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Abstract

We present the application of orthogonal wavelet "ltering to study mixing and chemical reaction in 2D turbulent !ows. We show
that the coherent vortices are responsible for the mixing dynamics. Therefore, we perform direct numerical simulation of decaying and
statistically stationary homogeneous isotropic 2D turbulence. We split the !ow in each time step into coherent vortices represented by
few wavelet modes and containing most of the kinetic energy and an incoherent background !ow. We quantify the mixing properties
of both !ow components and demonstrate that e4cient mixing of scalars is triggered by the coherent !ow, while the in!uence of the
incoherent !ow on the mixing corresponds to pure di5usion. These results hold for both passive scalars and reactive scalars with simple
and multi-step kinetics.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Background

Mixing is a phenomenon of multiple interests. In chemi-
cal industry in particular, mixing is of primordial importance
for process control and optimization of chemical reactors.
Many industrially relevant reactions take place in homoge-
neous !uid phase, under turbulent !ow conditions, because
the mixing properties of turbulent !ows are superior to the
ones of laminar !ows (Ottino, 1990). Problems of industrial
mixing are thus closely associated to turbulence (Bockhorn,
1991).
Due to the rapid evolution of computing power over the

last decades, numerical simulations have become an impor-
tant domain of research in turbulence, which provides com-
plementary information in addition to experiments. In direct
numerical simulation (DNS) of turbulent !ows, where the
equations of motion of the !uid are solved on all scales, the

∗ Corresponding author. Tel.: +49-721-608-2120;
fax: +49-721-608-4820.

E-mail address: bockhorn@ict.uni-karlsruhe.de (H. Bockhorn).

number of degrees of freedom to be computed scales pro-
portionally to Re in two and to Re9=4 in three dimensions, Re
being the Reynolds number of the !ow. For technically rel-
evant !ows, whose Reynolds numbers typically range from
106 up to 1012, numerical simulations are beyond the com-
putational resources presently available, as long as one does
not reduce the number of degrees of freedom. Usually, tur-
bulence models are introduced by splitting the total number
of degrees of freedom into, so called, active and passive
modes. While the active modes are deterministically com-
puted, the in!uence of the passive modes onto the active
ones is taken into account by computationally less expen-
sive modelling.
The state of the art following this approach is large eddy

simulation (LES) (Ferziger, 1995). The splitting is carried
out by applying a low-pass "lter to the equations of motion
and by supposing the large scales to be the active modes
while the small scales are assumed to be passive. By resolv-
ing the large scales only, LES bene"ts from the fact that
most of the kinetic energy of the !ow is con"ned to small
wave numbers. A subgrid scale model is added to the equa-
tions of motion to account for the e5ect of the unresolved
modes (small scales) onto the resolved modes (large scales).
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In Farge, Schneider, Pellegrino, Wray, and Rogallo (2000)
we have shown that the subgrid scales to be modelled have
non-Gaussian statistics for the velocity.
For mixing and reacting !ows this kind of modelling

needs to be extended. For LES, there is numerous work de-
voted to this problem (e.g. Moin, Pierce, & Pitsch, 2000;
Cook & Riley, 1998, Im, Lund, & Ferziger, 1997). Mix-
ing involves scales down to the molecular level. Therefore,
the smallest scales of the problem become important, even
more if chemical reactions are involved. For the numerical
simulation of mixing, the strategy of LES focussed on cap-
turing the large scales, thus runs into con!ict with the oppo-
site requirements of the interaction of mixing and chemical
reaction that takes place on the sub-"lter level and has to be
modeled entirely.

1.2. Motivation

The overall aim of this work is to gain some more
fundamental insight into the dynamics of mixing in
two-dimensional turbulent !ows and to use this understand-
ing to develop an e4cient method for modelling the mixing
of passive and reactive scalars in turbulent !ows.
In Gerlinger, Schneider, Falk, and Bockhorn (2000), we

numerically studied the role of coherent vortices in the mix-
ing of two-dimensional passive and reactive scalar "elds.
Basic vortex arrangements and their dynamics, such as the
formation of spirals and the merging of co-rotating vortices,
were analysed with respect to their mixing properties and
found to be mainly responsible for an enhanced di5usion of
the scalar "elds. For modelling of mixing processes in tur-
bulent !ows we should thus rely on a method that stresses
the importance of vortex dynamics and coherent structures
in the evolution of the !ow "eld.
Recently, a new approach to model turbulent !ows, based

on the wavelet representation, has been developed (Farge,
1992; Meneveau, 1991; Farge, Schneider, & Kevlahan,
1999). Wavelets are self-similar functions, well localized
in both space and scale. They can be considered as basic
building units of di5erent function spaces. They allow the
decomposition of a function into space, scale, and even-
tually directions (e.g. Daubechies, 1992; Louis, MaaI, &
Rieder, 1998; Mallat, 1997).

Wavelet methods extract the coherent modes by project-
ing the vorticity "eld onto a wavelet basis and subsequently
thresholding the wavelet modes. This leads to a separa-
tion into coherent vortices on the one hand, treated as
active modes and computed deterministically in an adaptive
wavelet basis, and an incoherent background noise on the
other hand, which is to be modelled (Farge &Rabreau, 1988;
Farge, 1992). Both parts are multiscale and show a di5er-
ent, clearly distinguished statistical behaviour: the coherent
vortices appear to be responsible for the shape of the vor-
ticity probability density function (PDF) which di5ers from
a normal distribution, whereas the incoherent background

has a Gaussian vorticity PDF. The modelling of turbulent
!ows based on this separation is called coherent vortex
simulation (CVS) (Farge et al., 1999), and the separation
itself is called CVS "ltering. It is well developed for ho-
mogeneous isotropic two-dimensional turbulence (Farge
et al., 1999), and it has been recently extended to incom-
pressible three-dimensional !ows (Farge, Pellegrino, &
Schneider, 2001; Schneider, Farge, Pellegrino, & Rogers,
2000). Compressibility e5ects can be taken into account by
decomposing the !ow into a potential part and a rotational
part using Helmholtz decomposition. The CVS will then be
applied to the rotational part while the potential !ow will
be computed with classical methods (Farge et al., 2002).
The CVS method is built upon extracting the coherent

