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Summary

In this paper we present an adaptive wavelet method to integrate the velocity-vorticity
formulation of the two-dimensional Navier-Stokes equations coupled with a penal-
isation technique to handle easily solid boundaries of arbitrary shape. The validity
of this method, called Coherent Vortex Simulation (CVS), is demonstrated by com-
puting flows past different bluff bodies. Firstly, we show the computation of a flow
around an impulsively started cylinder at Reynolds number

�
	�	
	
. The results are

compared with those of a DNS using a spectral method and with others computed
with two different vortex methods. Secondly, we also present simulations of a flow
around a NACA airfoil profile at Reynold number � 	�	
	 .

1 Introduction

Recently, we proposed a new CFD method, called Coherent Vortex Simulation
(CVS) [6], [8], [21] for computing fully developed turbulent flows. It results from
the observation that turbulent flows contain both an organized part (the coherent vor-
tices) and a random part (the incoherent background flow) [6], [7]. The CVS method
is based on the wavelet filtered Navier-Stokes equations, which corresponds to the
coherent flow whose evolution is computed deterministically in an adaptive wavelet
basis [10], [11], [17]. The influence of the incoherent background flow onto the
coherent flow is statistically modelled.

Wavelets have been used so far for analyzing, modeling and computing turbu-
lent flows, for a review we refer e.g. to [5], [15], [16]. Different adaptive wavelet
methods have been developed to solve the two-dimensional Navier-Stokes equations
[10], [4], [11], [18], but all of them are limited to simple geometries, i.e. squares
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or rectangles, mostly assuming periodic boundary conditions. To take into account
complex geometries, we propose to couple the CVS method we have developed
with the penalisation technique, introduced by Arquis and Caltagirone [2]. There-
with walls or solid obstacles, even if their shape varies in time, are modelled as
a porous medium whose porosity � tends to zero. A mathematical theory proving
convergence of this physically based approach has been given by Angot et al. [1].
This technique has been applied in the context of low order methods (finite dif-
ference/volume schemes, e.g. [13]) and also with spectral methods e.g. [12], [9].
The motivation to couple the penalisation technique with an adaptive wavelet solver
comes from the fact that adaptive wavelet methods dynamically refine the grid in
regions of strong gradients. Hence, we expect the solver to adapt automatically, not
only to the evolution of the flow, but also to the geometry of walls or bluff bodies.

After a short presentation of the governing equations together with the penali-
sation method, we present the adaptive wavelet scheme for the penalized equations.
For more details on the numerical scheme we refer the reader to [20]. To validate
this penalised CVS method we compute a flow past an impulsively started cylinder
at high Reynolds number ( �������
����� ). We illustrate the self-adaptive grid evolution
and compare the results with the ones obtained with two different vortex methods
[14]. We also present first results of a flow past a NACA 23012 airfoil at �������������
computed with the penalisation technique. Finally, we give some conclusions and
perspectives for future work.

2 Governing equations and numerical scheme

This section presents the governing equations together with the penalisation tech-
nique and introduces its coupling with the adaptive wavelet scheme.

2.1 Physical problem

We consider a viscous incompressible fluid governed by the Navier-Stokes equa-
tions. In velocity-vorticity formulation the transport equation for a two-dimensional
flow reads �
��� �"!$#&%'�"(")*%,+-� �.� (1)

where
!0/21436587 � /:9;/:<=38>?38587@38A?/:<=38>?3858767 is the velocity,

� � %CBD! the vorticity and)
the kinematic viscosity. The incompressibility, i.e.

%E#F! �G� , implies that
!

is
related to

�
by the Biot-Savart relation:%,+&! � %IHJ� (2)

with
% H � /K(L�M>?36�M<?7 . Considering a flow around a solid obstacle N�O , translating

with velocity P$Q , the velocity of the fluid is equal to the velocity of the obsta-
cle at its boundary, i.e.

