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1 Principle

The continuous wavelet transform has been discovered by Alex Grossmann and
Jean Morlet who published the first paper on wavelets in 1984 [32]. This mathe-
matical technique, based on group theory and square integrable representations,
allows to decompose a signal, or a field, into space, scale and directions. The or-
thogonal wavelet transform has been discovered in 1986 by Pierre—Gilles Lemarié
and Yves Meyer [39]. The development of wavelets has been interdisciplinary,
with contributions coming from very different fields such as engineering (sub-
band coding, quadrature mirror filters, time—frequency analysis), theoretical
physics (coherent states of affine groups in quantum mechanics) and mathemat-
ics (Calderon—Zygmund operators, characterization of function spaces, harmonic
analysis). Many reference textbooks are available, among them we recommand
[42, 8, 41]. Meanwhile a large spectrum of applications has grown and is still
developing, ranging from signal analysis and image processing to data compres-
sion. The first application of wavelets to analyze turbulent signals has been
published in 1988 [19], and since then a long-term research program is devel-
oped for analyzing, computing and modelling turbulent flows with wavelets
[16, 20, 21, 23].

Wavelets constitute basic building blocks of various function spaces out of
which some can be used to contruct orthogonal bases. The starting point is
a function ¢ (z), called mother wavelet, which is well-localized (it exhibits a
fast decay for |z| tending to infinity), is oscillating (¢ has at least a vanish-
ing integral, or better the first m moments of ¢ vanish), and is smooth (the
Fourier transform of 4 exhibits fast decay in wavenumber space). The mother
wavelet then generates a family of wavelets, ¢y ,(2') = 1~1/2 @b(wll—_m), by dilata-
tion (or contraction) by the parameter [ > 0 and translation by the parameter
z € IR, all wavelets being normalized in L?-norm. In Fig.1, we show an ex-
ample of such a family in the orthogonal case for discrete scales I = 277 and
positions = 277§Az, with j the scale index for each octave, i the space index
and Az the grid size). The wavelet transform of a function f is then defined
as a convolution of the analyzing wavelet with the signal f(z) € IR, which
gives the wavelet coefficients: f(l,z) = [ f(2')¢1,(2')dz’. They measure the
fluctuations of f around the point x and scale I. The function f can be re-
constructed as a linear combination of wavelets v . (z') and wavelet coeflicients
f,2): f(z)=Cy™" [ [ F(l,x).(2")I~2 dldz, Cy being a constant which de-
pends on the wavelet ¢. Let us mention that, due to the localization of wavelets
in physical space, the behaviour of the signal at infinity does not play any role.
Therefore the wavelet analysis and synthesis can be performed locally, in con-
trast to the Fourier transform where the nonlocal nature of the trigonometric
functions does not allow to perform a local analysis.

In this course, we will first define the continuous and the orthogonal wavelet
transforms, then recall classical statistical tools used to study turbulent flows
and finally present several wavelet statistical tools, together with some associ-
ated intermittency measures.
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Figure 1: Example: Discrete wavelets ¢;i(z) = lg/z Yz — izo) with Iy = 2
and zo = 1 and | = I}, = = kxol] for the case of orthogonal quintic spline
wavelets 5,6(z"), ¥6,32(2") ¥7,108(2").-



2 The continuous wavelet transform

2.1 1In one dimension
2.1.1 Analyzing wavelet

Starting point for the wavelet transform is a real or complex valued function
(), called wavelet, which has to fulfill the admissibility condition,

co= [ ) G <o (1)
where o
o= [ ey 2)

denotes the Fourier transform. If ¢ is integrable this implies that ¢ has zero
mean,

/Oo W@)ds = 0  or $k=0) = 0. (3)

In practice however one also requires that the wavelet ¢ should be well-
localized in both physical and Fourier spaces, which implies smoothness. We
also require that higher order moments of ) vanish, i.e.

o0
/ z"Y(z)dz = 0 for m=0,M 4)
—00

which means that monomials up to degree M are exactly reproduced. In Fourier
space this property is equivalent to

dm

w&(kmzo =0 for m=0,M (5)

so that the Fourier transform of ¢ decays smoothly at & = 0.

2.1.2 Analysis

From this function 1, the so—called mother wavelet, we generate a family of
continuously translated and dilated wavelets, normalized in L?-norm

x

bra(a) = 12 (5

7 ) for 1>0 and z€ R (6)

where [ denotes the scale dilation parameter, corresponding to the width of the
wavelet and z the translation parameter, corresponding to the position of the
wavelet.

In Fourier space this reads

bi,o (k) = VI(lk) e=2mhe (7)



where the contraction with 1/1 is reflected in a dilation with ! and the translation
with x implies a rotation in the complex plane.

The continuous wavelet transform of a signal f € L2(IR) is then defined as
a convolution of f with the wavelet family v ,

fta) = [ " @B ) ®)

where El,:c denotes in the case of complex valued wavelets the complex conjugate.
Using Parseval’s identity we also get

fa.a) = [ " FRy D (k) dk (9)

so that the wavelet transform may be interpretated as a frequency decomposition
using band pass filters gﬁl,z centered at frequency k = kT¢, where &y denotes the
center of the wavelet in Fourier space, and having variable width %, so for
increasing scales the bandwidth is getting wider.

In Fig.2, we show an example of a continous wavelet analysis of an academic
signal, which is the superposition of harmonic function.

2.1.3 Synthesis

The admissibility condition (1) of ¢ implies the existence of a finite energy
reproducing kernel, see e.g. [8], which is a necessary condition for being able
to reconstruct a function from its wavelet coefficients. The signal can thus be
reconstructed entirely from its wavelet coefficients,

1 oo oo - ,
@)= o / / ) i)

which is the inverse wavelet transform.

dldx
e (10)

2.1.4 Energy conservation

There also holds an energy conservation like for Fourier transforms, i.e. a
Plancherel identity, which means that the total energy of a signal can be ei-
ther calculated in physical space or in wavelet coefficient space,

o0 oo o0 - dld
[ uwria = o [ iear S

This formula is also the starting point for the definition of wavelet spectra and
scalogram (see 4.3).

(11)



2.2 In higher dimensions
2.2.1 Analyzing wavelet

The theory of the continuous wavelet transform can be generalized in several
dimensions [47] using rotation in addition to dilatation and translation.

The family of functions vy 7 is obtained from a single one % by dilatation
with !, by translation by & and by rotation of angle 6,

- —

r —T

l

dzo@) = 19(R(CT)) (12
where Ry denotes a rotation matrix.
Note that the rotation matrix belongs to the group of rotations in IR™ and
depends on the (n(n —1))/2 Euler angles 6.

Analogously to the one-dimensional case the wavelet transform is invertible
and isometric, provided that 1 fulfills the admissibility condition

=/

In the following we restrict ourselves to isotropic real-valued wavelets, so
there is no more a dependence on the angle §. The wavelet coefficients can then
be calculated using the formula

- 12 &k

J(k)‘ T < (13)

~ - -

fom = [ [ 7@ ez oF (14)

where the Fourier_transform of the wavelet ¢ is essentially supported on an
annulus a radius |k|.

2.2.2 Analysis

For a two-dimensional function f € L2(IR?) (constructions for higher dimensions
are analogous) we get

F.7,0) = //JR [@) Brag(@)dPE for 1>0, §€0,21], 7e R
(15)

2.2.3 Synthesis

The function f € L?(IR?) can be recontructed from its wavelet coefficients by
the relation

1 o0 S, L dEdl
1@=g | [ ], fenue-n5= (16)



2.2.4 Energy conservation

The energy conservation reads

[ wera =& [T [ iear MEE o

2.3 Algorithm

To illustrate the practical implementation of the continuous wavelet transform
we consider a one-dimensional signal f(x) sampled on a regular grid with N = 27/
points, i.e. the given data are f(2774) for i = 0,...,27 —1. We assume the signal
to be periodic and compute the wavelet coefficients by means of the Fast Fourier
Transform (FFT).

The large scale corresponds to the domain size, which is by construction
equal to 1 and the smallest scale of the discretization corresponds to % =217,
The range of scales is discretized logarithmically, such as

L =1’ >0 . (18)

The choise of [y is determined to ensure a given precision for the reconstruction of
the signal by a discretized version of formula (10). For instance, we choose Iy =
21/4 (1.e. four voices per octave) for Hermitte wavelets, which are derivatives of
Gaussians, to insure that the scale sampling is sufficient to have enough precision
for the reconstruction of f [§].

To compute f(I,z) we discretize the formula (9). First we compute the
disrete Fourier transform of the signal samples. Then we multiply it with the
wavelet filter in Fourier space, and we subsequently obtain at each scale /;, for
j =0to J—1, and at all positions z; = % fori =0, N—1 the wavelet coefficients
by executing an inverse FFT

N/2-1 __ o
Fl,m) = > el k)et N (19)
k=—N/2

where fk denotes the discrete Fourier transform of the samples f (%),

—~ 1 Nl n .
fk — N Z f (N) e—z27rnk:/N (20)
n=0

Due to periodicity of the signal f, no boundary effects are introduced by using
the FFT. The complexity of the algorithm is of order N log N at each scale due
to the use of the FFT.

The above algorithm can be applied analogously in the two-dimensional case
using the tensor product discretization together with 2D FFTs.
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Figure 2: Example of a one-dimensional continuous wavelet analysis. Top: The
signal to be analyzed. Middle: the modulus of its wavelet coefficients. Bottom:
the corresponding phase.



3 The orthogonal wavelet transform

3.1 In one dimension
3.1.1 Orthogonal scaling functions

The discrete wavelet transform relies on the concept of multi-resolution analysis
(MRA) which is a sequence of imbedded subspaces V; verifying

Vi CVin VieZ (21)
U,.,% = 2*(®) (22
N vi=1{0} (23)
JEZ
f(@) €V; & f(20) € Vi (24)

A scaling function ¢(z) is required to exist. Its translates generate a basis in
each Vj, i.e.
Vj = span{¢jiticz - (25)

where
$ji(x) = 20292z — i) €D . (26)

This basis is orthonormal, so that
< $ji, Bjr >R= ik (27)

+o0o
with < f,g >r= [ f(z)g(z)dz being the inner product in L*(IR) .

oo
The main issue of the wavelet approach now is to work with the orthogonal
complement spaces W; defined by

Vig1 =V, @ W, (28)

3.1.2 Orthogonal wavelets

Based on the function ¢(x) one can find a function ¥ (z), the so-called mother
wavelet. Their translates and dilates constitute a orthonormal bases of the
spaces W,

W; =spani{yjiticz (29)

where
pji(z) = 22220z — i) ji€Z (30)

use in 6.1 for analyzing turbulent signals.
Each function f € L?(IR) can now be expressed as

10



03 6
0.25 5
02
4
0.15
3
0.1
2
0.05
0 1
-0.05
21 05 0 05 1 0 50 100 150 200
03 6
0.2 5
4
0.1
3
0
2
-0.1 1
-02
] -05 0 05 1 0 50 100 150 200

Figure 3: Coiflet 12. Top: Scaling function ¢. Bottom: Corresponding wavelet
v. (left: in physical space, right: in Fourier space)

F@) = > Fiidiil®) + D> Futle) (31)
i€Z j=do i€Z
where _ y
fji=<1I9%ji>mr fii =< f¢ji >m (32)

In numerical applications the sums in (31) have to be truncated which corre-
sponds to the projection of f onto a subspace of V; C L?(IR). The decomposi-
tion (31) is orthogonal, as, by construction,

<Yji,Yu >m = i Gik (33)
<vji, 0 >r = 0 j>1 (34)
in addition to (27).
3.1.3 Relation between the regularity of a function
and its wavelet coefficients

There is a relation between the local or global regularity of a function and the
decay of its wavelet coefficients. The global regularity directly determines the

11



error being made when the wavelet sum is truncated at some scale. Depending
on the type of norm and whether global or local characterization is concerned,
various relations of this kind have been developed, see e.g. [42, 8, 41] for an
overview.

As an example we consider the case of an a-Lipschitz function, with o > 1
[33]. Suppose f € L%(IR), then for [a,b] C IR the function f is a-Lipschitz for
any zo € [a,b], i.e. |f(zo+ h) — f(zo)| < C|h|%, if and only if there exists a
constant A such that | < f,1;;> | < A2-3%3 for any (4, ) with 2% €]a, b[. This
shows the relation between the local regularity of a function and the decay of
its wavelet coefficients in scale.

The adaptive discretization we have proposed [21, 22] to compute turbulent
flows is based on taking into account spatially varying regularity of the solution
through a cut off of its wavelet series, where the strongest wavelet coeflicients
are retained. This guarantees that regions where the fields are less regular
(quasi-singulatities) are well sampled.

3.2 In higher dimensions

This section consists of an extension of the previously presented one-dimen-
sional construction to higher dimensions. For simplicity, we will consider only
the two-dimensional case, since higher dimensions can be treated analogously.
We start with a brief description of the construction principle and then turn in
more detail to the two-dimensional case with periodicity, which is relevant for
the subsequent applications.

