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Laboratoire de Météorologie Dynamique, ENS, Paris
and Kai Schneider
Laboratoire de Modélisation et de Simulation Numérique, CNRS, Marseille

ABSTRACT: We present a new numerical method to compute the rotating shallow water equations past a cylin-
drical obstacle which is impulsively started. It combines a pseudo-spectral scheme and a volume penalization
method to take into account the no-slip boundary conditions on the obstacle. We present here several experi-
ments to study the effect of rotation on the von Karman street which develops in the wake of the obstacle. In
order to check the numerical results, we also perform several laboratory experiments using a two-layer stratified
flow on a turn-table where a cylindrical obstacle is translated. We qualitatively compare the vorticity fields
obtained by particle image velocimetry (PIV) with those computed by the numerical experiments for the same
set of parameters.

1 INTRODUCTION

In contrast to the incompressible two-dimensional
von Karman street, wakes encountered in geophysical
flows are affected by the Earth’s rotation and the ver-
tical stratification. We use the rotating shallow-water
model as the simplest model to account for the in-
fluence of the Coriolis force and allow divergent mo-
tions.

Previous studies have shown that an asymmetry
could occur between vortices of opposite signs when
the characteristic scale is larger than the Rossby de-
formation radius, the scale above which the effect
of the Earth’s rotation becomes significant. Numer-
ical simulations of decaying shallow water turbu-
lence have shown significant differences in shape
and strength between cyclonic and anticyclonic vor-
tices (Farge and Sadourny 1989; Polvani et al. 1994).
Namely, at scales larger than the Rossby deformation
radius, anticyclones tend to be more circular and less
distorted than their cyclonic counterparts. Moreover,
the same cyclonic-anticyclonic asymmetry has also
been observed in other rotating shallow water flows
for isolated vortices (Stegner and Dritschel 2000) and
jets (Poulin and Flierl 2003). Such effect can also be
observed in the ocean in the wake of islands whose
size is larger than the Rossby deformation radius (Fig-
ure 1).

Figure 1. Oceanic wake past Isla Mujeres, an island off the
peninsula of Yucatan (Mexico). The color corresponds to the
phytoplanctoon concentration which is passively advected by the
flow. We observe that the anticyclonic vortices are quasi-circular
while the cyclones are elongated.
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The numerical experiments presented in this pa-
per are based on a new method which combines a
pseudo-spectral scheme with a volume penalization
to take into account the presence of an obstacle in
the flow. It has already been used to compute a two-
dimensional incompressible flow past an impulsively
started cylinder (Schneider and Farge 2002). We ex-
tend this method to the case of two-dimensional com-
pressible flows in the context of the shallow water
approximation. The laboratory experiments are per-
formed with a two-layers stratified flow and the obsta-
cle is translated in the upper layer only, while the bot-
tom layer remains almost at rest in the rotating frame.

2 MODEL

2.1 Theoretical model

Figure 2. Shallow water model

We use the shallow water equations in a rotating
frame which rotates clockwise to correspond to the
Earth’s rotation in the Southern hemisphere. These
equations modelize the flow past an obstacle, taken
here as a cylinder :

∂�V

∂t
+ (�V .∇)�V + f�n× �V +∇φ = ν∇2�V

∂φ

∂t
+∇ · (φ�V ) = 0

where �V (x, y) is the velocity, φ(x, y) = gh(x, y) the
geopotential with h the free surface height and g the
Earth’s gravity, f = 2Ω0 the coriolis parameter with
Ω0 the Earth’s rotation, ν the kinematic viscosity and
�n the normal to the plane (x,y).

Taking the diameter D of the cylinder as the refer-
ence length scale and the velocity of the obstacle �U
as the reference velocity scale, we consider the three
adimensional parameters :

• the Reynolds number, which is the ratio of the
advective and viscous terms, Re = UD

ν
,

• the Rossby number, which is the ratio of the ad-
vective and Coriolis terms, Ro = U

DΩ0
,

• the Burger number, which is the ratio of the grav-

ity and rotation effects, Bu =
(

2Rd

D

)2
, where Rd

is the deformation radius Rd =
√

φ/f .