!SR T�UMV �WP$Q . The free-stream velocity P X is defined asY[Z]\_^ `M^ a&b X !0/c107 �dP_X .
Based on the charactistic size of the obstacle e (e.g. the diameter of the cylinder)

and the mean velocity Pf�gP Q ( P X we introduce a Reynolds number ���h�R P R eji ) and a non-dimensional time k.� R P R 5 i /�l e 7 .



2.2 The penalisation technique

The penalisation technique is based on the physical idea to model solid walls or
obstacles as porous media whose porosity m tends to zero [2]. The complex geom-
etry is described by a mask function npo2q0r which is s inside the solid regions and t
elsewhere. Hence, the penalisation method can also take into account obstacles with
time-varying shapes by simply introducing a mask function which varies in time
accordingly. The Navier–Stokes equations are modified by adding a supplementary
term containing the mask function. For mvuwt the flow evolution is governed by
Navier–Stokes equations in the fluid regions, and by Darcy law (velocity propor-
tional to pressure gradient) in solid regions where the obstacles or walls are.

For an impulsively started obstacle with veloctiy xzy and free-stream velocityx_{ we obtain in vorticity-velocity formulation:|~}���� o:� � x { rJ��� ����� �,� ��� �C��o sm nDo:� � x y r6r���t (3)

with the mask functionn��M�Focq0r�� � s for qv����L�t elsewhere.
(4)

It has been shown rigorously that the above equations converge towards the Navier–
Stokes equations with no-slip boundary conditions, with order m����6� inside the obsta-
cle and with order m��6�6� elsewhere [1], in the limit when m tends to zero. In numerical
simulations an improved convergence of order m has been reported [1], [12].

The resulting forces � on the obstacle are computed by integrating the penalized
velocity over the obstacle’s volume [1]:�����]�[� ¢¡ yD£ �M� �,¤  ;¥ qW� � �[�]� ¢¡ y sm £ �M� x  ;¥ qW� £§¦ �M�j¨ o©x�ª6¤«r;�¢¬ ¥�

(5)
where

�L�
denotes the volume of the obstacle,

| ���
its boundary, ¬ its outer normal

and ¨ o©x�ª6¤«r�� ���® oc�¯x � oc�¯x_r8°=r � ¤²± is the stress tensor. Therefore the drag
and the lift (forces parallel and perpendicular to x y , respectively) induced by the
obstacle are easy to compute as volume integrals instead of contour integrals.

2.3 Adaptive wavelet method

For the numerical solution of (3) we first discretize the equations in time using semi-
implicit finite differences, i.e. Euler–backwards for the viscous term and Adams–
Bashforth extrapolation for the nonlinear term, which are both of second order.

This yields an elliptic problem in each time step:o  ± �I� � � r ��³F´ � �wµ¶  ��³�� s¶  ��³¸· � � �"�8o �0¹ � ¹º� x${»r � ���Io sm nDo:� ¹¼� xDy�r6r
(6)



where ½0¾�¿ÁÀJ½�ÂÄÃ ½�Â¸ÅÇÆ È¼¾�¿ÉÀÊÈ?Â,Ã�ÈÇÂ¸Å¼Æ
(7)

with time step ËÄÌ , Í ¿�Î~Ï*ÐcÀ Ë'Ì8Ñ and Ò representing the identity.
For discretizing the resulting system in space, we use a Petrov–Galerkin scheme.