vortices. Bearing in mind the multiscale nature of this de-
composition and the clear cut separation of the statistical be-
haviour of coherent vortices and background !ow, there is
reason to hope that CVS will constitute a suitable approach
for modelling of mixing and chemical reaction. The present
work, showing the application of CVS "ltering on mixing in
non-reactive and reactive two-dimensional !ows, is a "rst
step towards extending CVS for mixing problems.
The following section summarizes the considered phys-

ical problem. In section three, the wavelet-based CVS
"ltering and its application to turbulent mixing are intro-
duced, considering both decaying and statistically stationary
two-dimensional turbulence. Section four presents and dis-
cusses the results of applying the CVS "lter to study mixing
of passive and chemically reactive scalars with chemical
kinetics of di5erent complexity. We examine whether the
wavelet representation used for the CVS method is suited
for describing, not only the dynamics of turbulent !ows,
but also the more complex behaviour of mixing and even
chemical reactions. We end with giving conclusions and
further perspectives in the "nal section.

2. Considered physical problem

2.1. Two-dimensional turbulent Bows

The dynamics of an incompressible and Newtonian !ow is
described by the Navier–Stokes equations (NSE). Without
a continuous supply of energy to the !ow, the total kinetic
energy is decreasing in the course of time due to viscous dis-
sipation (decaying turbulence). Statistically stationary tur-
bulence can be obtained if additional energy is supplied by
forcing (forced turbulence) to compensate dissipation. In
vorticity–velocity formulation, including a forcing term, the
NSE for a two-dimensional !ow take the following form:

@t!+ (v · ∇)!=
1
Re

∇2!+ �	 + F; (1)

∇ · v = 0 (2)

with v = (u(x; t); v(x; t)) denoting the velocity measured at
point x=(x; y) and at instant t; 	 the stream function de"ned
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by M	 = !, and � the strength of the Rayleigh friction
term. The Reynolds number Re of the !ow is de"ned as
Re=2�

√
2E=� with E the kinetic energy of the !ow, 2� the

domain size, and � the kinematic viscosity of the !uid. The
energy is supplied by a forcing term F into the equations
and, to avoid the accumulation of energy in the large scales
due to the inverse energy cascade of 2D turbulence, there is
an additional large scale dissipation term �	, the so-called
Rayleigh friction (Basdevant, Legras, Sadourny, & BNeland,
1981).
The vorticity ! is de"ned as the curl of the velocity and

reduces in two dimensions to a pseudo-scalar, perpendicular
to the two-dimensional plane of the !ow, !=@xv−@yu. The
velocity is obtained from the vorticity applying the Biot–
Savart relation, v=∇⊥(∇−2!), with ∇⊥ = (@y;−@x). The
vorticity seems the most natural quantity to represent the
two-dimensional !ow "eld, because the coherent vortices,
that dominate the dynamics of a turbulent !ow, appear as
localized concentrations of vorticity. Moreover, due to the
absence of vortex stretching in two dimensions, � · ∇v=0,
the NSE in vorticity–velocity formulation take the particu-
larly simple form of a scalar valued transport equation for
vorticity.
The problem formed by the system of Eqs. (1) and (2) is

completed by appropriate initial and boundary conditions.
In this work, the computational domain is a 2� quadratic
box �= [0; 2�]× [0; 2�] where we impose periodic bound-
ary conditions in order to have maximal symmetry (Frisch,
1995). Thus, the set of all !ow realizations corresponds
to the idealized case of homogeneous, isotropic turbulence.
The initial conditions are speci"ed in Section 4.
Standard numerical schemes are employed to integrate

the Navier–Stokes equations and the convection–di5usion–
reaction equations discussed below. For the time discretiza-
tion we use a semi-implicit second-order "nite di5erence
scheme consisting of an Euler backwards step for the vis-
cous term and an Adams–Bashforth extrapolation for the
convective term. The space discretization is carried out us-
ing a pseudo-spectral method, computing spatial deriva-
tives as well as the vorticity evolution in Fourier space,
and the non-linear convective term in physical space (see
Schneider, Kevlahan, and Farge (1997) and for a more com-
plete discussion of the numerical schemes Canuto, Hussaini,
Quaternioni, and Zang (1988)).
The Fourier transform of the velocity "eld v(x; t) is de-

"ned as

v̂(k; t) =
1
4�2

∫
v(x; t)e−ik·x dx; (3)

where x = (x; y); i =
√−1, and k = (kx; ky) denotes the

wavenumber vector. Following Parseval’s identity, the spe-
ci"c kinetic energy of the !ow can be de"ned equivalently
in physical or spectral space,

E(t) =
1
2

1
4�2

∫
�
|v(x; t)|2 dx =

1
2

∫
�
|v̂(k; t)|2 dk: (4)

The distribution of energy over k in spectral space is called
the isotropic energy spectrum of a turbulent !ow, de"ned as

E(k; t) =
1
2

∫
|k|=k

|v̂(k; t)|2 dk (5)

with k=|k|=
√

k2x + k2y the modulus of the wavenumber vec-

tor. Note that energy equipartition corresponds to E(k; t) ∼
k due to the fact that we are integrating over concentric cir-
cles in wavenumber space. In the same way we may de"ne
the total enstrophy, based on the vorticity representation of
the !ow "eld,

Z(t) =
1
2

1
4�2

∫
�
|�(x; t)|2 dx =

1
2

∫
�
|�̂(k; t)|2 dk (6)

with a corresponding enstrophy spectrum

Z(k; t) =
1
2

∫
|k|=k

|�̂(k; t)|2 dk; (7)

that is related to the spectral energy distribution according to

Z(k; t) = k2E(k; t): (8)