3.2.1 Tensor product construction

Having developed a one-dimensional orthonormal basis 1;; of L?(IR) one would
like to use these functions as building blocks in higher dimensions. One way of
doing so is to take the tensor product of two one-dimensional bases [8] and to
define

Viw gy sinsiy (T:Y) = Vi, () V5,4, (W) (35)

The resulting functions constitute an orthonormal wavelet basis of L2(IR?).
Each function f € L?(IR?) can then be developed into

F@y) = DD Fieidprieriy Ciedyrieiy (T,9) (36)

Jesta Jysly

With fj, jyiwsiy =< FoVjesjysinsiy >

Remark:

In this basis the two variables z and y are dilated separately. Therefore the
functions 1;, ;, involve two scales, I, = 2/* and I, = 2%, and each of the
functions is essentially supported on a rectangle with side lengths I, and [,.
Hence the decomposition is often called rectangular wavelet decomposition. This
is closely related to the standard form of operators using the nomenclature of
Beylkin [5]. From the algorithmic viewpoint, this is equivalent to apply the

12



one-dimensional wavelet transform to the rows and the columns of a matrix
representing an operator or a two—dimensional function. For some applications
such a basis is advantageous, for others not. For example in turbulence the
notion of scale has an important meaning and one would like to have a unique
scale assigned to each basis function, which is not the case with the tensor
product construction. This is why we prefer the MRA construction to analyze
and compute turbulent flows.

3.2.2 2D multi-resolution analysis

A suitable concept which fulfills the above requirement of having a unique scale is
the construction of a truly two-dimensional MRA of L2(IR?). Tt can be obtained
through the tensor product of two one-dimensional MRA’s of L?(IR) [42]. More
precisely one defines the spaces V;,j € Z by

Vi =V;®V; (37)

and Vj = W{¢j,im,iy (.’L‘,y) = ¢j,7::z (.’E) ¢j,iy (y) ,iz,iy € Z} fulﬁlhng analo-
gous properties as in the one—dimensional case (3.1) - (3.4).

Likewise, we define the complement space W to be the orthogonal complement
of Vj in Vj+1a i.e.

Vipt = Vi ®Vin = VoW, e (V;oWw,;) (38)
= VieVie (W;eV)e(V;eW;)e (W;eW;))  (39)
= V]' D Wj (40)

It follows that the orthogonal complement W; = V11 © V; consists of three
different types of functions and is generated by three different wavelets

Vjio (%) Gji, () 5 =1
rieiy (@Y) = G (2) ¥, (y) 5 p=2
Vi () Vji, (y) 5 =3

Observe that here the scale parameter j simultaneously controlls the dilatation
in z and in y. We recall that in d dimensions this construction yields 2¢ — 1
types of wavelets spanning W .

Using (41) each function f € L2(IR?) can be developed into an MRA basis as

flz,y) = ZZ Z ;i,jy,im,iy 'éb;,iz,iy(x,y) (42)

o ieyiy p=1,2,3

(41)

with NJ“Z usiedy =< 0% i >. The wavelets %, . are the basis functions
of the so-called square wavelet decomposition. The algorithmic structure of the
one-dimensional transforms carries over to the two-dimensional case by simple
tensorisation, i.e. applying the filters at each decomposition step to rows and
columns. Applying this kind of transform to matrices representing operators
(differential, integral, integro-differential) leads to the non-standard form in the

terminology of Beylkin [5].

13



Remark:

The described two-dimensional wavelets and scaling functions are separable.
This advantage facilitates the generation of a multidimensional MRA from sev-
eral one-dimensional MRA’s. However the main drawback of this construction
is that three wavelets are needed to span the orthogonal complement space W
in two dimensions and seven in three dimensions. Another property should be
mentioned. By construction the wavelets are anisotropic, i.e. horizontal, diago-
nal and vertical directions are preferred. This could be an advantage in digital
signal processing to recognize corners and edges.

3.2.3 Periodic 2D multi-resolution analysis

Using the tensor product construction of two-dimensional wavelets on the real
line and the periodization technique, see e.g. [49], we now recall the essential
features of periodic two-dimensional wavelets of L?(T'?). For notational ease
we drop from now on the tilde introduced to distinguish the periodic wavelets
from those on the real line. In the latter applications the periodic basis is used
throughout unless otherwise explicitly stated.
A two-dimensional MRA of L?(T'?) is a sequence of embedded subspaces V; C
Vji1, 5 € INg. It can be obtained through the tensor product of two one-
dimensional MRA’s of L?*(T) [42]. This induces a decomposition of L*(1'?)
into mutually orthogonal hierarchical subspaces

L*(I*) = Vo @20 W (43)
The space V; is generated by the bivariate scaling functions

V; =3span{dj,i, i, (@,y) = ¢ji.(2) b, (Y) }i,,i,=o0,....29 1 (44)

and the orthogonal complement space W; = V;i 1 © V;,j > 0 by three
different wavelets

W, =3pan {4y}, i (@)} iy=0,....20 1,4=1,2,3 (45)

with 9%, ; defined as in (41) using the periodic analogons.

Correspondingly, any function f € L2(7'?) which is at least continuous can be
projected onto V; by collocation

271 271

=Y ¥ i(53) Snnto) (46)

iz =0 iy=0
using the two-dimensional cardinal Lagrange function
Sjieiy (2, Y) = Sji, (2)Sja, () - (47)

It can then be expressed as

2i_1 9291 3
fi
Z Z Z Jyia iy J’Zmazy (SL’ y)
2=0 iy=0 p=1

(48)

f1(@,y) = fo0,0 ¢0,00(x,Yy)

JIDM‘

14



with scaling coefficients

faoo= [ f@w)dvay (49)

and wavelet coefficients
ﬁz’z,z’y = (f; ;fiw,z'y) (50)
using that (1)0’0’0 =1.

Representing a function in terms of wavelet coefficients has the following advan-
tages. Smooth functions yield rapid decay of the coefficients in scale (depending
on the number of vanishing moments of 1);;). At locations where u develops a
singularity or an ‘almost singularity’ only local coefficients have to be retained
(depending on the decay of 9;; in space). Second, all employed basis functions
are mutually orthogonal, a property which is the keystone of the algorithms.

3.3 Algorithm

In case of a regular sampling and periodic functions, computations can be done
in physical space by periodizing the required filters (defined below) using Mal-
lat’s algorithm [41]. For long filters it is more economical, however, to use fast
convolution in Fourier space employing FFT. The algorithm is based on the
application of three discrete filters. The scaling coefficients f;, are computed
by application of the interpolation filter I

= {Ssmds0), TP =210y, k) =8()/6k) (51

to the sampled values {f(55)}:-
The scaling filter H and the wavelet filter G

H'y’;, = <¢j,n7¢j*1,0) ) G‘lz, = <¢j,n7¢j*1,0> (52)

are classically used for computing the wavelet transform. They can be obtained
in physical space for compactly supported bases and in Fourier space through

H(k) = $(2k)/d(k) ,  G(k) =9p(2k)/d(k) (53)
The algorithm then reads

step 0. FFT of the values {f;};—o, .. 27_1 at the points {z; = 2%}1-:0,“”21_1 to
the R
Fourier coefficients {f}r—o, . 27_1-

step 1. Interpolation using the Lagrange function S;(z) of the space V; by

computation in Fourier space : application of I gives (f Dk, k=0,...,27—
1.
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step 2. Application of Filters G and H in Fourier space (* indicating double
length sequences)

(?/Zjl)k = Hy (?AJ)k k=0,...,27 -1 (54)
(f/;:)k = Gy (}N;)k k=0,...,27 —1 (55)

step 3. Instead of setting

?J—l,z’ = 7J71,2z' frai= f}kq,zi i=0,...,277" -1 (56)

in physical space, downsampling can be done directly in Fourier space
through

Frde=To)it Foodpparn B=0,..,270  (57)

—_

Fr0e =B+ (B Dpanrs E=0,.,2770 (58)

step 4. Inverse FFT of lenght 27! to get {fj_l’i}izo’___,zJ—l_l.
iterate steps 2 to 4 replacing J by j = J—1,...,0. Observe that in the last
step 27! is replaced by 0 and (fo)o = fo -

The use of (57), (58) instead of (56) leads to a speed up by a factor 6 with
respect to extracting the coeflicients in physical space. The inverse transform is
obtained by executing the above steps in reversed order omitting the conjugate
complex in (54), (55) and replacing step 3 with upsampling in Fourier space.
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4 Statistical tools
4.1 Methodology

Turbulence research is based on observations, laboratory and numerical exper-
iments. Typical quantities measured to characterize turbulent flows are scalar
fields (temperature, concentration, pressure, etc), vector fields (velocity, vortic-
ity, etc), tensor fields (stress, strain, etc).

4.1.1 Laboratory experiments

Observations and laboratory experiments (e.g. in wind tunnels or water tank)
are done using flow visualisations and time measurements performed in few
points of the flow (e.g. hot-wire anemometry, laser velocimetry). Flow visualiza-
tions give mostly qualitative information. Time measurements give quantitative
information by accumulating well-sampled and well-converged time statistics,
although only at very few spatial locations. By checking Taylor’s hypothesis,
namely that the time fluctuations are small compared to the mean flow veloc-
ity, one assumes that the time statistics can be identified with the space statis-
tics. This allows to compare observations or laboratory measurements with the
predictions of the statistical theory of turbulence, and also with the statistics
obtained from numerical experiments.

4.1.2 Numerical experiments

Numerical experiments are based on the accepted assumption that Navier—
Stokes are the fundamental equations of fluid dynamics, whatever the flow
regime. The fully-developed turbulent regime is reached when the nonlinear
advective term dominates the linear dissipative term (limit kinematic viscos-
ity v — 0 or Reynolds number Re « 1/v — o0). In this highly nonlinear
regime, Navier—Stokes solutions can only be computed by numerical approxi-
mation. The computation predicts the time evolution of one flow realization
only. Statistical analyses are performed afterwards in three different ways:

e by computing spatial statistics of instanteneous turbulent fields, which is
valid only if the computational domain is much larger than the integral
scale where turbulence is produced,

e by computing time statistics of long flow history, which is valid only if the
time evolution is much larger than the eddy turn over time characteristic
of turbulent flow instabilities,

e by running a large number of numerical simulations for the same param-
eters and flow configuration, but with different initial conditions. The
ensemble averages are computed afterwards. This procedure requires a
number of independant realisations sufficient to ensure the stationarity of
the probability distribution (PDF).
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4.1.3 Averaging procedure

Turbulent flows are characterized by their unpredictability, namely each flow
realization is different, although the statistics are reproducible as long as the flow
configuration and parameters are the same. This is the reason why turbulence
models predict only statistical quantities.

Another essential characteristic of turbulent flows is their intermittency, i.e.
the fact that we observe in each flow realization well localized strong events
(bursts). This intermittent behaviour is not very pronounced in the velocity
field, but becomes dominant when one considers the velocity gradients or the
vorticity field. They are characterized by non-Gaussian PDFs, whose tails cor-
respond to the intermittent bursts. The flow intermittency comes from the
nonlinear dynamics of turbulent flows which, for incompressible fluids, tend to
form well localized coherent vortices (vortex spots in two dimensions and vortex
tubes in three dimensions) which wander around in a chaotic way resulting from
their mutual interactions.

A crucial difficulty in turbulence modelling is to define averages able to
take into account intermittency. The L?-norm averages, i.e. ([ |f(z)[>dz)'/?),
classically used in turbulence (e.g. two-point correlations, second order structure
functions, spectra) are ‘blind’ to intermittency, because the well localized strong
events responsible for intermittency are too rare to affect the L?-norm, since
their weight remains negligible in the integral.

To define averages able to take into account intermittency there are two
possible strategies:

e consider LP-norms, i.e. (([ |f(x)/Pdz)*/?) with p large enough to have the
values of the PDF tails contributing significantly to the integral,

e extract the rare (intermittent) events, responsible for the heavy tails of
the PDF, from the dense (non-intermittent) events, which contribute only
to the center of the PDF, and perform classical L2-norm averages for the
dense events only.

The second approach corresponds to conditional averages and requires a
criterium to separate the rare events from the dense events. As we have assumed
that the intermittency of turbulent flows is due to the presence of coherent
vortices, responsible for the rare events, we first need to identify them in order
to extract them.

As we have shown [19], [17] the coherent vortices can be characterized by
the fact that they correspond to the strongest wavelet coefficients of the vortic-
ity field. Based on this property we have defined a procedure to extract them
[20], [21], which consists in retaining only those vorticity wavelet coefficients @
which are larger than a threshold value &7 = (2Zlog, N)'/2, with Z the total
enstrophy and N the resolution (i.e. the number of grid points or wavelet coef-
ficients). We then verify that the PDF of the discarded coefficients, i.e. those
smaller than the treshold @7 which correspond to the dense non-intermittent
events, is Gaussian.
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4.2 Classical tools
4.2.1 Probability distribution function (PDF)

To motivate the introduction of a probability space (E,F,P) we consider:

e the set of all possible configurations of the flow, i.e., the phase space of
the Navier—Stokes equations, denoted by =,

e the set F of all experiments with a definite outcome which have been
performed, called the flow realisations,

e a probability measure P for the set of experiments F, such that P(0) =
{0} and P(E) = {1}, which assigns a probability to each experiment which
has been performed.

We consider a stationary, homogeneous and isotropic random signal

f(&,2,t) € F, with £ € Z, z € R and t € IR} . For fixed ¢ the function f(z,t)
is called a realization of the random field or a sample, e.g., one component of
the velocity field.

Using the probability measure P we define the distribution function F(g) =
P(—o0 < f <g, f € E) which measures the probability of f having a value less
or equal to g.

4.2.2 Radon-Nikodyn’s theorem

If the probability measure P is absolutely continuous, there exists a probability

density function (PDF) p of P such that p(f) = %, which corresponds to the

derivative % of the distribution F, i.e., p(f)df = P(f < g < f +df, g € ).
The PDF is normalized such that [, p(f)df = 1.

4.2.3 Definition of the joint probability

Let f and g be two random fields, one can define the joint probability
F(f,9)=P(-oo < f'<f,-00<g <y, [f,g]€E).