2.2 Numerical model

The shallow water equations are solved with a
pseudo-spectral scheme for the space integration and
a leapfrog scheme for the time integration (Farge and
Sadourny 1989). The presence of the obstacle is im-
posed by using a volume penalisation method (Arquis
and Caltagirone 1984; Kevlahan and Ghidaglia 2001;
Schneider and Farge 2002), which considers both the
fluid and the solid as the same porous medium, whose
permeability tends to zero in the solid domain Ωs, and
to infinity in the fluid domain Ωf . For this a Darcy’s
force term is added to the momentum equation, which
is solved in the whole domain Ω = Ωs + Ωf ,¡ consid-
ering periodic boundary conditions :

�F = −χ

ε
(�V − �U)

where ε � 1 the penalization parametera and χ is the
charateristic function of the obstacle such that :

χ(�x) =

{
1 for �x ∈ Ω̄s,
0 for �x ∈ Ω̄f .

Therefore �V verifies the shallow water equations in
Ωf and is forced to �U in Ωs. The effect of the penal-
ized term is similar to having no-slip boundary con-
ditions on the obstacle, which results in the formation
of boundary layers and production of vorticity there.
The penalized shallow water equations in the rotating
frame are :

∂�V

∂t
+(�V .∇)�V +f�n× �V +∇φ = ν∇2�V − χ

ε
(�V − �U)

∂φ

∂t
+∇ · (φ�V ) = 0

where �U is the velocity of the obstacle relative to the
rotating frame. The initial conditions are �V (t = 0) =
�U in the obstacle and zero elsewhere, and the free sur-
face heigth is constant φ(t = 0) = φ0 = 105 m2s−2,
which gives a velocity of the gravity waves c =√

φ0 = 316ms−1.
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The space discretization is ∆x = Lx

1024
= π

128
in the

spanwise direction and ∆y = Ly

256
= π

128
in the stream-

wise direction with the domain length Lx, Ly such
that Ly = 2π and Lx = 4Ly. The time step is chosen
to be smaller than the characteristic time of the fastest
inertio-gravity waves ∆t = 0.25(1/

√
( 2π

∆x
)2φ0 + f 2).

The penalisation parameter is very small and such
that ε = 2∆t.

The convergence of the solutions of the penalized
equations towards the solutions of the non-penalized
equations has been proven for the Navier-Stokes
equations (Angot et al. 1999), but not yet for the
rotating shallow water equations. This is the reason
why we have chosen to compare the numerical re-
sults with those of laboratory experiments, in order
to validate the penalization method in this new con-
text where both vortices and waves are dynamically
important. The volume penalization presents the ad-
vantage of taking into account obstacles or complex
geometries while keeping a Cartesian mesh and using
a high-order pseudo-spectral scheme.

2.3 Laboratory model

The experiments are performed in a 48 cmx130 cm
tank mounted on a 1.5m diameter turn-table which
is located at the Department of Mechanics (UME)
of ENSTA, Palaiseau. The upper plate rotates clock-
wise, which corresponds to the rotation in the South-
ern hemisphere, and is supported by a thin air layer in
order to reduce friction and avoid mechanical vibra-
tions at the inertial frequency.

To satisfy the shallow water conditions the fluid is
stratified with two layers: a thin upper layer of density
ρ1 and a thick lower layer of higher density ρ2 > ρ1

(cf. Figure 3). The difference of density between the
upper layer and the air above enables us to neglect the
deformation of the free surface compared to the defor-
mation of the interface between the two layers. As the
upper layer is thinner (h = 2.5 cm) than the bottom
layer (H = 20 cm), the dynamics in the latter can be
neglected in first approximation. To guaranty that hor-
izontal scales dominate vertical scales, as required by
the shallow water approximation, we use a cylinder
whose diameter (D = 7 cm) is larger than the upper
layer thickness. Since the cylinder is translated in the
upper layer only, the resulting dynamics is similar to
a rotating shallow flow with one free interface.

When the bottom layer has reached solid rotation,
we slowly inject the upper layer. We wait until the
upper layer attains solid rotation and we then impul-
sively translate the cylinder in the upper layer at ve-
locity �U . Buoyant particles are added for vizualiza-

Figure 3. Laboratory experiment

tion and a CCD camera, fixed above the tank and ro-
tating with it, captures the motion of particles which
are lightened by a horizontal laser sheet. A standard
PIV software is used to compute the velocity field and
deduce the vorticity and the streamfunction fields.

