLUSION

We have presented an adaptive wavelet method called CVS to compute two-dimensional
turbulent flows in complex geometries using a penalisation technique. Computing a flow
behind an impulsively started cylinder at Reynold number 3000, we have shown the
validity of the wavelet method. We illustrated the feature of automatic grid adaption
and found a good prediction of the drag coefficient compared with two classical vortex
methods. In future work we will increase the threshold and develop a turbulence model to
simulate the effect of the discarded wavelet modes onto the retained modes, as done in [6]
for a mixing layer.
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