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Abstract Coherent vortex extraction using wavelets is applied to a shear-stratified
turbulent flow computed by Direct Numerical Simulations (DNS) to model the atmo-
spheric jet stream in the tropopause. The basic state is characterized by a jet centered
at the tropopause and stable density stratification profile with increased stratifica-
tion above the tropopause. Quasi-equilibrium turbulent flow-fields are obtained after
long-time integration of the governing equations written in primitive variables using
adaptive spectral domain decomposition method.

I use without any compunction
A well-chosen wavelet function;
With theorems nice,
And methods concise,
My results are immune to debunction.
—H.K. Moffatt, 2001

1. Shear-stratified turbulent flows

We will study a generic situation encountered in geophysical turbu-
lence where there is a competition between shear and stable stratifica-
tion. Stratification produces sheet-like structures (‘pancakes’) and waves
which may inhibit turbulence caused by the shear and therefore reduce
the turbulent mixing. Shear tends to destabilize the interfaces and gives
rise to Kelvin-Helmholtz instabilities producing vortex tubes and driving
strong mixing.
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Figure 1.  Flow geometry.

We will model jet streams encountered in the Earth atmosphere at the
tropopause, which corresponds to the transition between the troposphere
and the stratosphere at an altitude about 10 to 15 km depending on
the latitude, by considering a jet, with a Gaussian profile for the mean
streamwise velocity, in a stably stratified fluid (Fig. 1). The flow consists
of a jet core surrounded by two shear layers: the layer above has a
positive shear and stronger temperature gradient, while the layer below
has a negative shear and presents a weaker temperature gradient, with
the buoyancy (Brunt-Viisald) frequency being reduced by a factor two.
The latter configuration is typical of the jet stream at the tropopause.

The Richardson number, which quantifies stratification and is based
on the mean velocity gradient, is low (about 2) within the jet core and
velocity fluctuations are maximal there, thus producing sustained tur-
bulence. The Richardson number increases towards the jet edges (near
z = £2) where the effect of stratification tends to reduce turbulence
with the shear length-scale exceeding the buoyancy outer scale (Tse,
Mahalov, Nicolaenko, & Fernando 2001). The flow in the vicinity of the
edges of the jet is locally out of geostrophic equilibrium and thus pro-
duces nonlinear gravity waves which travel further away and break (near
z = £4). These regions far from the jet edges have much weaker velocity
fluctuations than in the core, hence turbulent mixing is reduced there,
although potential energy and temperature fluctuations remain strong.
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This is in agreement with observational studies in Bedard, Canavero &
Einaudi 1986. Indeed, critical levels where waves extract energy from the
mean flow (near z = +2) correspond to those regions of enhanced tur-
bulence, where the Richardson number is below 0.25, hence generating
Kelvin-Helmholtz instabilities (Kaltenbach, Gerz & Schumann 1994).

The flow evolution has been computed using 3D Navier—Stokes equa-
tions coupled with the heat equation under the Boussinesq approxima-
tion. The numerical integration is made using spectral domain decom-
position (Tse, Mahalov, Nicolaenko, & Fernando 2001) and considering
periodic boundary conditions in the streamwise and spanwise directions,
but not in the vertical direction, where a non-uniform in z spectral do-
main decomposition is implemented. This permits more realistic bound-
ary conditions in the vertical and allows shear and stratification profiles
to adjust during flow evolution. For each horizontal wavenumber the
vertical domain is broken down into 127 subdomains of variable sizes
which match their boundary conditions by a mortar method.

The flow is first integrated during several eddy turn over times until
it reaches a quasi-stationary state where viscous dissipation balances
the external forcing. The external forcing corresponds to a non-uniform
mean shear and a density mean profile which are calculated using the
meso-scale code MM5. After reaching the quasi-stationary regime, we
then perform very long-time integrations to obtain the turbulent fields
we will study in this paper.