2.2. Mixing

We consider the mixing of non-reactive (passive) and
chemically reactive (active) scalars in homogeneous !uid
media. As stated above, the work is con"ned to incompress-
ible !ows. Furthermore, all transport coe4cients are sup-
posed to be constant and chemical reactions are treated in
the isothermal limit, so that the temperature equation needs
not to be considered.
In this case, the dynamics of a scalar i in a !ow "eld is

described by the convection–di5usion equation,

@tci + v · ∇ci − 1
Sci Re

∇2ci =−r; (9)

where ci = ci(x; t) denotes the concentration of species i
with Schmidt number Sci and Re the Reynolds number
of the !ow. The Schmidt number is de"ned as the ratio
Sci = �∗=D∗

i with �∗ the kinematic viscosity of the !uid
and D∗

i the molecular di5usivity of the species i. Here, the
superscript ∗ indicates the dimensionalized form of physi-
cal quantities (for notation of physical quantities and their
non-dimensionalized forms see Appendix C). For passive
scalars the source term r is zero, while for active scalars the
term r represents the chemical reaction rate for the reactive
species in the !ow. For a second-order reaction of type

A + B Da→C (10)

between two species A and B, the source term is of the
form r=Da cAcB with a DamkUohler number of Da= k∗t∗0 c

∗
0

(k∗ denoting the reaction rate coe4cient of the second or-
der chemical reaction). In this case, (9) holds for i = A;B.
Besides, we de"ne the integral reaction rate R(t) as

R(t) =
1
4�2

∫
�
r(x; t) dx: (11)
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Before any chemical reaction can take place, the initially
segregated species need to be mixed down to a molecular
level. Thus, the integral reaction rate can be regarded as a
measure of the degree of mixing of the reactants.
Furthermore, in analogy to the kinetic energy, we de"ne

a corresponding scalar “energy” (Lesieur, 1997) based on
the second moment of the concentration "eld,

EC(t) =
1
2

1
4�2

∫
�
|c(x; t)|2 dx (12)

and call the isotropic spectral distribution of this quantity

EC(k; t) =
1
2

∫
|k|=k

|ĉ(k; t)|2 dk (13)

the scalar spectrum.
In a !uid at rest, a passive scalar spreads according to the

law of molecular di5usion. For strong concentration gradi-
ents, that is, at the interface of initially segregated species,
molecular di5usion is fast at early times but becomes very
slow as time increases. This slowing down is the major issue
of most mixing problems. The only way to compensate for it
and to speed up the mixing is to increase the interfacial area.
Thus, one can distinguish two types of interacting mecha-
nisms that form a mixing process. On the one hand, there
is convective mixing, during which an initially compact re-
gion of the !uid is stretched and folded throughout space
(macro-mixing). On the other hand, molecular di5usion
causes the mixing species to cross the interfaces of initial
segregation and to mix on a molecular level (micro-mixing)
(Ottino, 1989).
In order to characterize macro-mixing, the stretching ef-

"ciency of the !ow or, more precisely, the production of
concentration gradient needs to be quanti"ed. To this end,
inspired by Protas, Babiano, and Kevlahan (1999), Lapeyre,
Klein, and Hua (1999); Lapeyre, Hua, and Klein (2000),
we de"ne an instantaneous local relative production rate of
concentration gradient, �= 1

2 s cos 2", which depends on the
magnitude of the concentration gradient vector,  = |∇c|,
the elements of the strain tensor, s =

√
s211 + s212, and the

angle " between the concentration gradient vector and the
compressing eigenvector of the strain tensor (for a detailed
derivation of this quantity see Appendix A). As a measure
for the overall macro-mixing, we introduce the total pro-
duction rate of scalar gradient as the integral of the local
quantity �,

#(t) =
∫
�
�(x; t) dx: (14)

Another global measure to quantify the quality of mixing,
the most common one in fact, is the time evolution of the
variance of the concentration "eld (Corrsin, 1964),

$2(t) =
∫
(c(t)− Xc)2 dx (15)

with Xc the constant mean concentration. The variance
stays constant during macro-mixing but decreases when
micro-mixing takes place. If mixing is due to di5usion

only, the asymptotic behaviour of the variance decay is
exponential (Corrsin, 1964), $2(t) ∼ exp(−2t=t0), with a
mixing time scale t0 proportional to the Schmidt number.
Following Flohr and Vassilicos (1997), Gerlinger et al.
(2000), we will consider, instead of the instantaneous vari-
ance, the time evolution of the di5erence $2(0)− $2(t). In
this case, one expects a time evolution of ($2(0) − $2(t))
proportional to

√
t for pure di5usion (Flohr & Vassilicos,

1997). If mixing is enhanced by the stretching and folding
of !uid "laments, the decay of the variance will depart
from the

√
t-law, and then corresponds to an accelerated,

so-called anomalous di5usion.

3. CVS �ltering and its application to mixing

3.1. Wavelets and turbulence

Wavelets (Grossmann & Morlet, 1984) have been
recently introduced into turbulence research (Farge &
Rabreau, 1988; Farge, 1992; Meneveau, 1991). For a thor-
ough mathematical treatment of wavelet theory the reader is
referred to standard textbooks such as Daubechies (1992),
Mallat (1997), Louis et al. (1998). The use of wavelet
techniques in turbulence is motivated mainly by the need
to overcome the limitations of the Fourier representation
which requires stationarity and homogeneity of the !ow
(Batchelor, 1953). On the one hand, wavelets allow to
analyse a !ow "eld in terms of both space and scale, thus
providing a uni"ed approach able to link the predictions
of the present statistical theory, based on Fourier space
representation, and intermittent phenomena, such as the for-
mation of coherent vortices observed in physical space. On
the other hand, due to the matching between the multiscale
character of turbulence and of the wavelet representation,
wavelets allow elegant decompositions of turbulent !ow
"elds, extracting most of the localized coherent structures
(and a large part of the kinetic energy) with only very few
strong modes of the wavelet representation.
In this article, we apply a non-linear wavelet "lter to tur-

bulent !ow "elds and investigate the e5ect of this "ltering
on the mixing properties of the !ow with regard to passive
and chemically active scalar "elds. The "ltering procedure
is inspired by the wavelet-based Coherent Vortex Simula-
tion, a method for computation of fully-developed turbu-
lent !ows (Farge et al., 1999; Farge et al., 2001; Farge &
Schneider, 2001). We therefore call it CVS "ltering.