The corresponding joint probability density function is given by p(f, g) = p(f)p(g9)—
p(fNg) (Bayes’ theorem). If f and g are independent and identically distributed

(ii.d.), then p(f, g) = p(f)p(g)-

4.2.4 Statistical moments

The p-th order moments of the random field f are defined as

M(f) = (f7) = / 12 0(f) df (59)
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If f € 2 is ergodic, the p—th order moments can also be expressed as space
average

M,(f) = / (@) dz, (60)

where the integral is defined as

[=mmg | [ 2

L being the size of the domain and n the space dimension.
M, (f) corresponds to the p-th power of the LP-norm of f.

Remark:

Note that a stationary random process is ergodic, if the ensemble average is
equal to the time average of one realization. This means that if one waits long
enough, the ergodic process visits all states of the phase space, and the time it
spends in each state is proportional to the probability of occurence of this state.
Similarly, an homogeneous random process is ergodic, if the ensemble average is
equal to the space average of one realization. This means that if one considers
all space points, the ergodic process accesses to all states of the phase space and
then both averages are equivalent.

Ratios of moments are defined, such as

My(f)
(M, (£))r/e

Classically one chooses ¢ = 2, which leads to define statistical quantitities such
as:

Qp.q(f) = (62)

- skewness S = Q3,2(f),
flatness F' = Qa,2(f),

- hyperskewness S, = Q5,2(f)
- hyperflatness Fj, = Q¢ 2(f)-

4.2.5 Structure functions

The p-th order structure function of a random scalar field f is defined as

S,(0) = / FE+D) - f@)PdE . (63)

The p—th order structure function can be computed from the PDF of the
increments of f, defined as A(l) = f(&+ 1) — f(&), since it is the p-th moment
of their PDF

= [ Adpa@) da®) . (64)
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Remark:

The drawback of higher-order statistics, however, is that the number of data
points required for an accurate estimation increases with order p. For instance,
the number of points required for moments of order 12 is about 10°, and thus
estimation of high-order moments quickly becomes impracticable.

4.2.6 Autocorrelation function

The autocorrelation function of the random scalar field f € L*(IR?) is defined
as

RO = [ 1@ 1@+ Dz (65)
and for vector fields f € L%(IR?) we get the two—point correlation tensor
Ry = [ 1@ 1@+ D (66)

Note that in turbulence the above quantity computed for the velocity field is
called the Reynolds stress tensor, and plays a key role in turbulence modelling.

4.2.7 Fourier spectrum

The spectrum of the random scalar field f is the Fourier transform of its auto-
correlation function:

. 1 s
P — —ik-l g
(k) @ / Ry e~*t gn] (67)
Similarly for vector fields we obtain
- 1 o oo
o, — ” —ik-l gn
(k) 2n)" / Rij(l)e d"l (68)

-,

One can integrate ®(k) on shells of radius k = |E | which gives the one-dimensional
spectrum

E(k) = / (k) k"1 de . (69)

4.2.8 Wiener-Khinchin’s theorem

For a function R(l) € L'(IR), to be the correlation function of a homogeneous
field f(z) which satisfies the condition S3(I) — 0 for | — 0, it is necessary and
sufficient that it has a representation of the form R(l) = [, E(k)e™! dk where
E(k) > 0 is the spectral density of the random variable f(z).

Remark:

If R(l) is not in L'(IR), then Wiener-Khinchin holds in a distributional sense
only, e.g. for a Gaussian white noise R(I) = 0, therefore it is not in L' and
E(k) =1.
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The spectrum E(k), the second order structure function S2(l) and the autocor-
relation function R(!) fulfill the following relations:

- / f@+0)f(z)dz = 2 / " cos(2mkl) B(K)dk (70)
0

and hence we get

oo
/ \f(z+1)— f(@)]? do . = 2R(0)—2R(]) = 2 / (1= cos(2rkl)) E(k)dk
° (71)
Remark:
The above relation illustrates that the structure function corresponds to a high
pass filtered spectrum although the corresponding filter is not very selective.
We will propose wavelet tools to improve the filter selectivity.

4.3 Tools based on the continuous wavelet transform
4.3.1 Local wavelet spectrum

If the signals are stationary (for time signals) or homogeneous (for space signals),
one classically considers the modulus of their Fourier transform (i.e. their energy
spectrum) and thus the phase information is lost. This is a major limitation of
the classical way of analyzing complex signals since their localized temporal or
spatial structures are thus neglected. This local information can be observed
in each realization but not within the Fourier coefficients since it is hidden
among the phases of all Fourier coefficients. For statistically non-stationary
or inhomogeneous signals the classical energy spectrum, based on the Fourier
transform, is no more appropriate.

The wavelet transform extends the concept of energy spectrum so that one
can define a local energy spectrum E(z, k) using the wavelet transform (which,
as we have seen conserves, the L2-norm of a function), such that

Blk.2) kaw ‘f( )

where ky is the peak wavenumber of the analyzing wavelet 1) and Cy as defined
in (1). By measuring E(k, ) at different instants or positions in the signal one
estimates what parts in the signal contribute most to the global Fourier energy
spectrum and might suggest a way to decompose the signal into different con-
tributions. For example, if one considers turbulent signals, one can determine
the type of energy spectrum contributed by coherent structures, such as iso-
lated vortices, and the type of energy spectrum contributed by the unorganized
background flow.

2
for k>0 (72)

4.3.2 Global wavelet spectrum

Although the wavelet transform analyses the flow into wavelets rather than
complex exponentials, one shows [51] that the mean wavelet energy spectrum
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converges to the Fourier energy spectrum provided the analyzing wavelets have
enough cancellations. More precisely the mean wavelet spectrum

+oo
E(k) = E(k,z)dx (73)
0

gives the correct Fourier exponent for a power-law Fourier energy spectrum
E(k) o« k=P if the analysing wavelet has at least n > (3 — 1)/2 vanishing
moments. This condition is the same as that for detecting singularities derived
in the previous section since § = 1 + 2a for isolated cusps. Thus, the steeper
the energy spectrum, the more vanishing moments the analyzing wavelet should
have. The inertial range in turbulence has a power-law form. The ability to
correctly characterize power-law energy spectra is therefore a very important
property of the wavelet transform (which is related to its ability to detect and
characterize singularities).

4.3.3 Relation with the Fourier spectrum

The mean wavelet energy spectrum E(k) is a smoothed version of the Fourier
energy spectrum E(k). This can be seen from the following relation between

the two spectra
- 1 +oo ~ kokl
Ek)= —— E(
0 =g [ B0 (%)

which shows that the mean wavelet spectrum is an average of the Fourier spec-
trum weighted by the square of the Fourier transform of the analysing wavelet
shifted at wavenumber k. Note that the larger k is, the larger the averaging
interval, because wavelets are bandpass filters with % constant. This property
of the mean wavelet energy spectrum is particularly useful for turbulent flows.
Indeed, the Fourier energy spectrum of a single realization of a turbulent flow
is too oscillating to be able to clearly detects a slope, but it is no more the case

for the mean wavelet energy spectrum which is much smoother.

2

dk’ (74)

The real-valued Mexican hat wavelet
(k) = k* exp(—k?/2) (75)

has only two vanishing moments and thus can correctly measure energy spec-
trum exponents up to 8 < 5.

In the case of the complex-valued Morlet wavelet, only the zeroth order
moment is zero,

~

O(k) = %exp(—(k—k¢)2/2) for k>0
Pk) = 0 for k<0 (76)

is zero, but the higher n'* order moments are very small (o< kI exp(—k7,/2))
provided that ky is sufficiently large. Therefore the Morlet wavelet transform
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gives accurate estimates of the power—law exponent of the energy spectrum at
least for approximately 8 < 7 (if ky = 6).

There is also a family of wavelets [51] with an infinite number of cancellations

(k) = an exp (-% (k2 + kz%)) , n>1, (77)

where a,, is chosen for normalization. The wavelets defined in (77) can therefore
correctly measure any power—law energy spectrum. Furthermore, these wavelets
can detect the difference between a power—law energy spectrum and a Gaussian
energy spectrum (E(k) o exp(—(k/ko)?)). For instance in turbulence it is
important to determine at what wavenumber the power—law energy spectrum
becomes exponential since this wavenumber defines the end of the inertial range
of turbulence and the begining of the dissipative range.

4.4 Tools based on the orthogonal wavelet transform
4.4.1 Motivation

In this section we describe some statistical tools based on the orthogonal wavelet
transform. The wavelet approach avoids the limitations of structure functions
and allows moment ratios to be defined as a function of scale. We present
them considering, as example, a one-dimensional scalar field f(z) € L?(IR?)
which has vanishing mean and is periodic (the extension to higher dimensions
and vector fields is straightforward). Hence we employ a 1D periodic multi-
resolution analysis (MRA) [8, 16] and develop the signal f, sampled on N = 27
points, as an orthonormal wavelet series from the largest scale 0, = 2° to the
smallest scale lyin = 277:

J—1 2

i1
> fii i), (78)
i=0

flz) =

1

J
where ;; is the 2m-periodic wavelet. Due to orthogonality the coefficients are
given by fj’i = (f,v;,;) where (-,-) denotes the L?>-inner product. The wavelet
coefficients contain information on scale, position and direction (in higher di-
mensions) information.

4.4.2 Local wavelet spectrum

We define the scale distribution of energy, also called scalogram, as

27 -1
Ei=> |fl (79)
i=0

To be able to relate the scale distribution to the Fourier spectrum, we introduce
the mean wavenumber ky of the wavelet v, defined by

L EIp(R)|dk

T ok (50
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Thus each scale 277 of the wavelet ¢; is inversely proportional to the mean

wavenumber k; = ky2/. The discrete local wavelet spectrum [10, 51] is then
defined as .
~ )Y/

E(kjami) = |fj,i|2 Fa (81)
i

where Ak; = \/kjkji1 — \/kjkj_1, is the mean wavenumber.

By measuring E(kj, x;) at different positions z; in a turbulent flow one can
study how the energy spectrum depends on local flow conditions and estimate
the contribution to the overall Fourier energy spectrum of different components
of the flow. For example, one can determine the scaling of the energy spectrum
contributed by coherent structures, such as isolated vortices, and the scaling of
the energy spectrum contributed by the unorganized part of the flow.

The spatial variability of the local energy spectrum E(k;, ;) measures the
flow’s intermittency.

4.4.3 Global wavelet spectrum
The global spectral behaviour of f is studied by summing the local energy

spectrum over all positions,
~ 2j_1 ~
E(kj) = Y E(kj, ). (82)
i=0
The relationship between the global wavelet spectrum E’(kj) and the usual
Fourier energy spectrum E(k) is described in the following section.

4.4.4 Relation between wavelet and Fourier spectra

First note that due to the orthogonality of the wavelet decomposition, the total
energy is preserved and we have E = ) ; Ej- The global wavelet spectrum is
related with the Fourier energy spectrum according to [16, 51]

= _ 1 < N ki/lkl 2 311
B = oo [ BB P (53)
where
_ [ BR)P
Cy = /0 - dk. (84)

The wavelet spectrum is therefore a smoothed Fourier spectrum weighted by the
modulus of the Fourier transform of the analyzing wavelet [51]. Note that as the
wavenumber increases the smoothing interval becomes larger [16]. A sufficient
condition guaranteeing that the global wavelet spectrum is able to detect the
same power-law behaviour k=% as the Fourier spectrum is that ¢ has enough
vanishing moments [51], i.e.

+oo a—1
2"Y(z)de =0 for 0<n< — (85)

—00
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If this condition is not satisfied the global wavelet spectrum saturates at the
critical cancellation order n. In this case it only shows a power-law behaviour
with a slope not steeper than @ = 2(n+1). Since large a corresponds to smooth
functions, as the function analyzed is smoother we require 1 (x) to have more
vanishing moments in order to correctly detect the signal’s spectrum. If the
wavelet does not have enough zero moments we simply measure the wavelet’s
own spectral scaling!

4.4.5 Wavelet intermittency measures

Intermittency is defined as localized bursts of high frequency activity. This
means that intermittency is a phenomenon localized in both physical space and
spectral space, and thus a suitable basis for representing intermittency should
reflect this dual localization. The Fourier basis is perfectly localized in spec-
tral space, but completely delocalized in physical space. Therefore when a
turbulence signal is filtered using a high-pass Fourier transform and then recon-
structed in physical space, e.g. to calculate the flatness, some spatial information
is lost. This leads to smoothing of strong gradients and spurious oscillations in
the background, which come from the fact that the modulus and phase of the
discarded high wavenumber Fourier modes have been lost. The spatial errors
introduced by such a filtering lead to errors in estimating the flatness, and hence
intermittency, of the signal.

When a quantity (e.g. velocity derivative) is intermittent it contains rare
but strong events (i.e. bursts of intense activity), which correspond to large
deviations reflected in the ‘heavy tails’ of the PDF. Second-order statistics (e.g.
energy spectrum, second-order structure function) are relatively insensitive to
such rare events because their time or space support is very small and thus do
not dominate the integral. However, these events become increasingly important
for higher-order statistics, and finally come to dominate. High-order statistics
therefore characterize intermittency. Of course, intermittency is not essential
for all problems: second-order statistics will suffice to measure dispersion (dom-
inated by energy-containing scales), but not to calculate drag (dominated by
vorticity production in thin boundary layers).