The code has been parallelized using MPI and the computation has
been performed on the parallel machine Nirvana at Los Alamos National
Laboratory and the ARL MSRC SGI Origin 3800 machine using a cluster
of 32 SGI processors. The spatial resolution is 256 X 256 x 512 and the
CPU time to compute one time step is 15s.

2. Coherent vortex extraction using wavelets

We consider the vorticity field & = V x ¢ at a given time ¢, ¢ be-
ing the velocity field, computed at resolution N = 23/, where N is
the number of grid points and J the number of dyadic scales. We use
a three-dimensional vector-valued Multi-Resolution Analysis (MRA) of
(LQ(R3))3, i.e., a set of nested subspaces I_/; C I_/;H forj =0,...J—1, rep-
resenting the flow at different scales | = 274, Considering the orthogonal
complement spaces W; = V;1 — V;, we obtain a wavelet representation.
Therefore the vorticity vector is developed into an orthogonal wavelet
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where ¢;; and 1);; are the one-dimensional scaling function and the
corresponding wavelet, respectively. Due to orthogonality, the scaling
coefficients are given by @00 = (&, $0,0,0) and the wavelet coefficients

~
are given by @,

J— =1 2 .
Grinsiysis = (@5 Wi, i i), where (-, ) denotes the L*-inner

product.

The extraction algorithm can be summarized as follows:

given &(Z), sampled on a grid (z;,y;, zx) for 4,5,k = 0, N — 1, and
the total enstrophy Z = 3 [ |&|?dZ,

perform the three-dimensional wavelet decomposition (i.e., apply
the Fast Wavelet Transform to each component of &) to obtain
iy 01§ = 0,0 = Lig, iy, i, = 0,27 1 =1 u=1,...7,
compute the threshold er = (4/3Zlog, N )}/2 and threshold the
coefficients & to obtain

@ for|d|>er = | @ for|d| <er
{0 for else wr = { 0 for else, (3)

perform the three-dimensional wavelet reconstruction (i.e., apply
the inverse Fast Wavelet Transform) to compute &¢ and &y from
@ and Wy, respectively,

use Biot-Savart’s relation V = (Vx)~'@ to reconstruct the coher-
ent and incoherent velocity fields from the coherent and incoherent
vorticity fields, respectively.

Note that the decomposition of & = &¢ + 5 is orthogonal and hence it
follows that Z = Z¢ + Zc.
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The complexity of the Fast Wavelet Transform (FWT) is of O(N),
where N denotes the total number of grid points.

3. Application to the vorticity field

We will first consider the vorticity vector field & (Fig. 2a) which has
been computed at resolution N = 256 x256 x 512, but for practical reason
has been undersampled to N " = 643. We split the total flow Vr,dr
into coherent Vg, de (Fig. 2b) and incoherent flows Vi,&; (Fig. 2c).
We find that only 2.5% of the N’ modes are sufficient to represent the
coherent flow, which contains 99% of the total energy and 89% of the
total enstrophy. We observe that the coherent vorticity field presents
the same vortex tubes as those observed in the total vorticity field when
we plot the isosurfaces |&| = 3/2(Z)/? (Fig. 2a and 2b). In contrast,
the incoherent vorticity field (Fig. 2c) does not exhibit any organized
structures. If we consider the probability distribution function (PDF)
of the vorticity (Fig. 4a), we find the same variability for the coherent
vorticity as for the total one (+40), while the variability of the incoherent
vorticity is reduced (£10).

As to the PDF of vertical velocity (Fig. 4b), we find very different
behaviors: the total and coherent vertical velocities are skewed, vary-
ing from —2.3 to 1.5; in contrast the incoherent vertical velocity is not
skewed and its behavior is close to Gaussian (Fig. 4b), with a reduced
variability (£0.1).If we now plot the energy spectrum (Fig. 4c), we find
the same k%3 scaling for the total and coherent velocity fields up to
the wavenumber k& = 20, with a maximum around k = 3 reflecting large
scale correlation. For higher wavenumbers, the spectral slope becomes
much steeper (about k£75) with the coherent contribution being shifted
slightly below the total one. The incoherent field, which contributes no
more than 1%, is spread all over the wavenumbers, presenting a k*1/3
scaling. This shows some tendency towards decorrelation, although en-
ergy equipartition in three dimension corresponds to a k*2 scaling. We
now propose to investigate other variables, looking for a sharper decor-
relation.

