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ABSTRACT

We present high resolution direct numerical simulation
of 2D viscous incompressible flows past a flat plate. We
study the shear layer instability of a flow past, either an im-
pulsively started plate, or an uniformely accelerated plate,
for Reynolds number Re = 9500. The numerical schemes are
based on adaptive wavelet and Fourier pseudospectral meth-
ods with volume penalisation to take into account the plate
with no—slip boundary conditions. The geometry of the plate
is simply described by a mask function. We have chosen one
tip of the plate to be rectangular while the other is a wedge
with an angle of 30° degrees or a circluar shape. On both
tips we observe the formation of thin shear layers which are
rolling up into spirals and form two primary vortices. The
selfsimilar scaling of the spirals corresponds with theoretical
predictions of Saffman for the inviscid case [12]. At later
times these vortices are advected downstream and the free
shear layers undergo a secondary instability. We show that
their formation and subsequent dynamics is highly sensitive
to the shape of the tips. The numerical results agree well
with observations from laboratory experiments. Finally we
also check the influence of a small riblet being added on the
back of the plate on the flow evolution.

INTRODUCTION

One of the main challenges in computational fluid dy-
namics (CFD) is the numerical simulation of turbulent flows
in complex geometries. Grid generation and turbulence
modeling near the wall play hereby a crucial point, espe-
cially for the prediction of lift and drag coefficients and for
the control of the flow. A suitable approach for this task is
the penalisation method which has been introduced by Ar-
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quis and Caltagirone [3]. Therewith walls or solid obstacles
are modeled as a porous medium with porosity n tending
to zero. The Navier-Stokes equations are modified accord-
ingly by adding a Darcy term. Fluid regions are considered
as completely permeable, while regions where walls or ob-
stacles are present as perfectly impermeable. The geometry
of the flow can therefore simply be taken into account us-
ing a spatially varying permability coefficient, which enables
an easy practical implementation of the method and allows
furthermore obstacles and walls changing in time and even
interacting with the fluid. A mathematical theory proving
convergence of this physically based approach has been given
by Angot, Bruneau and Fabrie [2]. The penalisation method
has been applied in the context of low order methods (finite
difference/volume schemes, e.g. [9, 2], with pseudospectral
methods, e.g. [7], [8], [14] and recently also with adaptive
wavelet methods [13], [6]. The latter scheme automatically
adapts the spatial grid not only to the evolution of the flow,
but also to the geometry of walls or bluff bodies [13].

In the present paper we apply the penalisation method
using as numerical scheme, either a Fourier pseudo-spectral,
or an adaptive wavelet method, to study the flow past a flat
plate moving normal to the free stream. This flow configu-
ration has been subject of many experimental, theoretical
and numerical investigations [11, 12, 10]. Here we focus
on the self-similar behaviour of the primary spiral vortex
being formed at the sharp edges and we compare the numer-
ical results with Saffman’s theoretical predictions [12]. At
later times, when the primary vortices are advected down-
stream, for sufficiently large Reynolds numbers, we observe
the formation of secondary vortices along the primary vortex
sheets. These results agree with observations in laboratory
experiments [11] and with other numerical simulations using
a vortex method [10]. The stability of vortex sheet roll-up



and its secondary instability has also been studied recently
in [1].

The paper is organised as follows: first we present the
penalisation method togehter with the numerical schemes
to solve the penalised Navier-Stokes equations numerically.
As application we present numerical simulations of 2D vis-
cous incompressible flow around a flat plate, being either
impulsively started normal to the free stream at Re = 9500,
or uniformely accelerated. We also modify the plate’s geom-
etry by adding a small riblet to study its influence on the
formation of the secondary vortices. Finally, we give some
conclusions and perspectives for turbulence modeling.