The goal of this paragraph is to point out the limitations of classical mea-
sures of intermittency, and to present a unified set of wavelet-based alternatives
(many of which have been introduced separately elsewhere). We show how the
classical measures can be thought of as a special case of wavelet filtering using
an extremely non-smooth wavelet defined as the difference of two Diracs (DOD).
It is this lack of regularity of the underlying wavelet that limits the usefulness
of classical measures for sufficiently smooth signals. We propose wavelet-based
diagnostics that overcome these limitations, and produce accurate results what-
ever the signal to be analysed.

To measure intermittency we use the space-scale information contained in
the wavelet coefficients to define scale-dependent moments and moment ratios.
Useful diagnostics to quantify the intermittency of a field f are the moments of
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its wavelet coefficients at different scales j [54],

291

My (£)=2773" |fil"- (86)
=0

Note that E; = 27 M, ;.

The sparsity of the wavelet coefficients at each scale is a measure of inter-
mittency, and it can be quantified using ratios of moments at different scales,

Mp,j(f)
(Mg, (f))P/e

which may be interpreted as quotient norms computed in two different functional
spaces, LP— and L7%—spaces. Classically, one chooses ¢ = 2 to define typical
statistical quantities as a function of scale. Recall that for p = 4 we obtain
the scale dependent flatness F; = Q4,2,;. It is equal to 3 for a Gaussian white
noise at all scales j, which proves that this signal is not intermittent. The scale
dependent skewness, hyperflatness and hyperskewness are obtained for p = 3,5
and 6, respectively. For intermittent signals (), 4,; increases with j.

QRp,q.j (f)= (87)

4.4.6 Relation to structure functions

In this section we link the scale dependent moments of wavelet coefficients,
structure functions and Besov norms (which are typically used in nonlinear ap-
proximation theory [9]). In the case of second order statistics, we show that
global wavelet spectra correspond to second order structure functions. Further-
more, we give a rigorous bound for the maximum exponent of the structure
functions and propose a way to overcome this limitation.

The increments of a signal, also called the modulus of continuity, can be seen
as its wavelet coefficients using the DOD (difference of Diracs) wavelet

YpPOP (z) = b(z +1) - &(z). (88)

We thus obtain }
fl@+1) = f(@) = fag = (f,000") (89)

with ¥, 1(y) = 1/1[6((y — )/l + 1) — 6((y — x)/1)]. Note that the wavelet is
normalized with respect to the L' norm. The p-th order structure function
Sp(1) therefore corresponds to the p-th order moment of the wavelet coefficients
at scale [,

Sp(l) = / (fou)Pdz. (90)

As the DOD wavelet has only one vanishing moment (its mean), the exponent of
the p-th order structure function in the case of a self-similar behaviour is limited
by p, i.e. if S,(I) o< 1S®) then ((p) < p. This saturation was first observed by
[2] for DNS of two-dimensional flows, but without proposing an explanation.
To be able to detect larger exponents one has to use increments with a larger
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stencil, or wavelets with more vanishing moments, i.e. [z™)(z)dz = 0 for
n =20,1,...,M — 1. This will become clearer below in the context of Besov
regularity of functions.

We now concentrate on the case p = 2, i.e. the energy norm. Equation (83)
gives the relation between the global wavelet spectrum E(k) and the Fourier
spectrum E(k) for an arbitrary wavelet 1. For the DOD wavelet we find, since
PPOD (k) = ik — 1 = ¢ik/2(eik/2 — ¢ik/2) and hence [(yPOP (k)|2 = 2(1 — cos k),
that

B(k) = ﬁ /0 T B2 - 2cos(k‘§€k'))dk'. (91)

Setting | = ky/k and comparing with (71) we see that the wavelet spectrum
corresponds to the second order structure function, i.e.

1

E(k) = o

Sa(l). (92)
The above results show that, if the Fourier spectrum behaves like k=% for k —
oo, E(k) c k=% if a < 2M + 1, where M is the number of vanishing moments

¢(p)
of the wavelets. Consequently we find for Sy(l) that So(l) oc 1$(P) = (%’”) 8

for I — 0if {(2) < 2M. In the present case we have M = 1, i.e. the second
order structure function can only detect slopes smaller than 2, corresponding
to an energy spectrum with slopes shallower than —3. Thus we find that the
usual structure function gives spurious results for sufficiently smooth signals. In
the appendix we generalize the relation between structure functions and wavelet
coefficients in the context of Besov spaces.
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5 Extraction of coherent vortices

5.1 Methodology

To study turbulent signals we now propose to separate the rare and extreme
events from the dense and weaker events, and then calculate the statistics for
each independently. A major difficulty in turbulence research is that there is no
clear scale separation between the two kinds of events. This lack of a ‘spectral
gap’ excludes Fourier filtering for disentangling these two behaviours. Since
the rare events are well localized in physical space, one might try to use an
on-off filter defined in physical space to extract them. However, this approach
changes the spectral properties by introducing spurious discontinuities (adding
an artificial k=2 component to the energy spectrum). To avoid these problems
we use the wavelet representation, which combines both physical space and
spectral space localizations (bounded from below by Heisenberg’s uncertainty
principle). In turbulence the relevant rare events are the coherent vortices and
the dense events correspond to the residual background flow. In [21] we have
proposed a nonlinear wavelet filtering of the wavelet coefficients of vorticity to
separate the coherent vortices from the residual background flow. We now detail
the different steps of this procedure.

5.2 Wavelet decomposition of vorticity

We describe the wavelet algorithm to extract coherent vortices out of turbulent
flows and consider as example the 3D case (for the 2D case refer the reader
to [21]). We consider the vorticity field &(Z) = V x ¥, computed at resolution
N =237 N being the number of grid points and .J the number of octaves. Each
component is developed into an orthogonal wavelet series from the largest scale
Imaz = 2° to the smallest scale [, = 2771 using a 3D multi-resolution analysis
(MRA) [8, 16]:

J—129-1 291 291 271
i

W@ = Goooo0o@ + D > DL DL DL Dy Vi)

j=0 ip;=0 iy=0 i,=0 p=1

(93)
with @i, iyii. (F) = 94, (%) 4,0, (Y) ). (2), and
(i, (2) 054, (Y) H50.(2) s =1,
bji. () Vii, () G50 (2) s =2 ,
Bjia (%) D, (W) Vi (2) s =3
ierinis @) = Vii (@) 044, () 5. (2) s p=4 (94)
Viio (@) Vi, (y) 9. (2) 5 =5 ,
bji. () Vi, () Vj.(2) s u=6
([ Vi (@) Y50, W) Y50 (2) 5 0=T7 ,

where ¢;; and 1;; are the one-dimensional scaling function and the corre-
sponding wavelet, respectively. Due to orthogonality, the scaling coefficients
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are given by @o00 = (w, ¢0,0,0) and the wavelet coefficients are given by
~ _ o 2
S isinyis = (W5 Vi, ) Where (-, -) denotes the L*-inner product.

5.3 Nonlinear thresholding

We then split the vorticity field into & (F) and &(Z) by applying a non-
linear thresholding to the wavelet coefficients. The threshold is defined as
€ = (4/nZ1In N)'/2 where n is the space dimension which is here n = 3. Tt
only depends on the total enstrophy Z and on the number of grid points N
without any adjustable parameters. The choice of this threshold is based on
theorems by Donoho and Johnstone [11, 12] proving optimality of the wavelet
representation to denoise signals in presence of Gaussian white noise, since this
wavelet-based estimator minimizes the maximal L2-error for functions with in-
homogeneous regularity.

5.4 Vorticity and velocity reconstruction

The coherent vorticity field &g is reconstructed from the wavelet coefficients
whose modulus is larger than € and the incoherent vorticity field J; from the
wavelet coefficients whose modulus is smaller or equal to €. The two fields thus
obtained, ¢ and &y, are orthogonal, which ensures a separation of the total
enstrophy into Z = Z¢ + Zr because the interaction term (WJ¢ ,dy) vanishes.
We then use Biot—Savart’s relation @ = V x (V24J) to reconstruct the coher-
ent velocity U and the incoherent velocity ¥; for the coherent and incoherent
vorticities respectively.
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6 Application to 2D turbulence

6.1 Wavelet analysis

In the following examples of wavelet applications to study 2D and 3D turbulence,
we use Coiflets 12 [8], i.e. wavelets with M = 4 vanishing moments and a filter
length of 3M = 12 (see Fig. 3 bottom). The advantage of the Coiflets is that
they are almost symmetric and that the corresponding scaling functions (see
Fig. 3 top) have also M vanishing moments.

We apply the wavelet diagnostics presented in 4.4 to analyze a freely decaying
two-dimensional turbulent flow [21]. It has been computed by DNS at resolution
N = 2562 using a pseudo-spectral method. The spatial domain is periodic and
the initial state is a random vorticity field with a Gaussian PDF.

The Navier—Stokes equations rapidly organize the initial homogeneous ran-
dom vorticity field into isolated coherent vortices which contain most of the
enstrophy Z (figure 4).
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Figure 4: Vorticity field at ¢t = 0,4, 100. Note the emergence of coherent vortices
from an initially homogeneous vorticity distribution.

As shown in figure 5, the initial Gaussian distribution evolves via a stretched
exponential to a quasi-stationary final state approximating a Cauchy distribu-
tion. This Cauchy distribution is similar to the prediction of [44] for the PDF
of the derivative of the velocity field of a system of point vortices. For such a
distribution the variance and all higher order moments diverge, showing that
the Navier—Stokes equation can generate extremely non-Gaussian distributions
with coherent vortices. This evolution of the PDF from Gaussian to Cauchy can
be explained dynamically. Due to the Biot—Savart law the flow organizes itself
around initial extreme values of the vorticity. The gradients formed between the
coherent vortices by this process tend to dissipate weak vorticity and therefore
isolate the vortices. The coherent vortices then merge, which results in further
dissipation of weaker vorticity. As a result, the strong values of the vorticity
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Figure 5: PDF of vorticity field at ¢ = 0,4,100. The PDF is initially Gaussian
and changes to a Cauchy distribution via a stretched exponential. The dotted
curves show the ideal distribution (Gaussian, stretched exponential or Cauchy).

decay more slowly than the weak values, which results in a steepening of the
PDF. Note that, as is the case for three-dimensional turbulence, the velocity
remains Gaussian for all times.

In figure 6(a), we show the time evolution of the energy spectrum at initial,
intermediate (¢ = 0,47) and late (¢ = 1007), the time unit being the eddy-
turnover time 7 = Z~'/2. Tt follows a power law in the inertial range, namely
from k = 1 up to the dissipative wavenumbers larger than k& = 64, where the
slope changes from —3 at ¢t = 0, to —4 at ¢ = 4 and finally —6 at ¢ = 100.
These negative slopes reveal the long range dependence of the energy spectrum
which increases in time, i.e. the velocity field becomes increasingly correlated
and smooth. Note that the statistical theory of two—dimensional homogeneous
turbulence [38] predicts a k=3 power-law behaviour. The steepening of the slope
we observe as time evolves is attributed to the intermittency resulting from the
emergence of coherent vortices [43].

In figure 6 (b) we show the scale dependence of enstrophy (82) at early,
intermediate and late times. The scale of maximum enstrophy increases from
275 at t = 0 to 272 at t = 100. Therefore the correlation scale of the vorticity
field increases in time, which is due to the formation and subsequent merging
of coherent vortices, as illustrated in figure 4.

The scale dependent flatness of vorticity F; is shown in figure 6(c). It evolves
from Gaussian (i.e. Fj ~ 3 for all j) at ¢ = 0 to non-Gaussian (characterized
by the fact that F; strongly increases with j) as time increases.

In the following we focus on the instant ¢ = 4 (figure 4b), which is typical
of the regime where coherent vortices have already formed and are interacting
strongly. To study the dynamics of this flow regime we analyze the vorticity
field w, the linear dissipation term I = vV?w (where v denotes kinematic vis-
cosity) and the nonlinear advection term N = —@- Vw of the governing vorticity
transport equation

815(4) =L+N (95)

at time ¢ = 4. We recall that, since V - @ = 0, the velocity can be reconstructed
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Figure 6: (a) Energy spectra E(k). (b) Scale distribution of enstrophy Z;.
(c) Scale dependent flatness F; at t = 0,4, 100 for the decaying case.

from the vorticity by @ = V1V 2w, where V+ = (—8,,9;) and V2 denotes
the Green’s function of the Laplacian (from Biot—Savart’s relation). We plot
vorticity, dissipation and advection at ¢ = 4 in both physical and wavelet space
in figure 7. Figure 7b shows that dissipation is localized in the sheared regions
between interacting vortices. The advection term (figure 7c) is also well-localized
in sheet-like regions. The wavelet coefficients of the three fields have similar
intermittent structure. Note that the wavelet coeflicients become increasingly
intermittent at smaller scales (figure 7d, e, f). It is interesting to note that the
wavelet coeflicients that are active for vorticity are also active for dissipation
and advection, i.e. the same wavelet coefficients represent all three quantities.

The wavelet coefficients @, L and N reveal that vorticity, dissipation and
advection are strongly intermittent, i.e. for these 3 fields the spatial support
decreases with the scale, likewise their wavelet coefficients become sparser when
scale decreases. This intermittency is quantified by computing the scale depen-
dent flatness Fj (cf. figure 8¢). The moments M,, and the flatness F; strongly
increase with p and j, respectively, with the same scaling law for the three
fields w, L and N. This confirms the fact that they have the same type of
intermittency.