3 RESULTS

3.1 Numerical results

In this paper we study the shallow water flow past an
impulsively started cylinder in a rotating frame. We
consider the following parameters : Reynolds number
400, Rossby number 0.24 and three different Burger
numbers, 1, 0.25 and 0.1. In all cases the effect of
rotation is significant since the radius of deforma-
tion is comparable or smaller to the cylinder radius.
We compute the evolution of the following fields:
vorticity ω = ∇× �V , potential vorticity (ω + f)/φ,
geopotential φ, stream function ψ = ∇−2ω and mod-
ulus of velocity | �V |. We integrate the shallow wa-
ter equations during 30 periods of the rotating frame,
τf = 2π/f = π/Ω0.

We observe that during the flow evolution vorticity
is produced in the boundary layers which is formed
on the obstacle and a von Karman street develops
in the wake. Both vorticity (Figure 4A) and poten-
tial vorticity (Figure 4B) exhibit an asymmetry of the
wake : cyclones (ω > 0) are elongated while anticy-
clones (ω < O) remain quasi-circular. This asymme-
try is similar to what is observed in the Atlantic ocean
in the wake of Isla Mujeres Island (cf. figure 1).

Figures 3C and 3D show that the flow is in
geostrophic balance, since the surface height h = φ/g
is similar to the stream function. Indeed, geostrophic
balance is a stationary solution of the inviscid rotating
shallow water equations in the limit of small Rossby
numbers. For Ro � 1, the advective term is negligible
compared to the Coriolis force and there is a balance
between the gradient of geopotential and the Coriolis
force :

f�n× �V = −∇φ
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Velocity V = ∇× ψ�n, therefore ∇(fψ + φ) = 0
and geostrophic balance gives therefore :

ψ = −φ

f
+ cte

The modulus of velocity (Figure 4E) shows the for-
mation of a background jet in the recirculation zone
behind the cylinder. We also observe that the vortices
are slowly damped by viscous dissipation and thus be-
come more circular when they are far away down the
wake.

The effect of rotation on the von Karman street is
shown in Figure 5. As the Burger number decreases,
i.e. the deformation radius becomes smaller than the
radius of the cylinder, the cyclone-anticyclone asym-
metry increases, i.e. cyclones become more elongated
and deformed whereas anticyclones remain axisym-
metric. We also observe that as the Burger number
decreases the vortex shedding occurs further down in
the wake and the distance between vortices decreases.
Therefore the Strouhal frequency, which is the char-
acteristic frequency of the vortex shedding for a flow
past an obstacle, increases as the Burger number de-
creases.

3.2 Laboratory results

The horizontal extension of the laser sheet restricts
the vizualization window. Unlike the numerical ex-
periment, the laboratory experiment does not allow
to observe the whole wake at once. Taking into ac-
count this experimental restriction, we visualize the
wake at two different locations. The first visualiza-
tion (window A) is located just behind the cylinder (at
3 diameters distance), where the vortices are formed.
While the second vizualization (window B) is located
further down the obstacle (at 8 diameters distance),
where the vortex shedding occurs. We show here two
experiments, which correspond to two sets of param-
eters: Bu = 1, Ro = 0.25,Re = 371 (Figure 6) and
Bu = 0.25 , Ro = 0.31, Re = 1050 (Figure 7). The
main difference between these two sets of parameters
is the Burger number, since we have observed that the
change in Re is not significant in this case. We see that
the size of the vortices formed just behing the cylinder
depends on the Burger number (Figures 6A and 7A),
because the deformation radius inhibits the spreading
of the shear layer which is formed at the wall. Fur-
ther down (Figures 6B and 7B) vortices increase in
size, becoming larger than Rd, and anticyclones be-
come axisymmetric while cyclones keep their ellipti-
cal shape for a long time.