Therefore the vorticity is developed into a set of trial functions and the minimiza-
tion of the weighted residual of (6) requires that the projection onto a space of test
functions vanishes. As space of trial functions we employ a two-dimensional mul-
tiresolution analysis (MRA) and develop

½ Â
at time step Ó into an orthonormal

wavelet series½ Â Ð2ÔÖÕ6× Ñ ¿WØ�ÙÛÚ8Ü Å¼ÆØÝ-Þ&ß¼à Ú6Ü ÅÇÆØÝ�á¢ß¼à Øâ ß Æ�ã Ú ã äLå ½ Â Õ*æ â
Ù ã Ý-Þ ã Ý�á�ç æ âÙ ã Ý-Þ ã Ý�á Ð:Ô=Õ8× Ñéè (8)

The test functions ê âÙ ã ë Þ ã ë á are defined as solutions of the linear part of eq. (6):Ð Í?Ò Ã�ì*í Ú Ñ©ê âÙ ã ë Þ ã ë á ¿îæ âÙ ã ë Þ ã ë á è (9)

This avoids assembling the stiffness matrix and solving a linear equation at each
time step. The functions ê , called vaguelettes, are explicitely calculated in Fourier
space and have similar localization properties as wavelets [11]. The solution of (6)
therewith reduces to a simple change of basis:ï½ â ã ÂFð=ÆÙ ã ë Þ ã ë á ¿ å ½�ÂFðJÆJÕ*æ âÙ ã ë Þ ã ë á ç (10)¿ å Ð@ñÎ Í ½ Â ÃóòÎ Í ½ Â¸ÅÇÆ Ã�íõô
Ð:½ ¾ È ¾Sö�÷zø Ñ ö íCù�Ð�òú û Ð:È ¾ Ã ÷ à Ñ8Ñ6Ñ Õ ê âÙ ã ë Þ ã ë á ç è

Applying at each time step a nonlinear wavelet thresholding technique we ob-
tain an adaptive discretization by retaining only those wavelet coefficients

ï½ â ã ÂÙ ã ë Þ ã ë á
with absolute value above a given threshold ü ¿ ü àþý ÿ , where ü à is a constant andÿ ¿ ÆÚ���� ½ Ð�� Ñ � Ú�� � is the enstrophy. For the next time step the index coefficient set
(which addresses each coefficient in wavelet space) is determined by adding neigh-
bours to the retained wavelet coefficients. Consequently, only those coefficients

ï½
in (10) belonging to this extrapolated index set are computed using the adaptive
vaguelette decomposition [11]. The nonlinear term

Ã í ôÇÐ ½ ¾ È$Ã ÷$ø ¾ Ñ ö í ùÐ Æ� û Ð:È ¾ Ã ÷ à Ñ6Ñ is evaluated by partial collocation on a locally refined grid. The
vorticity

½ ¾
is reconstructed in physical space on an adaptive grid from its wavelet

coefficients
ï½ ¾

using the adaptive wavelet reconstruction algorithm [11]. From the
adaptive vaguelette decomposition with ê ¿ Ðcí Ú Ñ ÅÇÆ æ , we solve

í Ú
	 ¾ ¿g½ ¾ to
get the stream function

ï	 ¾ and reconstruct 	 ¾ on a locally refined grid. By means
of centered finite differences of 4th order we compute

í'½ ¾
,

È ¾ ¿ ÐKÃ��� 	 ¾ Õ���� 	 ¾ Ñ
and

í ù Ð Æ� û Ð2È ¾ Ã ÷ à Ñ8Ñ on the adaptive grid. Subsequently, the nonlinear term
is summed up pointwise and finally (10) is solved using the adaptive vaguelette
decomposition.