In figure 8a we display the scale distribution (in L?-norm) of vorticity, dissi-
pation and advection. They all are multiscale but have different distributions:
vorticity is most active around scale 2725, dissipation around scale 276 and
advection around scale 275, The fact that dissipation has a maximum at small
scales agrees with the classical phenomenology. However, its multiscale distri-
bution contradicts the assumption of a non-dissipative inertial range (assumed
by the statistical theory of turbulence), but agrees with the hypothesis of pro-
gressive dissipation throughout the inertial range as proposed by [6], and [25],
for three-dimensional turbulence.

Now we take the vorticity field at ¢ = 4 and randomize the phase of its Fourier
coefficients, in order to construct a fractal field corresponding to a Gaussian
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Figure 7: Top: vorticity field w, dissipation term —vV?w and advection term
u-Vw at t = 4. Bottom: corresponding wavelet coefficients @, —vV2w and
- Vw.
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Figure 8: Scale distribution of enstrophy Z;, normalized PDFs p(f,) for f, =
# and scale-dependent flatness F}; for vorticity, dissipation and advection
terms at t = 4.
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PDF, with the same spatial correlation as the original vorticity field. The phase-
scrambled vorticity field w,. is defined as

wr(@) = Y [B(F)| 202, (96)
E

where (k) = I w(Z)exp(—i2nk - #)dF denotes the Fourier transform of the
original vorticity field and 6 are uniformly distributed random numbers, i.e.
6 € U(0,1). Although the resulting field has the same spectral behaviour (cf.
figure 9b) and the same scale distribution (cf. figure 9c) as vorticity w, it has
neither coherent vortices in physical space (figure 9a), nor intermittency, i.e. no
sparsity of its wavelet coefficients (figure 9d). The phase-scrambled field also
has no significant increase of flatness F; with scale (figure 9f) and the PDF
is Gaussian with flatness F' = 2.9 (cf. figure 9¢) compared with F' = 5.7 and
stretched exponential PDF for the original field (figure 5b). We have thus shown
that a fractal field with the same long-range dependence as a turbulent field (i.e.
same energy spectrum), is not necessarily intermittent. This also demonstrates
that intermittency in turbulence is due the presence of coherent vortices.

To illustrate the relation between structure functions and scale dependent
moments of the wavelet coefficients we consider a typical statistically stationary
two-dimensional turbulent flow field at resolution N = 2562, extensively stud-
ied in [21]. In fig. 10 (top, left) we plotted its energy and enstrophy spectra
exhibiting a k> and a k2 power law behaviour, respectively. Figure 10 (top,
right) shows the enstrophy Fourier spectrum together with the global wavelet
spectrum using quintic spline wavelets. We find perfect agreement between both
Fourier and wavelet spectra as predicted by the theory since the wavelet used
has 5 vanishing moments. Furthermore we plot the global wavelet spectrum,
plus its standard deviation at the different scales, to illustrate the fact that the
fluctuations of the spectrum in physical space increase with the wavenumber.
These diagnostics all indicate the presence of intermittency.

In figure 10 (middle) we plot the longitudinal structure functions S| ,(I)
of the velocity for p = 1 to 6. On figure 10 (middle, left) we use the DOD
wavelet, .e. the classical structure function, and on figure 10 (middle, right)
we use quintic spline wavelets. For the classical structure functions (figure 10
(middle, left)) we observe that the slope is limited by the number of vanishing
moments of the wavelet. For example at p = 2 we observe that So(l) o< I2,
whereas one should find for Sa(l) o< I* since E(k) oc k=°. This limitation is
due to the fact that the DOD wavelet has vanishing mean only, and therefore
the structure functions show the scaling of the wavelet ({(p) = p) and not that
of the velocity! Using the quintic spline wavelets instead of the DOD wavelets,
we find the correct slope of [ for S, since the quintic spline wavelets have 5
vanishing moments. For the higher order structure functions we find ((p) = 2p,
which is the expected property of the signal.

Finally, in figure 10 (bottom) we plot the structure functions versus the
third order structure function, as used in the ESS approach. In both cases
we observe that the functions are less curved than without using ESS. Using
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Figure 10: Top: Isotropic Fourier energy and enstrophy spectra (left). Fourier
and global wavelet enstrophy spectra a3l the standard deviation of the wavelet
spectrum in physical space. Middle: Classical longitudinal structure functions
S p(l) for p = 2,...,6 of velocity (left) and corresponding wavelet based lon-
gitudinal structure functions (right), both averaged over 256 lines. Bottom:
Structure functions versus third order structure function, left classical case,
right wavelet case.



classical structure functions (figure 10 bottom, left) we find slopes of %, %, % and

2 for p = 2,4, 5 and 6 respectively. When we use the wavelet structure function
based on quintic splines, we find the same slopes of%, %, % and 2 for p = 2,4,5
and 6 respectively. This is due to the fact the we plot the structure functions
versus the third order structure function and hence only information about the
relative slope is obtained.

The above results show clearly that the slope of the classical structure func-
tions is limited by the regularity of the underlying wavelet. The scaling be-
haviour of smoother fields can only be detected using structure functions based
on wavelets with a sufficient number of vanishing moments. We have also shown
that the ESS approach may be misleading as it only yields information about
the relative slopes. These might be the same, even if the slope of the original
structure functions are wrong.

6.2 Extraction of coherent vortices

As example, we apply the CVS filter to DNS data of a two-dimensional ho-
mogeneous and isotropic turbulenct flow, which was computed using a pseudo-
spectral scheme with resolution N = 5122 and without hyperdissipation. One
realization of the vorticity field is shown on Figure 1la.(left) and most of the
enstrophy is concentrated in the coherent vortices one observe. We observe
that the coherent vortices are extracted by retaining only 2% of the N wavelet
modes, which contain 99.99% of the total energy and 99.01% of the total en-
strophy (Figure 11a., middle). They have the same velocity and vorticity PDFs
(Figure 11c.), the same energy spectrum in the inertial range (Figure 11d., left)
and the same cross PDF between vorticity and streamfunction characteristic of
coherence (Figure 11b.) as the total flow.

The remaining incoherent background flow is made of vorticity filaments
densely distributed in space (Figure 11d., right), deprived of coherence (Fig-
ure 11b., right), which have Gaussian PDF's for both velocity (Figure 11c., left)
and vorticity (Figure 11c., right), and present a k™! scaling of the energy spec-
trum characteristic of enstrophy equipartition in two dimensions (Figure 11d.,
left). This gives evidence that the incoherent background flow has reached a
statistical equilibrium which corresponds to turbulent dissipation.
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Figure 11: CVS filtering of a two-dimensional turbulent flow computed at N =
5122: a) total vorticity (left), coherent vorticity (middle) which corresponds
to 2% N modes and contains 99% of both energy and enstrophy, incoherent
vorticity (right) which corresponds to 98%N modes and contains less than 1%
of both energy and enstrophy, b) correBfonding coherence scatter plots c) PDF
of velocity (left), PDF of vorticity (right), d) energy spectrum (left), cuts of
vorticity (right). Solid lines for the total, dashed lines for the coherent and
dotted lines for the incoherent contributions.



7 Application to a 3D turbulence

7.1 Extraction of coherent vortices

We apply the CVS decomposition to 3D forced homogeneous isotropic turbu-
lence, computed by DNS (Direct Numerical Simulation) at microscale Reynolds
number R, = 168 with resolution N = 2563 [34].

In Fig. 13 we plot the modulus of the vorticity fluctuations of the total
flow field, considering only a 64% subcube. We observe that the field contains
well defined vortex tubes, as previously observed in laboratory and numerical
experiments [13, 59].

After decomposing the vorticity field into an orthogonal wavelet series, we
calculate the square of each wavelet amplitude, which corresponds to the en-
strophy retained in that mode. Subsequently, we sort them by decreasing order
of magnitude and compute their partial sum to obtain the compression curve
of the wavelet basis. In Fig. 12 we plot the percentage of retained enstrophy
versus the fraction of retained wavelet modes. This curve shows that very few
wavelet modes contain most of the enstrophy and that, above 10% of the modes,
it saturates rapidly. This saturation corresponds to a quasi-equipartition of the
enstrophy which is characteristic of random fields. On Fig. 12 we indicate by a
star the threshold € we use (5.3), which retains 3% of the wavelet coefficients and
79% of the enstrophy. The coherent vorticity ¢ is then reconstructed from the
retained wavelet coefficients and the incoherent vorticity &y is the remainder.

We find that only 3% wavelet modes correspond to the coherent flow, which
retains 98.9% of the energy and 79.1% of the enstrophy, while the remaining
97.1% incoherent modes have only 0.5% of the energy and 21% of the enstrophy.

In Fig. 14 we display the modulus of the coherent (left) and incoherent
(right) vorticity fields. Note that the values of the vorticity isosurfaces are the
same for the total and the coherent fields while they have been reduced by a
factor 2 for the incoherent field since its amplitude is much smaller. In the
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Figure 12: Compression curve: % retained enstrophy versus % number of re-
tained wavelets. The star corresponds to the Donoho-Johnstone threshold.
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Figure 13: Total field: vorticity modulus (isosurfaces |&J| = 30,40, 50, o being
the variance)

Figure 14: CVS decomposition: coherent (left) and incoherent (right) contribu-
tions (isosurfaces |&J| = 30,40, 50 and 3/20,20,5/20, respectively)

coherent vorticity (Fig. 14, left) we recognize the same vortex tubes as those
present in the total field. In contrast, the incoherent vorticity (Fig. 14, right)
is structureless and does not exhibit any organized structures. Hence, the CVS
decomposition retains all the vortex tubes in the coherent part, whatever the
scale where they are active, and disentangle the intermittent contribution of the
vortices from the non intermittent background flow.
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Figure 17: PDF of vorticity: CVS (left) and POD (right) decompositions

The energy spectra for the total, coherent and incoherent velocity fields,
computed using the Biot—Savart law from the corresponding vorticity fields, are
plotted in Fig. 15 (left). The spectrum of the coherent velocity is identical to the
spectrum of the total velocity in the inertial range, which means that the vortex
tubes are responsible for the k—%/3 scaling there. Only in the dissipative range
does the coherent spectrum decay more rapidly than the incoherent one, since
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total energy is mostly converted into incoherent energy there and dissipated.
The incoherent contribution exhibits a scaling close to k% which corresponds
to energy equipartition. The incoherent velocity field is therefore decorrelated,
which is consistent with the fact that the incoherent vorticity is structureless
(see Fig. 14 (right)).

To check the dynamical behavior of the coherent and incoherent contribu-
tions we computed their energy transfer in wavenumber space. Fig. 15 (right)
shows that the coherent flow is responsible for most of the energy transfer, giv-
ing an energy cascade from large to small scales which almost vanishes in the
viscous range. In contrast, the incoherent flow does not contribute to the en-
ergy transfer in the inertial range, but dominates in the dissipative range. From
these observations, we propose the following scenario for the turbulent cascade:
the coherent energy injected into the large scales is nonlinearly transferred to-
wards the small scales by nonlinear interactions between the vortex tubes, which
produces incoherent energy. The incoherent energy becomes dominant in the
smallest scales where it is dissipated. We conjecture that, on the contrary, the
incoherent background flow does not transfer energy into the coherent flow as
it is structureless and well decorrelated.

Fig. 16 (left) shows the PDF of the velocity in semilogarithmic coordinates.
The coherent velocity has the same Gaussian distribution as the total velocity.
The PDF of the incoherent velocity is also Gaussian but its variance is reduced
by a factor 13. In contrast to the velocity, the PDF of vorticity (Fig. 17, left)
is a stretched exponential with significant tails. The coherent vorticity has the
same stretched exponential behaviour as the total vorticity including the tails,
while the incoherent vorticity has an exponential behaviour with much weaker
tails.

Since the CVS filtering is based on wavelet denoising, without any dynamical
assumption or pattern recognition procedure, we now check a posteriori that we
have actually extracted the vortex tubes from the background flow. The coher-
ent vortex tubes can be described as local steady solutions of Euler equations
which correspond to regions where there is a depletion of nonlinearity, which
happens when the vorticity and velocity vectors are aligned. This situation max-
imizes the flow helicity H = ¥ - & and corresponds to flow Beltramization [45].
To study this tendency towards alignment of the vorticity & and the velocity ¥,
we plot in Fig. 18 the PDF of the relative helicity h = % We observe that
the coherent flow has the same tendency towards Beltramization as the total
flow, which is characterized by the two maxima encountered in both PDF's for
h = —1 (alignment) and +1 (anti-alignment). In contrast, the incoherent flow is
more evenly distributed with a maximum at h = 0, which indicates a tendency
towards a local two-dimensionalization, since the probability that the vortex
stretching term ¢ - V¥ vanishes is large. This observation, together with the
evidence for strong dissipation in the incoherent contribution (see transfers in
Fig. 15), agrees with a remark of Moffatt: Euler flows contain blobs of mazimal
helicity (positive or negative) which may be interpeted as ‘coherent structures’,
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Figure 18: PDF of cosine of the relative helicity: CVS (left) and POD (right)
decompositions

separated by regular surfaces on which vortex sheets, the site of strong viscous
dissipation, may be located [45]. Following this picture the coherent vorticity
corresponds to the coherent structures, which tend to maximize helicity where
vorticity and velocity vectors tend to align with each other, while the incoher-
ent vorticity corresponds to quasi-2D foliated regions which tend to maximize
dissipation.

The results discussed here confirm those we obtained for the CVS decompo-
sition of 3D forced homogeneous isotropic turbulent flow computed by DNS at
microscale Reynolds number Ry = 150 [59] with resolution N = 2403 [14].