3.2. CVS Eltering

We brie!y recall the algorithm introduced in Farge
et al. (1999). The CVS "ltering consists of three consecu-
tive steps:
Decomposition: By means of a two-dimensional multires-

olution analysis (MRA) (Daubechies, 1992; Mallat, 1997)
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we expand the vorticity "eld !(x; y) with resolution N=22J

into an orthogonal wavelet series

!(x; y) = X!0;0;0'0;0;0(x; y)

+
J−1∑
j=0

2j−1∑
ix=0

2j−1∑
iy=0

3∑
)=1

!̃)
j; ix ;iy  

)
j; ix ;iy(x; y) (16)

with

'j; ix ;iy(x; y) = 'j; ix(x)'j; iy(y) (17)

and

 )
j; ix ;iy =




 j; ix(x)'j; iy(y) for ) = 1;

'j; ix(x) j; iy(y) for ) = 2;

 j; ix(x) j; iy(y) for ) = 3:

(18)

Due to the nature of wavelets, this expansion corresponds
to a decomposition both in space and scale (in this case
ranging from the largest scale lmax = 20 down to the small-
est scale lmin = 21−J ). The functions  j; i and 'j; i denote
the one-dimensional wavelet and the corresponding scal-
ing function, respectively. The wavelet and scaling coe4-
cients are !̃)

j; ix ;iy = 〈!;  )
j; ix ;iy〉 and X!0;0;0 = 〈!;'0;0;0〉 with

〈f; g〉=∫ f(x)g(x) dx. For the separations in the present ar-
ticle we use a fast wavelet transform algorithm with Battle–
LemariNe spline wavelets of order six, which is a O(N logN )
process because in this case the fast convolutions are per-
formed using FFT-techniques (Mallat, 1997).
Thresholding: By a non-linear thresholding with .T =

(2〈!2〉loge N )1=2; N denotes the number of grid points and
〈!2〉 the variance of the vorticity "eld, the wavelet coe4-
cients of the vorticity "eld are split into two parts: a small
fraction with |!̃|¿.T containing the wavelet coe4cients
of what we call the coherent vorticity, and a large fraction,
the incoherent vorticity, with all the remaining coe4cients
having a modulus of |!̃|6 .T .

The choice of .T is based on theorems by Donoho
(Donoho, 1993; Donoho & Johnstone, 1994) on the use of
wavelet thresholding to obtain min–max estimators for de-
noising of signals with inhomogeneous regularity. Thus, we
de"ne the coherent vortices as part of the vorticity "eld with
non-normal statistics and separate them from the incoherent
vorticity, the PDF of which resembles a normal distribution.
Reconstruction: By inverting decomposition (16), the co-

herent and incoherent vorticity "elds can be reconstructed
using the two sets of coe4cients obtained by non-linear "l-
tering. Because the coherent and incoherent vorticity "elds
are orthogonal to each other, the total enstrophy Z equals
the sum of coherent and incoherent enstrophies, Z=ZC+ZI .
The velocity "elds, computed from the vorticities by ap-
plying the Biot–Savart relation, are only approximately or-
thogonal and thus E = EC + EI + . with .�E (for further
explanations see Farge et al., 1999).

3.3. Application to study mixing

The application of the wavelet-based CVS "ltering to
study the mixing of a scalar quantity in a turbulent !ow is
summarized by the scheme in Fig. 1. It comprises essentially
three di5erent elements:

• DNS of the Bow Eeld: The time evolution of the vortic-
ity "eld of the !ow is computed by DNS using a stan-
dard pseudo-spectral code. This yields a reference run for
comparison with the "ltered results.

• CVS Eltering at each time step: Simultaneously with the
computation of the !ow evolution, the vorticity "eld is
split at each time step into its coherent and incoherent
parts applying the above explained CVS "ltering. After
having "ltered the vorticity "elds, the corresponding ve-
locity "elds are computed at each instant from all three
vorticity "elds (the total, the coherent, and the incoherent
ones).

• Time evolution of the scalar Eelds: At each time step,
the coherent, the incoherent, and the total velocity "elds
are used to advect the non-reactive or reactive scalars.
More precisely, the convection–di5usion equations (9) of
the scalars are solved three times: using the total velocity
"eld in order to compute a reference case (v= vT ), using
the coherent velocity (v = vC) to investigate whether the
retained modes contain enough information for correctly
computing the mixing process, and using the incoherent
velocity (v = vI ) to learn more about the nature of the
discarded modes.

4. Results and discussion

In the following section, we present results derived from
the application of CVS "ltering to mixing problems in fully
developed two-dimensional turbulent !ows. First, the initial
conditions and simulation parameters are introduced. Then
we apply CVS "ltering to a freely decaying turbulent !ow
and study the mixing of passive scalars and of chemically
active species with second order kinetics. Finally, we apply
the same method to a statistically stationary turbulent !ow
and consider mixing of active scalars following multi-step
kinetics.

4.1. Initial conditions and parameters

4.1.1. Vorticity
As initial condition, for the vorticity of the decaying and

the statistically stationary turbulent !ows, we choose fully
developed turbulent "elds, which are shown in the upper
half of Fig. 2. They are generated by integration of the 2D
Navier–Stokes equations during several eddy turnover times,
starting from a homogeneous isotropic random vorticity "eld
with Gaussian probability distribution and given correlation
(Farge et al., 1999).
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DNS of vorticity

CVS filtering

coherent

incoherent

vorticity

velocity

vorticity

velocity

mixing and reaction 
in the total flow

mixing and reaction
in the coherent part

mixing and reaction
in the incoherent part

t t + ∆t t + n ∆t 

Fig. 1. Application of CVS "ltering to study mixing and reaction in turbulent !ows: !ow chart of the numerical integration. The black squares represent
the vorticity "elds and the grey squares the velocity "elds.