THE PENALISATION METHOD AND THE NUMERICAL
DISCRETISATION

Governing equations

The penalisation technique is based on the physical idea
to model solid walls or obstacles as porous media whose
porosity 7 is tending to zero [3]. The geometry is described
by a mask function x(&) which is 1 inside the solid regions
and O elsewhere. Note that the penalisation method can
also take into account obstacles with time—varying shape by
simply introducing a time—dependent mask function. The
Navier-Stokes equations are modified by adding a supple-
mentary term containing the mask function. For the 'pe-
nalised’ velocity @, we obtain

1
B4y + @y - Viy+Vpy — V2T, + ;ms(a‘n —p(t)) =10 (1)

where @,(&,t) is the velocity, py(Z,t) the pressure, @y (t)
the obstacle’s velocity, and v the kinematic viscosity. In
the following the density p is assumed to be 1. The mask
function is given by

o 1 for Z e Qs
Xa, (#) = { 0 elsewhere 7 (2)
where £2: denotes the solid obstacle. For  — 0 the flow
evolution is governed by the Navier—Stokes equations in the
fluid regions, and by Darcy’s law, i.e. the velocity is propor-
tional to the pressure gradient, in the solid regions where
obstacles or walls are present. In [2] a mathematical proof
has been given that the above equations converge towards
the Navier—Stokes equations with no-slip boundary condi-
tions, with order 773/4 inside the obstacle and with order
771/4 elsewhere, in the limit when 7 tends to zero. In nu-
merical simulations an improved convergence of order 7 has
been reported [2], [8].
The resulting forces F on the obstacle, i.e. drag and lift
coefficients, can be computed by integrating the penalised

velocity over the obstacle’s volume [2]:

o 1
F = lim Vppde = — lim — Updr  (3)
n—0 Q. n—0 7 Q.

= / o(d@,p)-iydy (4)
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where 2; is the obstacle’s volume, 8¢ its boundary, 7 its
outer normal and (@, p) = % (V@4 (V@)t) — pl the stress
tensor. Hence the lift and drag forces on the obstacle, i.e.
forces parallel and perpendicular to the free—stream velocity
of the flow, are easy to compute as volume integrals instead
of contour integrals.

For two—dimensional flows the vorticity—velocity formu-
lation is prefered and therefore we take the curl of eq. (1),
and we get

Otwy + (dn + [700) -Vuwy —v v? Wy (5)

+9 x (% xar, (@) = Tp(t)) = 0

where w = V x 4 is the vorticity and [_joo is the free—stream
velocity, defined as lim|z__, o &) =Uso.

Numerical methods

For the numerical solution of the penalised equations we
employ, either a classical Fourier pseudospectral method [4,
8, 14], or a wavelet scheme with adaptive grid refinement
6, 13].

Fourier pseudospectral method.

The Fourier pseudospectral discretizations are classical
schemes in CFD, which are highly accurate for flows with
periodic boundary conditions. For a more complete discus-
sion we refer the reader to [4]. Equation (6) is transformed
into Fourier space in order to compute the spatial derivatives
and to evolve the vorticity field in time. Terms containing
products, i.e. the convection and penalisation terms, are cal-
culated by collocation in physical space. Hence the vorticity
field and the other variables are represented as truncated
Fourier series,

w(#@,t) = Z O(F,t) exp(ik - 7) (6)
kezm?

where the Fourier transform of w is defined as

Sk = /w(f,t) exp(—ik-F)d7  (7)
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with the wavevector k = (kz, ky). The Fourier discretization
is uniform in space and is truncated at ky = —N;/2 and
ky = Nz/2+1, ky = =Ny /2 and ky = N, /2 + 1, where N,
and Ny are the number of grid points in = and y direction,
respectively. The gradient of w is computed by multiplica-
tion of w by il;, the Laplacian by multiplication with |l_c‘|2
The velocity @ induced by the vorticity w is reconstructed
in Fourier space using Biot-Savart’s law,

where &+ = (=ky, kz)

The convection term @ - Vw and the penalisation term
VvV x (% Xq, (& — dp(t)) are evaluated by the pseudospec-
tral technique using collocation in physical space. To avoid
aliasing errors, i.e. the production of small scales due to
the nonlinear terms which are not resolved on the grid, we
de-aliase at each time step, by truncating the Fourier coeffi-
cients using the 2/3 rule,

2
~ 2
oh e (He) () <u
2
kg )2 3k
0 for <2Na:> +(2Nl;) >1

(9)

For the transformation between physical and Fourier

space we use Temperton’s Fast Fourier Transform with an

order Nlog, N, (N = NN, ) complexity [4].