7.2 Comparison between CVS and POD decompositions

The procedure CVS decomposition uses to separate turbulent flows into or-
ganized and random fluctuations differs from the POD (Proper Orthogonal
Decomposition). POD, also called PCA (Principal Component Analysis), or
EOF (Empirical Orthogonal Functions) or Karhunnen-Loéve decomposition,
computes the auto-correlation tensor of an ensemble of realizations, then diag-
onalizes it and retains only those eigenmodes corresponding to the Ns largest
eigenvalues. This yields the best basis for the ensemble of realizations with re-
spect to the L?-norm. Note that the computational cost of POD decomposition
scales as N3, while it scales as N for the CVS decomposition.

In the POD decomposition the retained modes are defined a priori for all
realizations. In contrast, CVS performs the separation a priori from each flow
realization by selecting a given set of basis functions, the orthogonal wavelets,
those having the strongest coefficients. Hence, the selection procedure is non-
linear, as the retained basis functions depend on each flow realization. From
statistical point of view the CVS method is based on a Bayesian approach while
POD is based on a non-Bayesian (also called frequentist) approach. For the
time integration, the CVS a priori retains the wavelets whose coeflicients are
larger than the threshold € at time step ¢ and prepares some neighbour wavelets,
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in space and scale, to compute the flow evolution from time step ¢ to t + 1 [22].
This selection of the active wavelets is nonlinear because it depends on the flow
realization at time ¢ and on the direction of the enstrophy transfers in wavelet
space evaluated at the previous time step.

For a stationary homogeneous isotropic turbulent flow, such as the one stud-
ied here, the POD yields the Fourier basis, since the correlation tensor is trans-
lation invariant. In order to perform comparison between POD and CVS de-
compositions, we project the same vorticity field as chosen before on a Fourier
basis and split the flow into low and high wavenumber contributions. Note that
for this linear separation it doesn’t matter whether we decompose the vorticity
or the velocity fields, as the Fourier basis diagonalizes the curl operator. To get
the same compression ratio as CVS, i.e., 3% of the modes retained, the cut-off
wavenumber is k. = 48 (see Fig. 15, left). This is a particular case of LES
filtering, with a Fourier low-pass filter, in which case the 97% high wavenumber
modes are the LES subgrid scale modes.

In Fig. 19 we plot the modulus of vorticity for the POD decomposition. In the
low wavenumber modes (left) we observe some vortex tubes. If we compare them
with those retained in the CVS coherent vorticity (Fig. 14, left) we find that only
a subset of the vortex tubes is extracted and that their structure is smoothed,
due to the low-pass filtering. Consequently the small scale contributions of
the vortex tubes are removed and the high wavenumber modes to be modelled
(Fig. 19, right) exhibit organized structures similar to those found in the total
vorticity field (Fig. 13).

AL

W (low pass filker) W (high poss filter)

Figure 19: POD decomposition: low wavenumber (left) and high wavenumber
(right) contributions (isosurfaces |&| = 30,40,50 and 3/20,20,5/20, respec-
tively)

The POD retains 99.2% of the energy, while CVS retains only 98.9%. On
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the other hand, CVS retains 79.1% of the enstrophy, while POD retains only
70.6%Z. The skewness of velocity and vorticity is negligible, a property pre-
served by both the CVS and POD decompositions.

In Fig. 17 the vorticity PDFs show that both the large and small scale
contributions, have strong variance, with the peak of the small scale PDF being
slightly larger than that of the large scale PDF. It is important to note that
the vorticity PDFs are interchanged compared to the CVS decomposition. The
vorticity PDF of the large scales retained by POD is exponential (with flatness
6.1), while it is stretched exponential (with flatness 9.6) for the discarded small
scales. The vorticity PDF of the coherent modes retained by CVS is stretched
exponential (with flatness 9.6), while it is exponential (with flatness 4.8) for the
discarded incoherent vorticity.

Moreover, the velocity PDFs for POD (Fig. 16, right) show that, although
the large scale contribution is gaussian (with flatness 2.9), this is not the case for
the small scale contribution which maintains a stretched exponential behaviour
as for the vorticity PDF (with flatness 6.8). In contrast, the velocity PDFs for
CVS (16, left) are gaussian for both the coherent and the incoherent modes.
This non-Gaussian behavior of both the vorticity and velocity PDFs of the
POD/LES small scales, may make modeling of its effect on the resolved large
scales difficult. This difficulty is much less acute with the CVS decomposition,
since the PDFs of the incoherent contribution is Gaussian for the velocity (16,
left) and exponential for the vorticity (17, left).

Concerning the alignement properties between vorticity and velocity we
found that both the large and small scale contributions have the same PDF
of cosa as the total flow (18, right). This is further evidence that coherent vor-
tex tubes are present in both components since, in contrast to CVS, the POD
decomposition does not separate different topological behaviors.
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Appendix

Structure functions and Besoc norms

The relation between structure functions and wavelet coefficients can be gener-
alized by using appropriate function spaces. For this we introduce Besov spaces
[56, 9], which can be characterized using wavelet coefficients and are related to
structure functions [50].

For ¢ < oo we define the Besov space

B, = {re 2@ s ([ 1@+ ) - j@Pan'? e Ly, T} o0

with0<s<1, pg>1.
This means that f € B; , if and only if f € L?, and

+o0 %
([ fisarn-s@parn §) <o )
0
Using the p-th order structure function S,(l) this is equivalent to
oo 2 dl\ s
(/ -5 sp(z)zT) < 0. (99)
0

This means that the p-th order structure function is related to Besov norms
via the modulus of continuity.
The corresponding norm is given by

Fllss,, = [1fllee + |55, (100)

where the semi-norm |f|g; is defined as:
+o0 ¢ dl %
flsg, = ( / [ / (& +1) = f(z)da)"/7] 7) (101)
0

(/()+Ool—3q Sy(l)* %)é (102)

(/ e 1l “) g (109)

This shows that the Besov norms (¢ < oo) are intimately related to the structure

functions Sp(1) and the wavelet coefficients f(a,-) = (f(2), Ya,5(2))-
In the case ¢ = 00, we obtain

Q

By = {f e ) s 17([ U@+ 1) - f@Pd0) € LB} (104)
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and for the semi-norm we get

| flis, . = 11 / f@+1) - f@)Pd2)/?]cc = [[I°Sp()?]|co.  (105)

In the case of a self-similar behaviour of the type

Sy(l) ~ 18P (106)
it follows that
feBsnsr (107)

This implies that £(p) < p as we restricted ourself to the case s < 1. To overcome
this limitation the Besov spaces can be generalized for s > 1, where s is not an
integer. For s > 1, s not an integer, we decompose s into s = [s] + o, ([s] being
the integer part of s) and we introduce

B (R) = {f € L'(IR) ; f € B; (R),0<m<[s]}  (108)
where (™) denotes the m-th derivative of f. The corresponding norm is defined
as

[s]
1fllss, = > 1F™ g, (109)
m=0

In order to have norm equivalence with the wavelet coefficients the wavelet
has to have at least [s] + 1 vanishing moments.

Let us mention that in the case where s is an integer, the modulus of conti-
nuity should be modified to ||f(z +1) — 2f(x) — f(z —1)||z» [56]. Note that this
second-order stencil is no longer equivalent to the structure function. Finally,
when p = ¢ = 2 we obtain the Sobolev space H?® and for p = ¢ = oo the Holder
space C® [56].

To summarize, structure functions of order p correspond to Besov norms
of functions which can be characterized by means of weighted sums of wavelet
coefficients due to norm equivalences. This remark completes the link between
structure functions, wavelet coefficients and Besov norms. It also suggests that
the limitations of classical structure functions may be overcome by using struc-
ture functions based on wavelets with more vanishing moments than the DOD
wavelet.

Extended self-similarity and quotients of Besov norms

To extend the scaling behaviour of structure functions one typically uses rescaled
structure functions [4], i.e. one considers ratios of structure functions of different
order S,(1)/S;(1). One then studies the scaling behaviour of the p-th order
structure function as a function of the g-th order structure function, i.e.

Sp(l) o< Sy (1S (110)
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with S, (1) o 1¢(9). Typically, ¢ = 3 due to the fact that S3(I) is known exactly
from the Karman-Howarth equation [26]. This approach is called extended
self-similarity (ESS), and greatly increases the range over which one observes a
well-defined power-law, even at moderate Reynolds numbers.

Because the scale-dependent moments of the wavelet coefficients are equiv-
alent to the structure functions using the Lll normalization of the wavelets,
ie. SWE(279) = 2IP/2 M, ;(f) = 207/ |29 S 251 |f;ilP, the ratios of the mo-
ments at different scales @Qp,q,;(f) (87) correspond to a generalized extended
self similarity in wavelet space. This allows us to detect self-similar behaviour
of functions with steeper slopes: if 9 has m vanishing moments then ((p) is
bounded from above by mp.

The relations summarized in this section have been presented for the one-
dimensional case only, but they can be generalized easily to higher dimensions
using tensor product constructions of wavelets [8] and Besov spaces in IR™ [56].
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Abstract: This note proposes first an introductory walk through the notions related to scaling
phenomena and intuitions behind are gathered to formulate a tentative definition. Second, it
introduces the mathematical model of self-similar processes with stationary increments, under-
stood as the canonical reference for scaling. Then, it shows how and why the wavelet transform
constitutes a powerful and relevant tool for the analysis (detection, identification, estimation) of
self-similarity. It is finally explained why self-similarity is a too restrictive model to account for
the large variety of scaling encountered in empirical data, and a review of various models related
to scaling and of their interrelations is proposed (long range dependence, (multi)fractal processes,
cascade processes). A set of Matlab routines has been developed to implement the wavelet-based
analysis for scaling described here. It is available on the WEB page www.ens-1yon. fr/~pabry.
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1 Motivation - Introduction

Scaling phenomena. Power laws, scaling laws, scaling phenomena or, simply, scaling, recently
became a very fashionable topic. Indeed, scaling behaviors were observed or studied or used as
description paradigms in a large collection of research works covering a wide variety of different
domains or applications. It is worth noting that those applications may be related to natural
phenomena as well as to human activity. For the first category, one can, for instance, mention
hydrology [8] with the study of variabilities of water levels in rivers, hydrodynamic with the study
of developed turbulence [19, 15], statistical physics with the study of systems having long range
interactions [35], microelectronics with 1/ f noises in semi-conductors [7, 18], geophysics and fault
repartitions or geological layers [34, 33], biology and physiology [41] with human rhythms vari-
abilities, heart beat [36] or gait [21] for instance. For the second category, one can find human
geography and population repartition in cities or continents [14], information flows on network
and mainly computer network teletraffic [27], stock market volatilities or currency change rates
fluctuations [24, 40]. The notion of scaling, however, remains defined poorly or in a loose way and
may be related to a variety of different properties of a system or a process. A possible common
tentative definition for scaling can be formulated through a negative statement: there is no char-
acteristic scale (of time or space...) in the studied system or process. In other words, this is no
longer possible to identify any scale that plays a privileged role compared to others, or equivalently,
all scales play identical roles and are of equal importance in the dynamics of the analyzed system
or process. Scaling, therefore, correspond to situations where the whole and a subpart of it can
not be (statistically) distinguished one from the other. This is commonly associated to the pic-
ture of geometric fractal object, obtained from the iteration of an identical construction procedure.

Self-Similarity. From a data analysis (or signal processing) point of view, scaling in time
series implies that the usual intuitive search techniques for characteristic scales are to abandoned
and replaced instead by new ones aiming at evidencing relations, mechanisms between scales or
involving a wide range of scales. This also means to abandon the use of models relying on the
existence and definition of a characteristic scale (e.g, Markow chains, Poisson models, models
with exponential autocorrelation functions,...). The canonical reference mathematical model to
analyze scaling is that of self-similarity, and more particularly, the popular fractional Brownian
motion. This will be introduced with details in Section 2.1.

Wavelets. The practical use and analysis of self-similar processes present however two major
difficulties: they are non stationary and are characterized by long range dependence or long term
correlations or long memory. Such statistical features turn the analysis of self-similar processes
into a uneasy and non standard task. It has been shown recently in a collection of papers [1, 2, 37]
that wavelet transforms constitute an ideal tool for the analysis of scaling. Wavelet analysis will be
introduced in Section 2.2. More precisely, it has been shown [2] that wavelets can be considered as
“matched” to self-similar processes in the sense that wavelet coefficients exactly reproduce, from
scale to scale, the self-replicating statistical structure of such processes. This will be made explicit
in Section 2.3. Section 2.4 explains how those statistical properties of the wavelet coefficients are
to be used to design tools for the analysis (detection , identification and estimation) of scaling
phenomena.

Beyond self-similarity. Self-similarity is a mathematically well-behaved model but it suffers
from many limitations and can, obviously, not account for the large variety of scaling existing
amongst actual empirical data. Section 3 will therefore allow a larger part to other models also
of interest to describe scaling, such as long range dependence, fractal sample path, multifractal
processes, multiplicative processes. ..and will underline their mutual interrelations, common de-
nominators and differences.

Note. This note only intends to give a synthetic overview, without detailed proof, of the
relations between scaling and wavelets. For full details, the interested reader is referred to the



tutorial chapter [2].

2 Self-Similarity and wavelets

2.1 Self-Similarity

Self-similar processes. A process X is said to be statistically self-similar, with self-similarity
parameter H > 0, if [32]:

Ve>0,{cEX(t/c),t € R} L {X(t),t € R} (1)

where < means equality of all the finite dimensional distributions. This essentially means that
the sample paths (t, X) of the process X (t) and those (t/c,c? X) of the process ¢ X (t/c) are
statistically indistinguishable. In other words, the process X is statistically similar to any of its
dilated versions. Therefore, no characteristic scale of time can be identified on these processes,
self-similarity is hence a model for scaling behavior. This is illustrated on Figure 1.