Fig. 2. Initial conditions: vorticity (top) of the decaying (left) and the statistically stationary turbulent !ow (right), and concentration (bottom) of the
passive (left) and the reactive scalar "elds (right).
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Fig. 3. CVS "ltering of the initial vorticity "eld (Fig. 2 top, left): coherent (left) and incoherent part (right).

4.1.2. Concentration
Throughout this article, we normalize concentration "elds

between zero and one. Moreover, due to the isotropic nature
of the !ow, we choose circular initial geometries for the
scalar "elds.
Fig. 2 (bottom, left) shows the initial condition for the

passive scalar. We start with total segregation between a
centred circular spot of maximal concentration (with a di-
ameter such that the mean concentration of the "eld equals
0:043) and a surrounding region of zero concentration.
For the second order and autocatalytic reactions, we again

start with a circle for component A (Fig. 2, bottom right
hand side), this time setting the diameter such that the mean
concentration of A is 0.5. Besides, we smoothen the ini-
tial step-pro"le of the concentration "eld using a standard
error function in order to avoid Gibbs oscillations induced
by the Fourier discretization of the pseudo-spectral code.
The choice of an error function pro"le can be physically
interpreted as a step-pro"le having been exposed to di5u-
sion, because the standard error function is solution of the
di5usion equation. The initial condition of component B
in the second order and autocatalytic reactions is given by
cB(x; t = 0) = 1− cA(x; t = 0).

4.1.3. Parameters
All simulations discussed in the present paper were car-

ried out with a spatial resolution of Mx =My = (2�=256),
corresponding to a number of N = 2562 grid points. The
kinematic viscosity is �∗=9:9×10−4 m2 s−1. The Reynolds
number, according to the above given de"nition, is about
2800 for the decaying turbulent !ow and 7800 for the statis-
tically stationary turbulent !ow, based on the kinetic turbu-
lent energy and the size of the domain. The Schmidt number
for all scalars is Sc = 1.
The statistically stationary turbulent !ow is computed us-

ing a standard Fourier forcing where energy is supplied at
wavenumber k=4 with an amplitude of one. The parameter
� in the Rayleigh dissipation term of Eq. (1) is chosen as
�= 1:0 (Legras, Santangelo, & Benzi, 1988).

Table 1
Compression rate, energy, and enstrophy for CVS "ltering of the initial
vorticity "eld

# Coe4cients Total 65536 (100%)
Coherent 566 (0.9%)
Incoherent 64970 (99.1%)

Energy Total 0.0974 (100%)
Coherent 0.0967 (99.3%)
Incoherent 6:5526× 10−4 (0.7%)

Enstrophy Total 2.2046 (100%)
Coherent 2.0531 (93.1%)
Incoherent 0.1515 (6.9%)

The time step for all simulations is set to Mt=5× 10−4.
The mixing processes in the decaying turbulent !ow are
computed during 10,000 time steps, corresponding to 10
initial eddy turnover times. The eddy turnover time is de"ned
as 2=1=

√
2Z0 with Z0 the initial enstrophy. The mixing in the

statistically stationary !ow with the autocatalytic reaction is
computed during 80,000 time steps, corresponding to 176
eddy turnover times.
The computations have been performed on PC clusters

with Intel Pentium III processors, 1400 MHz. A simulation
for the mixing of a passive scalar required about 16 MB
of memory and one time step took 2:4 s. Thus, the total
computing time for one simulation (10,000 time steps) was
about 6 : 40 h.

4.1.4. CVS Eltering
To illustrate the CVS "ltering of the vorticity "eld, that

is carried out at each time step of the !ow evolution, we
study here in some detail the in!uence of the "ltering for
the initial condition of the decaying turbulent !ow.
To this end, the !ow "eld is projected onto an orthogonal

wavelet basis using the two-dimensional MRA introduced in
Section 3.2. Thresholding of thewavelet coe4cients and sub-
sequent reconstruction from the two sets of coe4cients yields
the coherent and incoherent vorticity "elds shown in Fig. 3.
Compression rates, energy, and enstrophy for the "ltered

"elds are summarized in Table 1. These values demonstrate
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Table 2
Statistical properties of the total, the coherent, and the incoherent vorticity "elds

De"nition Total Coherent Incoherent

Second moment M2 = (1=N )
∑

i !
2
i 5.0 4.7 0.3

Third moment M3 = (1=N )
∑

i !
3
i 4.0 4.3 0.0

Fourth moment M4 = (1=N )
∑

i !
4
i 132 118 0.4

Fifth moment M5 = (1=N )
∑

i !
5
i 398 378 0.0

Sixth moment M6 = (1=N )
∑

i !
6
i 7208 5946 1.0

Skewness S =M3=M
3=2
2 0.36 0.42 0.0

Flatness F =M4=M 2
2 5.3 5.4 3.5

-10 -5 0 5 10
10-3

10-2

10-1

100

P
 (

ω
)

ω 

 total
 coherent
 incoherent
 Gaussian fit

Fig. 4. PDF of the total initial vorticity "eld and of its coherent and
incoherent parts.