For the time discretization we use a semi-implicit scheme
with adaptive time-stepping [14]. The linear diffusion term
is discretized implicitly using exact time integration which
is cheap for spectral methods, as the Laplace operator is
diagonal in Fourier space, and hence no linear system has
to be solved. This improves the stability limit of purely
explicit schemes. The remaining terms are discretized ex-
plicitly using second order Adams—Bashforth extrapolation.
This avoids the solution of nonlinear equations, however it
implies a CFL condition on the maximum size of the time
step.

The step size control of the time step is based on the CFL
stability limit of the explicit discretization of the nonlinear
term. Therefore in each time step t5,, pointwise the maximal
rms velocity is computed,

Umazr = MATz

(w(Z))? + (v(8))? (10)
and the new time step is given by

Atpy1 = CAz/umaz

with the minimal spatial grid size Az = min (ﬁ,—z, %),
where Ly, Ly denote the length of the domain in = and y
direction, respectively, and C' < 1 the CFL constant.

Adaptive wavelet method.

As adaptive schemes dynamically adapt the spatial grid
in time, we first discretize the equations (6) in time using
semi-implicit finite differences, i.e. Euler-backwards (EB2)
for the viscous term and Adams—Bashforth (AB2) extra-
polation for the nonlinear term, which are both of second
order.

The resulting elliptic problem to be solved in each time
step is:

4 1
(~vI - UV2)UJn+1 = gww" - gwwn_l - V. (w*a*) (11)

~V x (% X (T — Tp)

where
WwF=20" — ! *=2a" —an! (12)

and with time step A¢, v = 3/(2At) and I representing the
identity.

For the space discretization we use a Petrov—Galerkin
scheme. Therefore the vorticity is developed into a set of
trial functions and the minimization of the weighted resid-
ual of (11) requires that the projection onto a space of test
functions vanishes. As space of trial functions we employ
a two-dimensional multiresolution analysis (MRA) and de-
velop w™ at time step n into an orthonormal wavelet series

(@) = Y (W ) Yale,y) (13)

A

with the multiindex A = (4,14, iy, ), where j = 0, Jimae — 1
denotes the scale 279+ (ig,iy) = 0,...,27 — 1 the position
and pu = 1,2,3 the three different directions of the wavelets.
The test functions §, are defined as solutions of the linear
part of eq. (11)

(VI =vV2)oy = ¥y (14)

and can be computed in a preprocessing step.

This avoids assembling the stiffness matrix and solving
a linear equation at each time step. The functions 8, called
vaguelettes, are explicitely calculated in Fourier space and
have similar localization properties as wavelets [6]. The so-
lution of (11) therewith reduces to a change of basis:

o= W) (1)
= (G = gt = A
- VX (AT = ). 00)

Nonlinear wavelet thresholding is applied in each time
step to obtain an adaptive discretization by retaining only
those wavelet coefficients @) with absolute value above a
given threshold ¢ = ¢y Z, where ¢ is a constant and
Z = %f |w(£)|?dZ is the enstrophy. For the next time step
the index coefficient set (which addresses each coefficient in
wavelet space) is determined by adding neighbours to the
retained wavelet coefficients. Consequently, only those co-
efficients @ in (15) belonging to this extrapolated index set
are computed using the adaptive vaguelette decomposition
[6]. The nonlinear term —V - (w*(@*)) = V x (% x (@ —dp))
is evaluated by partial collocation on a locally refined grid
[13]. The vorticity w* is reconstructed in physical space
on an adaptive grid from its wavelet coefficients @* using
the adaptive wavelet reconstruction algorithm [6]. From
the adaptive vaguelette decomposition with § = (V2)~1 4,
we solve V2U* = o* to get the stream function U* and
reconstruct ¥* on a locally refined grid. By means of
centered finite differences of 4th order we compute Vw*,
@ = (=9y¥*,8;9%) and V x (5 x(@* — @p)) on the
adaptive grid. Subsequently, the nonlinear term is summed
up pointwise and finally (15) is solved using the adaptive

vaguelette decomposition.