Quantitative analysis of the velocity and the corre-
sponding vorticity are obtained from PIV. According
to Figure 8A the value of the local relative vorticity

ω = [−7.8.10−3s−1 , 7.5.10−3s−1] A

ω+f
φ = [−7.3.10−8m−2.s , 1.6.10−7m−2.s] B

∆φ = [−0.6φ0 , 0.3φ0] C
and φ0 = 105m2.s−2

ψ = [−6.107m2.s−1 , 6.2.107m2.s−1] D

|V | = [0m.s−1 , 282.5m.s−1] E
Figure 4. From top to bottom : vorticity, potential vorticity,
geopotential, stream function and modulus of velocity fields at
t= 30 τf
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ω = [−7.8.10−3s−1 , 7.5.10−3s−1] A

ω = [−1.48.10−2s−1 , 9.8.10−3s−1] B

ω = [−7.74.10−2s−1 , 6.95.10−2s−1] C
Figure 5. From top to bottom : vorticity fields at Bu=1, Bu=0.25,
Bu=0.1 at t= 30 τf

ω/f measured during the formation of the vortices
is roughly three times the Rossby number. Later on
(Figure 8B) when the vortices are no more attached
to the obstacle, the relative vorticity becomes twice
the Rossby number. Hence, next to the obstacle where
the sheeding process occurs and downstream in the
vortex street, the relative vorticity has a finite value
(ω/f � 0.5−0.8), even if the Rossby number is small
Ro � 0.25− 0.31.

3.3 Interpretation

The cyclone-anticyclone asymmetry (elongated cy-
clones compared to quasi-circular anticyclones) ob-
served both in numerical and laboratory experiments
is not yet fully understood. However, according to
previous works (Polvani et al. 1994; Stegner and
Dritschel 2000; Poulin and Flierl 2003), this asym-
metry occurs when the relative deviation of the free
surface λ = ∆h/h becomes non negligible.

In rotating shallow water flows, the slow com-
ponent of motion (i.e. the vortical motion but not
the wave motion) satisfies, at the leading order, the
geostrophic balance. Therefore the relative deviation
of the free surface λ scales as Ro/Bu. Hence, both
large scale-effects, namely small Burger number, and
finite Rossby number tend to increase the free surface
deformation. In a regime where λ becomes large, cy-
clonic and anticyclonic structures will not have the
same dynamical behaviour. Indeed, anticyclones can
locally satisfy λ ≥ 1 while cyclones are bounded by
λ = −1. Hence, this condition restricts the size of the
cyclones satisfying the geostrophic balance and lead
to their elongation.

Figure 6. Visualization of particles motion just behind the cylin-
der, at t = 0 (A), and at t = 4τf (B), for Re � 400, Bu � 1,
Ro � 0.25. The white (black) marker indicates the cylinder di-
ameter D (deformation radius Rd).
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Figure 7. Visualization of the particles trajectories (streaklines)
just behind the cylinder, at t = 0 (A), and at t = 4τf (B), for
Re � 1050, Bu � 0.25, Ro � 0.3. The white marker on the
left corresponds to the cylinder radius R, and the black marker
indicates the deformation radius Rd.

Figure 8. Vorticity field for Re � 400, Bu � 1, Ro � 0.25 at
t = 9.3τf (A) and t = 12τf (B).

According to the numerical simulations (Figure 4),
the vorticity of detached cyclones and anticyclones
have roughly the same amplitude, while the free sur-
face deviation is stronger for cyclones. This is due
to the centrifugal force which is no more negligible
compared to the Coriolis force when the relative vor-
ticity has a finite value. In such case, the centrifugal
terms induce a depression in the core of vortical struc-
tures of both signs. Hence, this cyclostrophic effect
added to the geostrophic balance reduces (increases)
the free surface elevation (depression) of anticyclones
(cyclones).

4 CONCLUSION

We have performed both numerical and laboratory ex-
periments, for Burger numbers equal to 1 and 0.25.
Although in the laboratory experiments the Reynolds
number differs significantly for both cases, we assume
that rotation effects dominate inertial effects in the
regime considered here and therefore the variation of
the Reynolds number does not affect the results. We
have found that the von Karman street formed in the
wake presents an asymmetry between cyclones and
anticyclones. Both numerical and laboratory experi-
ments qualitatively agree on this and show that this
asymmetry increases when the Burger number de-
creases, i.e. the effect of rotation increases. These re-
sults are preliminary and in further work we will per-
form more quantitative comparisons. We also plan to
compute the lift and drag, and study the production of
vorticity in the boundary layers which develop on the
obstacle.
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