3 Numerical results

3.1 Impulsively started cylinder at �������������
As application of the CVS method we compute a typical unsteady separated flow,
i.e. the flow past an impulsively started cylinder at �����! #"#"$" proposed in [14].
The numerical difficulty comes from the fact that, due to the impulsive start, a thin
boundary layer develops and thus the drag coefficient exhibits a %
&('�)+* singularity.
The free-stream velocity ,.- is set to zero and the obstacle’s velocity /10 is set
to 243#5+"$6 at %��7"$8 . The computational domain is 9 ":5�;$<>=?* where <@�A3 is the
diameter of the cylinder being centered in the domain. We use a spatial resolution
of B:3�C#* , with a time step DE%F�GBIHJ3K":&�L , a threshold parameter M 0 �N3�"J&�O and a
penalisation parameter PQ�N3K" &�R . In Fig.1 (left) we show isolines of the vorticity
field for three instants together with the corresponding locally refined grid shown
in Fig.1 (right). We observe that the grid automatically adapts to the obstacle and
follows the flow evolution, since it is refined in regions of strong vorticity gradients.
A comparison of the time evolution of the drag coefficient, computed using the CVS
method, direct numerical simulation (DNS) with penalisation [20] and two different
vortex methods [14] shows the validity of the adaptive wavelet method. Note that
compared with a spectral method (DNS) only about S�T of the total number of modes
are used. To illustrate the stiffness of the problem we plot in Fig. 4 an horizontal cut
of vorticity at position UV�!W�"YX C#Z for [\�\B . We observe very steep gradients of
vorticity in front of the cylinder which are well resolved by the adaptive wavelet
discretization.

3.2 Impulsively started flow around an airfoil at �����7]J�����
To demonstrate the ability of the penalisation method to adapt to arbitrary ge-
ometries we present the computation of a flow around a NACA 23012 airfoil at�^�I�\3K"#"$" , which has been impulsively started with an angle of incidence of  #":_ .
Fig. 5 shows the isolines of vorticity at 4 different time instants. We observe at early
time the formation of a small vortex at the trailing edge which then detaches and is
advected by the mean flow. In Fig. 6 we plot the time evolution of the enstrophy,
which increases until the trailing vortex detaches and then continuously decreases.

4 Conclusions

In the paper we have presented an adaptive wavelet method, called Coherent Vortex
Simulation (CVS), coupled with a penalisation technique, to compute two-dimension-
al turbulent flows in complex geometries. Computing a flow behind an impulsively
started cylinder at Reynold number  $"#"#" , we have shown the validity of the CVS
method by comparing the results with the one obtained with different methods. We
illustrated the feature of automatic grid adaption and found a good prediction of
the drag coefficient compared with a classical vortex method. In future work we



Figure 1 CVS of an impulsively started cylinder at `�a�bdc�eKe�e . Left: isolines of vorticity
at fgbihKj4c#j�k . Right: center of the active wavelet coefficients in physical space. Note that
at flbmh�jnc#j�k only hpo�qKo#h�r�qts u�vxwzy�jpu
e�eKo�{$r�q|s q�v^wzy�jpuKe�qK}K~$r�qts {�vxwzy out of w�b�k|h�u��xbu
}�u|h�~�~ wavelet modes are used.



Adaptive Wavelet Method
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Vortex Method II

Figure 2 CVS of an impulsively started cylinder at �����������K� . Comparison of the time
evolution of the drag coefficient between the adaptive wavelet method (CVS), a spectral
method with penalisation (DNS) and two different vortex methods [14].
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Figure 3 CVS of an impulsively started cylinder at ���������K��� . Time evolution of the
number of active wavelet modes (solid lines) and of the total enstrophy � (dashed lines).
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Figure 4 CVS of an impulsively started cylinder at �������K����� . Horizontal cut of vorticity
at location �^�����#� �K� for instant ���d� .

Figure 5 Airfoil NACA 23012,  l�¡����¢ , ���E��£����K� . Isolines of vorticity at instances�Q���#� �t¤n�t� �t¤p£�¤�� .
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Figure 6 Airfoil NACA 23012, ¥§¦�¨�©�ª , «�¬¦�®p©K©�© . Time evolution of total enstrophy.

will increase the threshold to get higher compression rates and develop a turbulence
model to simulate the effect of the discarded wavelet modes onto the retained modes
as shown in [8] for homogeneous flows. Work in progress is dealing with the exten-
sion of the CVS method to study the mixing of passive and reactive scalars [3] in
complex geometries to study e.g. chemical reactors and other chemical engineering
applications.
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