the e4ciency of wavelet compression for fully developed
turbulent !ow "elds. On the one hand, the coherent vortic-
ity "eld is made of only 0.9% of the wavelet modes but
contains almost all kinetic energy (99.3%) and most of the
enstrophy (93.1%). Thus, all important information concern-
ing the dynamical behaviour of the !ow is captured in the
coherent part, which is con"rmed also by visually compar-
ing the local structure of the coherent and the total "elds. On
the other hand, the incoherent "eld, reconstructed from the
remaining 99.1% of the wavelet modes, looks like a homo-
geneous random noise without any localized coherent struc-
tures and contains almost no kinetic energy and only very
little enstrophy.
These observations may be further quanti"ed by looking

at the statistical properties of the "ltered "elds. The statis-
tical moments of the total, coherent, and incoherent "elds
are listed in Table 2. The incoherent part shows a statisti-
cal behaviour similar to a Gaussian normal distribution with
moments of uneven order being zero and a !atness of three.
The coherent part is non-Gaussian and reproduces closely
the statistics of the total vorticity "eld. This is summarized
by the PDFs of all three "elds shown in Fig. 4. The PDF
of the incoherent part, plotted in a log-lin scale, is of ap-
proximately parabolic shape, as expected for a Gaussian

1 10 100
10-8

10-6

10-4

10-2

100

k-1

k-5

E
 (

k)

k

 total
 coherent
 incoherent

Fig. 5. Energy spectrum of the total initial turbulent !ow and of its
coherent and incoherent parts.

distribution, and the PDF of the coherent part is stretched
exponential and superposes well with the PDF of the total
"eld.
The energy spectrum for the CVS "ltering is shown in

Fig. 5. Apart from the high-wavenumber region, correspond-
ing to the dissipative range, the total energy spectrum is well
reproduced by the spectrum of the coherent part with a k−5

power law behaviour in the inertial range. For the incoherent
part we "nd a k−1 behaviour of the energy spectrum corre-
sponding to an equidistribution of enstrophy, which scales as
k+1 since Z(k)= k2E(k) (cf. Eq. (8)). Thus, the incoherent
vorticity "eld is decorrelated. Moreover, both the coherent
and the incoherent parts of the !ow are of multiscale nature.
These results are in close correspondence with the results

of similar "ltering reported in Farge et al. (1999).

4.2. Mixing of a passive scalar (decaying turbulence)

Starting from the initial condition shown in Fig. 2, we
compare the mixing of a passive scalar in the total turbu-
lent !ow and in its coherent and incoherent parts. Fig. 6
shows the passive scalar "eld after "ve time units of the
!ow evolution for the total !ow, the coherent part, and the
incoherent part. Although the coherent part is made of only
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Fig. 6. Passive scalar "eld at t = 5, advected by the total !ow (left), the coherent !ow (middle), and the incoherent !ow (right).
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Fig. 7. Time evolution of the production rate of scalar gradient.

0:9%N of the wavelet modes, the evolution of the scalar
"eld computed from the coherent part (Fig. 6, middle) looks
almost exactly like the one computed from the total !ow
(Fig. 6, left), whereas the scalar "eld in the incoherent part
(Fig. 6, right) looks completely di5erent and seems to be af-
fected by di5usion only. Thus, the coherent part reproduces
the mixing properties of the total turbulent !ow to a nearly
complete extend and only a close comparison reveals small
di5erences between the two scalar "elds.
The close matching of the scalar "elds in the total !ow

and in the coherent part is con"rmed when taking into ac-
count the above introduced measures for the overall mixing
process. In Fig. 7, the time evolution of the scalar gradient
production rate is shown for the total !ow in comparison
with its coherent and incoherent parts. Because the scalar
gradient production rate is re!ecting mostly the stretching
and folding of the interface of the segregated, non-mixed re-
gions, the close matching of the graphs for the total !ow and
the coherent part con"rms that the convective macro-mixing
dynamics of the !ow is almost completely captured in the
0:9%N wavelet modes constituting the coherent part, while
the incoherent part of the !ow contains no signi"cant con-
tribution to the convective transport in the !ow. Moreover,
the evolution of the variance of the scalar "eld, plotted in

1
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10-2

t1

t1/2

σ2 (
0)

 -
 σ

2 (
t)

time, t

 total
 coherent
 incoherent

Fig. 8. Time evolution of the di5erence between initial and instantaneous
variances for the passive scalar.
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P
 (

c)

concentration, c

Fig. 9. PDFs of the concentration for the passive scalar at t = 5.

Fig. 8 as the di5erence between the initial and the instan-
taneous variances in a double logarithmic plot, indicates
that not only the convective transport but also the over-
all mixing in the total !ow is closely reproduced by the
coherent part. Besides, from this plot we are also able to
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Fig. 10. Reactive scalars A and B, and reaction rate for the second-order reaction at t =5 in the coherent part of the !ow: A (left), B (middle), reaction
rate (right).

characterize the nature of the mixing dynamics in the inco-
herent part of the !ow. We "nd in the double logarithmic
plot a

√
t behaviour, as predicted by theory for a purely dif-

fusive behaviour (Flohr & Vassilicos, 1997).
Furthermore, it is important to point out that the global

time scale of the mixing process is strongly dependent on the
Schmidt number Sci of the scalar quantity. For the approx-
imation of the global mixing time scales and their depen-
dence on the Schmidt number see Gerlinger et al. (2000).
Fig. 9 shows the PDF of the passive scalar "eld in the

total !ow and in the coherent and incoherent parts at t = 5.
Here also, the PDF con"rms that the concentration "eld in
the coherent part shows good agreement with the concen-
tration "eld in the total !ow. Moreover, the PDFs of the
concentration in the total !ow and in the incoherent part are
"tted with the respective 4-PDFs (the "t for the concentra-
tion PDF of the coherent part is omitted since it superposes
exactly with the "t for the total !ow). For the computation
of 4-PDFs we refer to Appendix B. Obviously, the PDF of
the concentration "eld in the incoherent part of the !ow is
"tted very well by a 4-PDF, much better than the concen-
tration PDF in the total !ow. This might be of importance
for future modelling of the mixing process in the incoherent
part of the !ow.