NUMERICAL RESULTS

Flow configuration

We study the early evolution of incompressible viscous
flows past a flat plate. The plate is deplaced in its normal
direction (Fig. 1), with a motion being, either impulsively
started, or uniformely accelerated. We have chosen one tip of
the plate to be rectangular while the other is a wedge with
an angle of 30° degree (cf. Fig. 1). The two-dimensional
approximation, we use here, remains valid, since we focus
on the instationary flow behaviour at early times. At ¢t = 0

[l
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Figure 1: Geometry of the flat plate and direction of its
motion.

the plate is either impulsively started

N uQ 7,‘>07
t) = - 16
(1) {0 2 (16)



with velocity up = 1, or uniformely accelerated with velocity

t>0

- ? 17
t>0 ()
with the acceleration a = 1. Based on the length of the plate

L we define a Reynolds number Re = u’; which evolves in

the uniformely accelerated case with time.

Spiral formation at early times

The flow past a flat plate has been studied theoretically
using potential flows in the complex plane [12]. A Kutta
condition is imposed at the tip of the plate by adding a
spiral vortex to the potential flow (see Fig. 2). In [12] a
self-similar scaling of the spiral is predicted, which depends
on the angle of the wedge o and the acceleration law of the

plate. The numerical simulations are performed with resolu-

Figure 2: Sketch of the flow configuration.

tion Ny = Ny = 2048. In Fig. 3 we show the vorticity field
at t = 1.4 for the impulsively started plate at Re = 9500.
The flow is characterized by the roll-up of the two free shear
layers produced at the tips into two counter-rotating pri-
mary vortices behind the plate. The resulting large scale
recirculation zones create two boundary layers on the back
of the plate, separated by a stagnation point located in the
middle. These boundary layers produce vorticity, of oppo-
site sign to the primary vortices, and form a corner vortex at
each tip of the plate. Fig. 3 also exhibits secondary vortices
resulting from an instability of the two shear layers. We ob-

serve that the shape of the tips (square shape on the top,

Figure 3: Vorticity field at ¢ = 1.4 for the impulsively started
plate at Re = 9500.

10 ‘
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and sharp edge on the bottom) strongly influences this sec-
ondary instability, since the spatial distribution of secondary
vortices differs significantly. For the sharp edge (bottom) the
distance between two subsequent vortices is continuously in-
creasing, from the edge to the center of the primary vortex,
where they disappear under the straining of the latter. In
contrast, we observe for the square edge (top) an irregular
distribution of the secondary vortices, whose strength re-
mains sufficient to resist the straining of the primary vortex
and hence they penetrate towards its center.

In the following we study the formation and roll-up of
the shear layer and focus on the lower half of the plate with
a wedge of & = 30°. In Fig. 6 we show the time evolution of
vorticity.

Figure 4: Zoom of the primary vortex spiral at ¢ = 0.4 for an
impulsively started plate at Re = 9500. Isolines of vorticity
(-100,-10 by step of 2).
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Figure 5: Scaling of the spiral’s radius versus the angle ¢ for
both the impulsively started (curve with slope —11/16) and
for uniformely accelerated case (curve with slope—11/8 ).

At early times we observe the formation of a thin vortex
sheet which is rolling up into a spiral and forms a primary
vortex (Fig. 6, top). Fig. 4 shows a zoom of the spiral (case
a = 30°) at early time (¢ = 0.4), i.e. we plot isolines of
the vorticity field to study the scaling of the spiral vortex.
In Fig. 5 we plot the scaling of the spiral’s radius for both,
the impulsively started and the uniformely accelerated case.
For both we observe a self-similar behaviour with a scaling



of r(f) o ¢=11/8 for the former, and of r(0) o g—11/16 for
the latter. The results agree well with Saffman’s predic-
tionfor the inviscid case, i.e. for infinite Reynolds numbers,
[12] concerning the roll up of vortex sheets for an acceler-
ated flow past a wedge with the same angle. Note that the
impulsively started flow corresponds to the limit case of an
infinite acceleration which is also well predicted.