4. Application to the potential vorticity field

For this we will consider decomposing the flow into geostrophically
balanced components and unbalanced ones. This can be achieved through
a Craya basis decomposition (Craya 1958). In the Boussinesq case (for
which velocity remains divergent-free), the primitive physical variables,
velocity V and temperature 7', are replaced by three new variables: the
quasi-geostrophic (QG) potential vorticity g, the horizontal divergence x
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and the thermal wind imbalance £. The first variable corresponds to the
flow component in geostrophic balance, while the two other variables
characterize the departure from geostrophic and hydrostatic balance.
The QG potential vorticity is a scalar field which is transported by the
geostrophically balanced horizontal components of the total velocity.

In this paper we will only study the QG potential vorticity field ¢
(Fig. 6a), which has been computed at resolution N = 256 x 256 x 512
and undersampled to N" = 2563.

Using the wavelet decomposition as described in Farge, Schneider &
Kevlahan 1999, the QG potential vorticity field ¢ is split into coherent
gc and incoherent q; components which are orthogonal. We find
that only 6.8% of the N modes are sufficient to represent the coherent
QG potential vorticity, which contains 99.6% of the total QG potential
enstrophy Z,. We observe that the coherent QG potential vorticity field
presents the same tube-like structures as those observed in the total
QG potential vorticity field when we plot the isosurfaces ¢ = 3/2(Z,)/?
(Fig. 6a and 6b). In contrast, the incoherent QG potential vorticity field
(Fig. 6¢) does not exhibit any organized structures.

If we consider the probability distribution function (PDF) of the QG
potential vorticity (Fig. 5a), we find the same variability for the QG
potential coherent vorticity as for the total one (£100), while the vari-
ability of the incoherent vorticity is much reduced (+4). We find the
same spectral behavior for the total and coherent QG potential enstro-
phy (Fig. 5b) up to wavenumber k£ = 100; the incoherent QG potential
enstrophy presents a k72 scaling, characteristic of equipartition between
all wavevectors in three dimensions.

We will now check how accurately the nonlinear flow dynamics is
preserved by the wavelet filtering. For this we will integrate for 3 eddy
turnover times both the total and the coherent potential vorticities and
compare the final states. On Fig. 7a and Fig. 7a we check that the two
realizations are very similar and exhibit the same structures, both in
location and shape.

5. Conclusion

In this paper we have applied the wavelet filtering method to a stably
stratified and sheared turbulent flow in three dimensions. Such a flow is
highly inhomogeneous since it consists of a central jet subjected to dif-
ferent stratifications above and below the jet core. We have shown that
the coherent structures are well extracted by retaining very few wavelet
coeflicients, which are actually sufficient to predict the flow evolution on
few eddy turnover times. We have also shown that the residual flow is
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incoherent, presents Gaussian PDFs and a tendency towards decorrela-
tion. This gives us some confidence in being able to statistically model
the feedback of the incoherent contributions onto the coherent flow, the
evolution of the latter being deterministically computed. In this paper
we have also explored the relevance of using the Craya decomposition
to gain a better insight into the dynamics of sheared stratified flows.
We have first considered the QG potential vorticity which is weakly
coupled to the two other Craya variables; the latter correspond to the
departure from geostrophic balance. We plan for future work to extend
the wavelet filtering to these remaining variables which, in contrast, are
strongly coupled together.
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Figure 2a.  Modulus of the total vorticity

Figure 2b.  Modulus of the coherent vorticity

Figure 2¢.  Modulus of the incoherent vorticity
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Figure 5a. Total potential vorticity

Figure 5b.  Coherent potential vorticity

Figure 5c.  Incoherent potential vorticity
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Figure 6a. Total potential vorticity after integration

Figure 6b.  Coherent potential vorticity after integration