4.3. Mixing of reactive scalars (decaying and
statistically stationary turbulence)

4.3.1. Second order reaction (decaying turbulence)
The above investigation for a passive scalar is now ex-

tended to the mixing of two initially segregated reactive
scalars linked by a second-order reaction of type

A + B Da→C with Da= 1:0 (19)

(for the initial condition see Fig. 2). Fig. 10 shows the re-
active scalar "elds and the reaction rate computed by in-
tegrating the convection–di5usion–reaction equations over
"ve units of time using only the coherent part of the !ow.
We refrain from printing the same "elds computed from the
total !ow since the visual di5erences are as small as they
were for the passive scalar (cf. Fig. 6).
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Fig. 11. Time evolution of the mean of concentration (reactive scalar A)
for the second-order reaction. The inset shows a zoom around t = 3:26
and Xc = 0:4686.

The reaction rate (Fig. 10, right) shows clearly that chem-
ical reaction takes place at the interface between A and B.
Here, due to steep concentration gradients, we observe dif-
fusive mixing of the two components on a molecular level
which is required for a chemical reaction to take place. This
process is particularly e4cient where strong scalar gradients
are produced due to stretching and folding of the interface
under the e5ect of vortices. Note for instance the forma-
tion of a spiral in the lower middle part of Fig. 10, leading
to an enhanced di5usive mixing and subsequent reaction of
the components inside a vortex. A systematic discussion of
elementary vortex arrangements and their mixing proper-
ties for di5erent initial conditions of the concentration "elds
and varying DamkUohler numbers can be found in Gerlinger
et al. (2000).
As for the passive scalar, we quantify the di5erence in

the mixing dynamics of the total !ow and the coherent part
by tracing the time evolution of some parameters related
to the mixing and reaction process of the two components.
The mean concentration, shown in Fig. 11 for component
A, decreases due to reaction and superposes perfectly for
the reaction in the total !ow and in the coherent part. The
integral reaction rate (Fig. 12) rises linearly and approaches
a saturation value (cf. other results from literature for the
reaction of scalars with Schmidt number Sc = 1:0, e.g. in
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Fig. 12. Time evolution of the integral reaction rate for the second-order
reaction. The inset shows a zoom around t = 1:9 and R = 0:0105.
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Fig. 13. PDFs of concentration (reactive scalar A) for the second-order
reaction at t = 5.

Gerlinger et al., 2000). Only towards the end, a di5erence
emerges that remains small and constant.
The PDFs of concentration A in the total !ow and in the

coherent and incoherent parts at t =5 are shown in Fig. 13.
As for the passive scalar, the PDFs for the concentrations
in the total !ow and the coherent part superpose very well.
Again, the concentration PDF in the incoherent part can be
closely "tted using a 4-PDF. Thus, it seems that also for
reactive scalars the mixing process in the incoherent part of
the !ow may be modelled using a 4-PDF for describing the
concentration "eld.

4.3.2. Multi-step reaction (statistically stationary
turbulence)
In order to test the CVS "ltering for a more complex case,

we have chosen the autocatalytic reaction

A + BDa1→C + BDa2→D; Da1 = Da2 = 1:0; (20)

taking place in a statistically stationary turbulent !ow.
Again, we compute the mixing and reaction process by
solving the convection–di5usion–reaction equations using
both the total !ow and its coherent part, starting from the
same initial condition for A and B (Fig. 2), while there is
no C in the medium at time t = 0. In Fig. 14, we show the
scalar "elds A (top), B (middle), and C (bottom) at three
selected time steps. As for the second order reaction, we
only show the scalar "elds computed from the coherent part,
because there is no signi"cant di5erence to the ones com-
puted from the total !ow. At the beginning, the scalar "elds
A and B are of nearly complementary shapes due to the ini-
tial con"guration. At t = 17:5, it is already obvious that the
total amount of A is decreasing quicker than the amount of
B. Component C emerges at the interface between regions
of A and B, where there is di5usive mixing due to steep
concentration gradients and subsequent reaction.
The evolution of the mean concentrations (Fig. 15) and

the integral reaction rates (Fig. 16) are exactly superposed
for the total !ow and the coherent part. The mean concentra-
tions of the reactive components follow the reaction scheme:
A and B decrease monotonically with a certain delay for B
due to the catalytic character of the "rst step. The amount
of C "rst increases with the consumption of A and attains
its maximum before the moment when the second step (re-
action of B and C to D) starts to dominate the composition
of the medium. The integral reaction rates re!ect this evo-
lution. First, the reaction rate of the catalytic step reaches
its maximum at about t=4, when A and B are already well
mixed and before the time where the concentration of A de-
creases rapidly. Shortly afterwards, the rate of the second
step goes through a maximum, which is reached at the same
time when there is a maximal amount of C in the medium.
In Figs. 17 and 18, we "nally show some statistical prop-

erties of the scalar "elds at t=17:5. The scalar energy spec-
tra (Fig. 17) are plotted for component A. The spectrum
derived from the mixing in the coherent part "ts well onto
the spectrum of the total !ow. Moreover, we "nd a scal-
ing law in k−7 for large wavenumbers, as predicted by the
phenomenological theory (Lesieur, 1997). The PDFs of all
three scalar "elds (Fig. 18) also look satisfyingly similar for
mixing in the total !ow and in the coherent part. At t=17:5,
most of A is already consumed by the catalytic step of the
reaction (maximum of the PDF of A at small values), while
there are still larger amounts of C and B in the medium
(maximum of the respective PDFs at larger values).

5. Conclusion

In this work, we presented results from numerical simu-
lations of mixing of passive and chemically active scalars
in decaying and statistically stationary two-dimensional,
isotropic turbulence. In particular, we applied to the !ow
an orthogonal discrete wavelet "lter, the CVS "lter, and
studied its e5ect on the mixing and reaction process.
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t = 1.25 5 17.5

Fig. 14. Time evolution of reactive scalars A (top), B (middle), and C (bottom) for the autocatalytic reaction.
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Fig. 15. Mean concentrations for the autocatalytic reaction.