Formation of secondary vortices at later times

The primary vortices being formed on the upper and
lower tip are advected downstream. For sufficiently large
Reynolds numbers (Re > 5000) we observe that the shear
layers undergo a secondary instability at later times. This
instability leads to the formation of secondary vortices along
the primary vortex sheets (Fig. 6 and 3) as observed in both
laboratory and numerical experiments, at similar Reynolds
numbers [10, 15]. We also observe that the formation of the

ORNC
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Figure 6: Flow past an impulsively started plate with a sharp
wedge of angle o = 309 at Re = 9500. Vorticity fields at
t = 0.39,0.75,1.11 and 1.47.

Figure 7: Flow past an impulsively started plate with a
round wedge at Re = 9500. Vorticity at ¢ = 0.39,0.75,1.11
and 1.47.

secondary vortices and their dynamics are highly sensitive

to the shape of the tips. Therefore we consider two different
wedges, a sharp one with angle o = 30° and a smooth one
with a circular shape. We compare the corresponding flow
evolution and we find that the formation of the secondary
instability is delayed in the case of the sharp edge,i.e. at t =
0.75 no secondary vortices are observed (Fig. 6, top, right),
while they are already well formed in the case of the round
wedge (Fig. 7, top, right). For a square shaped edge (not
shown here) we have observed that the secondary instability
occurs even slightly earlier than for the round edge. This
suggests that the position of the separation point seems to
control the onset of the instability. This point is displaced
depending on the shape of the wedge: from the left for the
square, towards the middle for the round, to the right for
the sharp edge. Correspondingly the position of the counter-
rotating corner vortex is displaced likewise, from the left to
the right. In [15] it has been suggested that this corner
vortex triggers the secondary instability, which is consistent
with our observations above. They also conjectured that the
periodicity of the secondary vortex formation corresponds to
the rotation frequency of the corner vortex.

In order to control the intensity of the corner vortex,
and therefore its rotation frequency, we added a riblet on
the back of the plate. As the riblet is in the recirculation
zone behind the plate (cf. Fig. 1), it produces vorticity of
the same sign as the corner vortex. We thus control its
intensity, by varying the position d and the size e of the
riblet, and performed several numerical experiments to check
the riblet’s influence on the secondary instability. In Fig. 8
we show the vorticity field at ¢t = 2.01 without riblet (top,
left) and for three different riblet positions. We observe that
the dynamics of the secondary vortices is modified by the
riblet. For increasing ratio d/L, we find that:

Figure 8: Flow past an impulsively started plate with a sharp
wedge, angle o = 30° at Re = 9500. Vorticity fields at
t = 2.01 for a plate without riblet (top, left), and for plates
with riblets at different positions.

- the formation of the first secondary vortex is getting
closer to the tip of the plate,

- the distance between two secondary vortices becomes
irregular,

- therefore vortex pairings occur.



We have also studied the influence of the Reynolds num-
ber in the range between Re = 1000 to Re = 20000 and for
different position, size and thickness of the riblet. This will
be discussed in a forthcoming paper.

CONCLUSION AND PERSPECTIVES

We presented numerical simulation of 2D incompressible
viscous flows past a flat plate at Re = 9500. A volume
penalisation approach is used to take into account the ge-
ometry of the plate with no-slip boundary conditions. We
used two different numerical schemes, either a Fourier pseu-
dospectral method, or an adaptive wavelet method, both at
high resolution (N = 20482). Therewith we have studied
numerically the free shear layer instability of a flow past a
flat plate for different shapes of the tips. We found that
the roll-up of the shear layer into a spiral, which forms
the starting vortex, exhibits the scaling laws predicted by
Saffman [12] for both cases studied here, the impulsively
started and the uniformely accelerated plate. At later times
we observed that the shear layer becomes unstable and pro-
duces secondary vortices as observed in both, laboratory and
numerical, experiments. We also showed that the formation
of the secondary vortices depends on the shape of the tips
of the plate, and is enhanced by adding a riblet on its back.
By varying the position and the size of the riblet we showed
that the dynamics of the secondary vortices can be modi-
fied. The next step will be to develop systematic control
strategies of the wake to enhance, but also to inhibit, their
formation. In future work, we will also apply the CVS ap-
proach to compute 2D and 3D bluff body flows at higher
Reynolds numbers [5].
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