A major consequence of self-similarity also lies in the fact that the moments of the process,
when they exist (we assume in this section that they all exist), behave as power laws with respect
to time,

BIX ()] = E|X (1)), (2)

whose exponents are all controlled by the self-similarity parameter H. Besides the connection
between scaling and power law, those relations also show that self-similar processes are non sta-
tionary.

Self-similar processes with stationary increments. Because it is always difficult to use
practically on actual data non stationary models, one often restricts the class of self-similar pro-
cesses to that of self-similar processes with stationary increments. A process is said to posses sta-
tionary increments if the finite dimensional distributions of { X (,t) = X, (¢t) = X (t+7)— X (¢),t €
IR} do not depend on ¢. Self-similarity and stationary increments together impose that 0 < H < 1
and the increments of a self-similar processes with stationary increments satisfy the following
similarity relation:

Ve > 0,{cEX(r/c,t/c),t e R} £ {X(r,1),t € R}. (3)

Moreover, the covariance function of the process X (with zero mean and X (0) = 0) necessarily
takes the following form:

EX(H)X(s) = 5 (1t + s — |t = s*") . (4)

with o2 := IE| X (1)|? and the correlation function of the increment process reads:

2
EX, (X, (t+5) = T (Ir+ s+ |r = o2 = 20s27) (5)
2 2H 2H
= T |sppH (‘Hf‘ +(1—3‘ —2),
2 S S

Long range dependence or long term correlations or long memory. From this relation,
one can infer the asymptotic behavior of the covariance function on the increment process in the
limit of large s (i.e., s = 400,58 > 7):

2
EX, ()X (t+ 5) ~ % 2H(2H — 1) 72521, (6)

This asymptotic power law decrease is to be compared to the exponential one encountered in
more usual processes (like Markov processes). An exponential decrease, by definition, implies a



characteristic time while a power law behavior does not, meeting again the intuition of the absence
of characteristic scale of time. Moreover when H > 1/2, the autocovariance function decreases so
slowly that its sum diverges, i.e., for A > 0,

/00 EX, ()X, (t+ s)ds = co.
A

This phenomenon is referred to as long range dependence, or long term correlations, and implies
that the correlation between two samples of the process cannot be neglected without missing some-
thing crucial in the analysis of the process, no matter how far apart one from the other they are.
Long range dependence among its increment process constitute a major difficulty in the analysis
of a self-similar process. Independently from self-similarity, long range dependence, in itself, is a
model for scaling observed in the limit of large scales (see Section 3 for details).

Local regularity of the process. Exploring the other limit, that of small scales, i.e., s <
7,5 — 0, one obtains that the autocovariance function of X behaves as:

EX- ()X (t+ ) ~ o |[r[*7 (1= [7[ 727 [s[27).

Such a behavior indicates that the local regularity of each sample path of the process X is constant
along time and controlled by the parameter H, since 1/2 < H < 1, this means that the sample
paths are everywhere continuous but nowhere differentiable. Local regularity is usually measured
in terms of Holder exponent. Processes with sample paths characterized by constant hélder expo-
nent, are often referred to as monofractal processes, which constitute therefore a model for scaling
observed in the limit of small scales. Local regularity and Holder exponent will not be further
detailed, see e.g., [28] for an introduction.

Fractional Brownian motion. The only Gaussian (zero-mean, X (0) = 0) self similar process
with stationary increments is the so-called fractional Brownian motion [22], which, in numerous
situations, is quoted as the canonical reference for scaling. All its scaling properties, self-similarity,
long-range dependence, fractal sample paths, are controll ed by the single parameter H, there-
fore used in applications to describe, sometimes confusingly, either global scaling properties or
asymptotic ones. ..

2.2 Wavelet analysis

Continuous wavelet transform. The wavelet coefficients of the so called continuous wavelet
transform (CWT) [12, 25] are defined as the results of comparisons, by means of inner products,
between the process to be analyzed X and a family of functions, the wavelets 1 +:

Tx(a,t) = (X,%as), (a,t) € (RT,IR). (7)

The wavelets are dilated and translated templates of a reference pattern v called the mother

wavelet: 1 ;
u—
Ya,t(u) = —1(

lal

). (8)

Figure 2 shows dilated templates of a single mother wavelet. Note that some definitions prefer a
1/+/a instead of 1/a normalization term, mainly because it ensures energy preservation. For the
analysis of scaling, however, the choice 1/a is more convenient.

The function 1 is usually required to be bounded and to have time and frequency supports
that are either bounded or decrease very fast, jointly in both domains, time and frequency. To
ensure that the wavelet transform is invertible, 1) moreover has to be a zero-mean function:

a

/}R Y(t)dt = 0. (9)



Hence, the function 9 has to oscillate and to exist on reduced time support. this is therefore a
small wave, a wawvelet.

This is because the mother wavelet ¢ has joint localization in time and frequency that the
wavelet coefficients can be given the signification of frequency content of the data at a given time
or joint time-frequency content of the information in X.

The mother-wavelet is characterized by its number N of vanishing (or zero) moments: the
smallest integer such that N > 1 and:

Vm € {0,...,N =1}, / t"ap(t)dt = 0, / tNap(t)dt # 0. (10)

This means that, for a mother-wavelet with IV vanishing moments, the wavelet coefficients of a
polynomial of degree P < N are strictly zero. More generally, it means that the wavelet coefficients
Tx(a,t) of a process X at time ¢ are only sensitive to the part of the local behavior of X which
is more irregular than that of a polynomial of degree N. In other words, the higher N, the less
wavelet coefficients are sensitive to regular behavior. The number of vanishing moments of the
mother wavelets also controls the behaviour of its Fourier transform at the origin:

[CW) ~ [N, |v] = 0. (11)
Figure 3 shows examples of wavelet with different vanishing moments.

Discrete wavelet transform. One also defines the coefficients of the discrete wavelet trans-
form (DWT) as a discrete subset of the Ty (a,t):

dx(j k) =Tx(a =27t =2Tk) = (X,;x), (j.k) € (Z",7L), (12)

where 1, (u) = 2794(279u — k). This discrete subset of points is usually called the dyadic grid
of the discrete wavelet transform and this definition also usually implies that the mother wavelet
is constructed through a multiresolution analysis [12, 25]. The major interest in the use of the
discrete wavelet transform lies in the facts that the {1, (j,k) € (Z",Z)} form (possibly or-
thonormal) basis of L2(IR) (so that the DWT is a non redundant representation of X) and that
the dx (4, k) can be computed with fast pyramidal recursive algorithm whose computational costs is
of the order of that of an fast Fourier transform. In all the methods and algorithms proposed here,
we always use the DWT. For further details on wavelet transforms, the reader is referred to [12, 24].

Summary. All what the reader unfamiliar with wavelets needs to have in mind to follow the
remainder of this text is that the relevance of the wavelet transform for the analysis of self-similar
processes relies on two ingredients:

I1) the wavelet basis is designed from a dilation operator,

Vas(u) = (it

o] 7" a

),

I2) the mother wavelet is characterized by a strictly positive integer N, its number of vanishing
moments,

vm € {0,...,N — 1}, /tmd)(t)dt:O,/tNt/;(t)dt#O.
R R

2.3 Self-Similarity and wavelets: theory

Let us assume that X is a self-similar process with stationary increments and let us examine the
statistical properties of its wavelet coefficients. The results are given with no proof, the interested
reader is referred to [2] for detailed demonstrations and original references.



P1 Self-Similarity: The wavelet coefficients reproduce, in an exact manner, the self-similarity
of the process, through the relations:

(279 dy (. k), k € Z} £ {dx (0. k), k € Z}. (13)

Ve > 0,{c"Tx(a/c, t/c),t € R,a € R} . (14)
{I'x(a.t),t e R,a € RT}.

These two relations result, fundamentally, from the fact that the wavelets are designed using a
dilation operator: 1, (t) =¥ (t/a)/a. It is, moreover, interesting to note that the last relation has
strong and obvious analogies to that satisfied by the increments (cf. equation (3)).

P2 Non-Stationarity: Though self similar processes are non stationary, their {dx (j, k), k € Z}
form stationary sequences at each octave j. Identically, their {Tx(a,t),t € IR} form stationary
processes at each scale a. This is again analogous to the increments and this is deeply connected
to the fact that N > 1.

P3 Long Range Dependence: It can be shown that the covariance function of any two wavelet
coefficients on the dyadic grid can be asymptotically bounded as, |27k — 27 k'| — 400,

ICov dy(j, k), de (§', k)| < C|27k — 27 /| 72N —H) (15)

which shows the key role played by the number of vanishing moments N. Increasing N allows to
increase the rate of decrease of the covariance function and therefore to reduce as much as desired
the range of the correlations amongst the wavelet coefficients. More precisely, it can be shown
that, in the Gaussian case, if N > H + 1/2, the long range dependence that exists amongst the
increments of X is turned into short range dependence.

P3ID Idealization: The “decorrelation effect”, i.e., the reduction of the range of dependence of
the wavelet coefficients under the increase of N, is idealized as follows :

any two wavelet coefficients of X, on the dyadic grid {dx (j, k),k € Z,j € Z"}, can be regarded as
independent one from the other. This idealization is used to provide approximated but analytical
studies of the performance of the estimators proposed below.

2.4 Self-Similarity and wavelets: application

Intuition: Because of their being non stationary, the study of the self-similar processes with
stationary increments is usually performed through the analysis of their increments and more
specifically through the use of the fundamental relation:

E|X(t+71)— X)) = 27| (16)

The existence of long term correlations amongst increments, however, substantially increase diffi-
culties in the practical use of this formula.

The wavelet based analysis of self-similarity proposes to replace increments with wavelet coeffi-
cients. The intuitive ideas behind this are the following. First note the following identity between
the increments of X and its wavelet coefficients obtained with a particular choice for the mother
wavelet () = 6(t + 1) — 0(¢):

X(t+71)— X(t) =Ty(a,t), with 7 = arg.

Increments can therefore be thought of as a specific example of wavelet coefficients obtained from a
particular mother wavelet, which has a poor spectral localization and only one vanishing moment
(i.e., N = 1). One can naturally think of using a wavelet with better joint time and frequency
localizations and higher numbers of vanishing moment, resulting in better statistical properties.
Second, let us note, as already pointed out above, that the wavelet coefficients exactly reproduce



self-similarity (cf. equation P1), i.e., the scaling property. But from properties P2 and P3, they
form, at each scale 27, stationary sequences with short range and weak statistical dependence, they
do not suffer any more from long range dependence (on condition that N is high enough). They
are therefore statistically better behaved than increments and offer a versatile and convenient tool
for the analysis of self-similarity.

Log-scale Diagram. More precisely from properties P1 and P2, one can show that the
variance of wavelet coefficients of self-similar processes with stationary increments behaves as
power laws of the scales:

E|d,(j,k)|* = C2%7H, (17)
This last relation is highly reminiscent of equation (16) above for the increments and suggests that
the analysis of self-similarity can be performed by the search of straight lines in a log, 2/ = j versus
log, IE|d (4, k)| plot. Practically, however, this implies to estimate the quantity log, IE|d, (5, k)|?
from a single realization of finite length of the process. The properties P2 (stationarity) and P3
(weak statistical dependences) naturally lead to propose the following estimator:

1 & ,
ij = 10g2 <n_ Z |dX<]7k)|2> ’

J k=1

where n; is the number of wavelet coefficients available at octave j. Let n denote the number

of samples of the analyzed process X, neglecting the practical border effects resulting from the

computation of the wavelet coefficients, the n;s behave as n; = 27/n. We therefore propose to

study self-similarity by plotting and analyzing Logscale Diagrams, i.e., plots log, 27 = j versus

Y; = log, (nL St ldx (7, k:)|2> Straight lines will evidence the existence of self-similarity and
J

the measurement of their slopes will allow for an estimation of the parameter H. Figure 4 proposes
an example of logscale diagram

Estimation Issues. Precisely, the estimator H for H is defined through the linear fit:

H=Y"wY;/2, (18)

where > j runs over the range {j1,...,j2} of octaves where the linear fit is to be performed, this
range is to be chosen a priori. The w; satisfy the usual relations,
> j Jwj =1
25 . ) (19)
wj = (1/a;)(Soj — S1)/(So0S2 — S7)
Sm = ;2:]'1 a;ljm(m:()’l,z)’

the a;s being arbitrary numbers.

The statistical performance of this estimator have been studied in detail in [1, 37, 2]. For
Gaussian processes, analytical calculations relying on the idealization of exact independence of the
wavelet coefficients P3ID, show that a residual bias can be determined and therefore subtracted
to produce an unbiased estimator. The variance of the estimator asymptotically decreases as the
inverse of the analyzed number of samples: (log, €)% ; w527 /(2n). Numerical simulations show
that the actual performance are very close to those idealized ones, even for non Gaussian processes.
This approximate, however realistic, estimation of the variance of H enables us to have confidence
intervals on the estimation of the parameter H.

The choice of the weights w; remains to be specified through the choice of the a;s. It is well-
known that the variance of the linear fit is minimal on condition that the a; match the covariance
structure of the Y;s. Assuming the idealization P3ID, one obtains that the Y;s are independent
and that Var Y; = 2log,(e))?/n;. The choice a; = cste n;l, therefore, ensures that the quantities



(> w?/nj) and Var H takes close to minimal values. The estimator H is systematically imple-
mented with this choice.