We "nd that the highly compressed coherent part of the
!ow, made of only 0:9%N of the wavelet modes of the total
!ow but containing most of its kinetic energy, reproduces
the mixing properties of the total !ow to a large extend. On
the other hand, the incoherent part of the !ow, containing
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Fig. 16. Integral reaction rates for the autocatalytic reaction.

the remaining 99:1%N wavelet modes but only very little of
the kinetic energy of the !ow, causes a di5usional mixing
for which the PDF of the concentration "eld can be modelled
using a 4-PDF. This result holds, not only for the mixing



ARTICLE IN PRESS

C. Beta et al. / Chemical Engineering Science ( ) – 13

1 10 100
10-12

10-10

10-8

10-6

10-4

10-2

k-7

E
C

 (k
)

k

 A, total
 A, coherent

Fig. 17. Scalar energy spectrum at t = 17:5 for the autocatalytic reaction
(reactive scalar A).
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Fig. 18. PDFs of concentrations at t=17:5 for the autocatalytic reaction.

of passive scalars, but also for reactive chemical species
with simple as well as multi-step kinetic reaction patterns.
In order to compare the mixing dynamics in the total !ow
and the coherent part, we applied various measures ranging
from standard quantities, like the scalar variance and the
integral reaction rate, to more intricate ones, like the scalar
gradient production which is newly introduced here as a
mixing measure.
The successful application of the CVS "lter to study mix-

ing and reacting !ows constitutes a "rst step before extend-
ing wavelet techniques, namely the CVS method, to model
mixing and reaction processes in turbulent !ows. In the next
step, the !ow evolution of the coherent part will be di-
rectly computed in an adaptive wavelet basis while the in-
!uence of the incoherent background !ow will be modelled,
as done in Farge and Schneider (2001). This will allow to
reduce the memory requirements and the computing costs
for high Reynolds numbers, as the adaptive wavelet scheme
has linear complexity. Future work will be concerned with
projecting also the convection–di5usion–reaction equations
onto an orthogonal wavelet basis and computing a small

number of active modes in an adaptive wavelet basis. If the
computational cost for simulating the scalar dynamics can
be reduced in this way, wavelet methods might facilitate
the computation of mixing processes involving species with
large Schmidt numbers. Furthermore, it is intended to ex-
tend the present work to three-dimensional turbulent !ows.
Since the CVS "lter has already been successfully applied to
incompressible three-dimensional !ows (Farge et al., 2001;
Schneider et al., 2000), it seems reasonable to expect that
the present method should also be applicable to study mix-
ing processes in three-dimensional turbulent !ows.
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Appendix A. Local gradient production rate

In an incompressible !ow, stretching is due exclusively
to the strain tensor (Protas et al., 1999; Lapeyre et al., 1999;
Lapeyre et al., 2000), which is the symmetric part of the
velocity gradient tensor∇v. In the decomposition of the ve-
locity gradient tensor into its symmetric and antisymmetric
part, ∇v=D+&, we can express D and & in terms of the
velocity gradient tensor itself and its transpose:

D ≡ 1
2 (∇v + (∇v)T) strain tensor (symmetric); (A.1)

&≡ 1
2 (∇v − (∇v)T) vorticity or spin tensor

(antisymmetric): (A.2)

An explicit evaluation of these expressions yields

D=

[
s11 s12

s12 −s11

]
; (A.3)

and

&=

[
0 −!

! 0

]
; (A.4)

where the components are:

s11 = @xu− @yv; (A.5)

s12 = @xv+ @yu; (A.6)

!= @xv− @yu: (A.7)
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Solving the eigenvalue equation for D, one obtains the two
eigenvectors of the strain tensor

d1 =

[
s12

s− s11

]
; d2 =

[ −s12

s+ s11

]
(A.8)

with s=
√

s211 + s212.
They are mutually orthogonal and represent the direc-

tions of maximum stretching (d1) and maximum compres-
sion (d2).
Using this kinematic description of the !ow, it is possi-

ble to describe the evolution of gradients in a concentra-
tion "eld advected by the !ow. To study the production of
concentration gradient, the gradient vector is separated into
magnitude and orientation,

∇c =  

(
cos 5

sin 5

)
: (A.9)

The evolution of its magnitude  depends strongly on the
angle between the concentration gradient vector and the sec-
ond eigenvector d2 of the strain tensor (Protas et al., 1999;
Lapeyre et al., 1999). In fact, for the instantaneous change
of concentration gradient, one "nds (Ottino, 1989)

1
 
d 
dt

=−mTDm (A.10)

= 1
2 s cos 2" (A.11)

with m =∇c=|∇c| and " the angle between the concentra-
tion gradient vector ∇c and the compressing eigenvector d2
of the strain tensor. In order to get a production rate of con-
centration gradient that is proportional to the strength of the
gradient itself (the production of gradient is most important
where the gradient is strongest), we multiply Eq. (A.10)
with  and obtain

�= 1
2 s cos 2" (A.12)

the instantaneous local relative production rate of concen-
tration gradient. Here, �= �(x; t) is a function of space and
time, because  ; s, and also " are dependent on position in
space and on time.

Appendix B. 4-PDF

In this work, we use 4-PDFs to "t the PDFs of concen-
tration "elds (Baldyga, 1989). The 4-PDFs are computed
according to the following de"nition:

4(c) =
ca−1(1− c)b−1∫ 1

0 xa−1(1− x)b−1 dx
; c∈ [0; 1] (B.1)

with

a= Xc
(

Xc(1− Xc)
$2
c

− 1
)

(B.2)

and

b= (1− Xc)
(

Xc(1− Xc)
$2
c

− 1
)

; (B.3)

where Xc denotes the mean of the concentration "eld and $2
c

its variance.

Appendix C. Notations

Throughout this work, physical quantities are given as di-
mensionless variables. They have been non-dimensionalized
using the reference quantities shown below.

Notation Units Quantity

c∗0 1 mol m−3 Reference concentration
l∗0 1 m Reference length
m∗

0 1 kg Reference mass
t∗0 1 s Reference time

The corresponding dimensional quantities are marked by a
star, e.g. �∗, the kinematic viscosity in m2 s−1, and � the
corresponding non-dimensionalized variable given in units
of l∗20 t∗−1

0 .
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