Additional properties. Thanks to its number of vanishing moments, the wavelet-based anal-
ysis of self-similarity, moreover, benefits from robustness against non-stationarities. For instance,
if deterministic smooth trends (like a linear trend or an oscillating trend) are superimposed to self-
similar processes, this may significantly complicate the detection and analysis of self-similarity.
The comparison of wavelet-based analysis performed using mother-wavelet with different number of
vanishing moments will allow to detect those trends and perform relevant analysis of self-similarity
(see [1] or [2] for details).

From another perspective, non-stationarities and scaling may have practical effects and con-
sequences that are practically very close and similar so that it may be difficult to distinguish one
phenomena from the other. We have also shown that the wavelet framework offers a convenient
way to design a statistical test allowing to discriminate actual scaling from some non stationary
effects [39].

Finally, other interesting features of this wavelet based analysis lies in the facts that it is simple
both conceptually and practically (DWT plus linear fits) and that it has a low computational cost
thanks to the recursive pyramidal algorithm underlying the discrete wavelet transform. This is of
importance when dealing with large sample of data, as is often the case when dealing with scaling
and allowed us to propose real time on line algorithm for the analysis of scaling [30].

3 Beyond self-similarity

Practical limitations. Self-similar processes with stationary increments, and more specifically
the fractional Brownian motion, are very attractive models to describe scaling because they are
mathematically well-defined and well-documented and they moreover fulfil the intuition of scaling
phenomena in a very satisfactory manner. Their major quality is simplicity: all the features of the
process (large scales scaling and long range dependence as well as small scales scaling and local reg-
ularity) are entirely controlled by the single parameter H. Their major drawback is ... simplicity.
It is very unlikely that the various types of scaling encountered in the many different applications
where they occur can all be described by a unique model with single parameter. More precisely,
exact self-similarity implies a number of specific properties and significant departures from those
properties can be observed in the analysis of actual empirical data: ¢) moments of different orders
may have scaling exponents that are not controlled by a single parameter, or more simply some
moments may not present scaling or, even more simply, may not exist at all; i¢) when scaling are
observed, they may not exist over the whole range of scales as in the self-similar case, but only in
a given range of scales, or only asymptotically in the limit of large scales or in the limit of small
scales; i) power-law behavior of the moments may not exist despite scaling behavior. In this
section, we will explore those variations and describe some related mathematical models.

Beyond finite variance. In the previous section, we assumed that all the moments of the
process X existed. However, one may encounter situations where scaling and self similarity are
valid but where the variance of the process, for instance, and therefore all higher moments, are
infinite. For those situations, the model of Gaussian self-similar processes as well as the analysis
presented above and based on the variance of the wavelet coefficients no longer work. Such
situations can be modelled using a-stable self-similar processes.

A usual definition of stable processes is through their integral representation [32]:

X(t) = /}R £t )M (du) (20)

where M (du) is an a stable measure (0 < a < 2) and f(¢,u) is an integration kernel. This def-
inition means that the process X can be read as a weighted sum of independent stable random



variables. Technically, this implies that, for a fixed ¢, X (¢) is a stable random variable, M there-
fore controls the marginals of the process, or in other words, its static properties. The weighting
function f(t,u) controls the statistical dependences of x and hence its joint statistics, or in other
words, its dynamic properties. For well chosen forms of the kernel, [13, 26, 32], = is a self-similar
process with stationary increments. A wavelet-based analysis of a-stable self-similar processes can
be conducted but relies on the quantity, IElog, |dx (j, k)|, instead of IE|dx (4, k)|?. This is described
in details in [6, 3].

Beyond scaling over all scales: long range dependence or local regularity. A major
limitation of the self-similarity model lies in the fact that the scaling behavior holds for all the
scales, i.e.,

Eldx (4, k)? = 2% vj.

Practically, scaling may exist for the second order statistics (namely the variance) of the process,
but may be only observed in a given, large but finite, range of scales, or in the asymptotic limits
of small or large scales, rather than in the whole range of scales.

For instance, if the observation corresponds to the weakened version of the relation above,

E|d,(j, k)|? ~ C2%77 | j — 400,

this is the signature of a scaling behavior that exists for the largest scales of the process only. This,
actually, tells us that the data are not self-similar but rather present some long term correlations
properties and can therefore be modelled as a stationary long range dependent process instead of
a self-similar one [37, 2].

When scaling hold in the limit of small scales,

]E|dm(]7 k)|2 = C22jH7j — —0Q,

this means that the data are not self similar but rather that their sample paths are characterized
by a local regularity h controlled by H and that remains constant along time. This therefore
betrays a small scale property.

For those two situations, long range dependence or local regularity, the analysis and estimation
of the exponent can be performed with the logscale diagram, as in the self-similar case, except
that linear fits are to be performed in the limit of large or small scales, respectively.

Beyond second-order statistics - Multifractals. Another limitation of self-similar pro-
cesses is that scaling for all the moments are controlled by the single parameter H:

E|dx (j, k)|? = C29% vj, vg > 0.

It is, however, quite common on empirical data to observe, in a given, finite, range of scales, a
behavior of the type: '
Eldx (j, k)|* = C2H@ j; < j < ja,

where the exponents H(q) may differ from the linear ¢H behavior. This situation, that we pro-
posed to refer to as multiscaling is very close to that encountered when analyzing multifractal
processes. Multifractal processes present sample paths with a local regularity h that varies very
irregularly from point to point and with each realizations. Those fluctuations of the local reg-
ularity are described through the so-called multifractal spectrum D(h), (which consists in the
Hausdorff dimension of the set of points where the local regularity is k). A major consequence of
multifractality is that, for multifractal processes, quantities called partition functions,

(1/n) > ldx (4. k)|?
k=1



present in the limit of small scales power law behaviors,

n

(1/n) > ldx (j, k)| ~ €29 j — 0.
k=1

The measurement of the ((q) exponents offer, through a Legendre transform, a possibility, amongst
others, to estimate the multifractal spectrum. Details on multifractal are beyond the scope of this
note and the interested reader is referred to e.g., [29, 28]. Celebrated examples of multifractal
processes are, for instance, obtained with the so-called binomial cascades.

Reading the partition functions (1/n) Y")_, |dx (j, k)|? as estimators of the moments IE|dx (4, k)|,
the scaling relation above is very close to the equation defining multiscaling in the limit of small
scales. Therefore multifractal can be seen as the very example for multiscaling. An extension of
the estimation procedure described in Section 2 has been proposed to estimate the H(q) exponents
(see [2]).

Beyond power laws  Multiscaling offers an extension to self-similarity insofar as a collection of
exponents is needed rather than a single one. It, yet, maintains a major feature of self-similarity:
moments behaves as power laws of the scales. However, when analyzing actual data, it may very
well be observed that this is not the case, see e.g., [38]. To account for those situations, the
infinitely divisible cascade model, on which we concentrate here, proposes to gain an extra degree
of freedom by giving up the requirement that moments behaves as power laws of the scales. It
maintains, however, a fundamental feature, in common with self-similarity and multi-scaling, the
dependence of the moments in the variables ¢ (order of the moment) and 27 (scale) is separable.
The equations below summarize those relations between self-similarity, multiscaling and infinitely
divisible cascade:

Self-Sim. Eldx(j,k)|? = C,(29)97 = Cyexp(qH In(29))
MultiScaling  E|dx(5,k)|9 = C,(2))@ = C,exp(H(q)In(27)) (21)
Inf. Div. Casc. E|dx(j, k)|?= ——— = Cyexp(H (q)n(27)),

where the function n(27) is not necessarily the In function, as the function H(q) is not a priori the
linear function qH.

The concept of infinitely divisible cascade was first introduced by B. Castaing in [9, 10] and
rephrased in the wavelet framework in [5]. We now briefly recall its intuition, definition, conse-
quences and relations to other models. Starting again from the self-similar case, one can write the
probability density function (pdf) of the wavelet coefficients at scale a = 27, as a dilated version of
the pdf of the wavelet coefficients at a larger scale a’: p,(d) = (1/a0) par(d/ap) where the dilation
factor is unique : ag = (a/a’)¥. In the cascade model, the key ingredient is that there is no longer
a unique factor but a collection of dilation factors « ; consequently p, will result from a weighted
sum of dilated incarnations of p,::

pa(d) = /Gaﬂr(lna) lpaf (i> dln .
a

(0%

The function Gg4 is called the kernel or the propagator of the cascade. Obviously, if G 4 is
a Dirac function, G« (Ina) = 6(Ina — H1In(a/d’)), infinitely divisible cascade reduces to SS,
therefore understood as a special case. The definition of the cascade above shows that the pdf’s of
D, and P, of the wavelet log-coefficients In |d| are related by a convolution with the propagator :

p,(Ina) = /Gayar(lna)ga,(ln\d| —Ina)dlna
= (Gou *Ea,)(ln a). (22)

If cascades exist between scales a” and a’ and between scales a and a”, then a cascade between
scales a and o’ exists, and the corresponding propagator results from the convolutions of the two
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propagators: Gqq = Gq,a7 * Gar . Infinite divisibility (also called continuous self similarity)
means that no scale between a and a’ plays any characteristic role (i.e., a” in the above statement
can be any scale between a and o’). Infinite divisibility therefore implies that the propagator
consists of an elementary function Gy convolved with itself a number of times, where that number
depends on a and a':

Gl (In.0) = [Go (In @)] (" (@)

Using the Laplace transform Gy o/ (¢) of G4 or, this can be rewritten as G o/ (¢) = exp {H(¢)(n(a) —
with H(q) = InGo(q) and a := 27 ; this implies that E|dx (j, k)| = C, exp {H(¢g)n(a)}, thus val-
idating eq. (21). The main consequences of infinitely divisible cascade (in other words, of the
separability of the variables ¢ and a), read therefore :

mE|dx(j, k)¢ = H(q)n(a)+ K, (23)
nEldx (G, k)¢ = ZEZ; InE|dx (j, k)P + fiq.p- (24)

This last equation implies that moments behave as power-laws relative to each other. Such relations
are sometimes called ”extended self-similarity”, in turbulence mainly. Note that, in the relation
(23) above, there is an arbitrary element, indeed:

H(g)n(a) + K, = (%) (Bn(a) +7) + (K, — H(g)'v)
H'(q)n'(a) + K

where 3 # 0 and « are arbitrary constants. It clearly indicates that the function H(q) is defined
up to a multiplicative constant while n is defined up to multiplicative and additive constants.

If it is moreover required that the function n(a) = Ina, the infinitely divisible cascade is called
scale invariant and this implies that :

G (q) = (a/a’)m G and E|dx (j, k)|? = (29)nGo(@)

proving that scale invariant infinitely divisible cascade reduces to MS. If, moreover, the power-
laws are observed in the limit of small scales (a = 2/ — 0), then, multiscaling is equivalent to
multifractal, and the exponents (;—from which the Legendre multifractal spectrum is obtained
through a Legendre transform [28]—are related to the propagator through (; = H(¢) = In Golq).
In this framework, multifractal is therefore understood as a special case of infinitely divisible
cascade. The stochastic multiplicative cascades introduced by Mandelbrot [23], constitute the
canonical example of such situations. In a scale invariant infinitely divisible cascade, one can
also inquire as to whether (, is a linear function of ¢ or not, in which case the cascade reduces
to the even more special case of self-similarity. It is, therefore, natural to consider the function
Cq/q = H(q)/q and test its constancy.

4 Conclusion

We have tried to show here that scaling or scaling phenomena may cover a wide variety of different
situations, but still that it can be gathered under the intuition that all the scales involved in the
system or the process play equivalent roles or equivalently, that none plays a specific role. We
have introduced self-similarity that can be thought of as the reference model for scaling. Then,
we have shown how and why the wavelet transform offers a versatile, powerful and efficient tool to
study scaling, there is somehow an intimate adequacy between the analyzed problem, scaling, and
the analyzing tool, that study a process simultaneously at all scales. Other scaling models were
then introduced, such as long range dependence, fractal sample path, multifractal processes or
infinitely divisible cascade, they can be regarded as variations around the model of self-similarity
too limited to account for the whole variety of scaling encountered in empirical data.
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In this text, the results and techniques were presented without detailed proofs. The emphasis
was on providing the reader with both a comprehensive survey of the relations between the various
mathematical models involved in the analysis of scaling phenomena and practical simple-to-use
wavelet based analysis techniques. So that a reader willing to apply these tools on data of its own
can find here a quick start. The corresponding MATLAB routines are available on the WEB site
www.ens-lyon.fr/ ~pabry. Most of the material covered in this note is described and presented
in large details in [2].
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Figure 1: Sample path of a self-similar process. Starting with the sample path of a self-
similar process, if one performs a dilation of the time axis of factor 1/¢ and a dilation on the
amplitude axis of factor ¢, one obtains a new sample path that is (statistically) indistinguishable
from the original one.
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Figure 2: Translated and dilated wavelets and their corresponding Fourier transforms.
Top, dilated versions of the same mother-wavelet (Daubechies6) with dilation factors 1, 2 and 4,
and, bottom, the corresponding Fourier transforms.
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Figure 3: Vanishing moments. Examples of mother wavelet with respectively, 1 (Haar, or poor
man’s, wavelet), 3 (B-spline wavelet) and 6 (Daubechies6) vanishing moments.
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Figure 4: Logscale Diagram for a fractional Brownian motion. The fractional Brownian
motion is an exact self-similar process, this can be seen on the Logscale diagram through the fact
that the linear behaviour of the log of the variance of the wavelet coefficients against the log of
the scale holds for all scales. The measurement of the slope enables moreover to precisely estimate
the self-similarity parameter.
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