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We present high resolution direct numerical simulation of two-dimensional decaying turbulence

in a circular geometry with no–slip boundary conditions. We show that starting with random

initial conditions the flow rapidly exhibits a self–organization into coherent vortices. We study

their formation and the role of the viscous boundary layer of the flow and on the decay of

integral quantities.

PACS numbers:

Two–dimensional turbulence in a bounded domain
plays an important role in oceanographic applications,
like in boundary currents and the related formation of
vortices.

Many experiments in rotating tanks, e.g. in [1] re-
sulting in quasi-twodimensional geostrophic flows have
shown the formation of long–lived coherent vortices. On
the other hand only few numerical studies of 2D turbu-
lence in bounded circular domains have been performed
so far. Some numerical simulations of decaying 2D tur-
bulence in a circular domain with no–slip boundary con-
ditions have been presented in [5–7]. They used a spec-
tral method with Bessel functions of the first kind, i.e.
circular analogues of the Chandrasekhar–Reid functions.
Due to the numerical complexity of the full spectral
scheme the simulations are limited to low resolution, i.e.
Re < 103, based on the rms initial velocity and the circle
radius.

The aim of present paper is to present is to present
direct numerical simulation of two-dimensional decaying
turbulence in a circular geometry at higher resolution, i.e.
10242 corresponding to an initial Re–number of 104. The
numerical scheme is based on a Fourier pseudospectral
method with semi-implicit time discretization and adap-
tive time-stepping. For details on the numerical scheme
we refer to [8]. We solve the Navier-Stokes equations in
vorticity–velocity formulation in a square domain and im-
pose the no-slip boundary conditions on the wall of the
circular container using a volume penalisation method
[2]. The governing equation reads,

∂tω + ~u · ∇ω − ν∇2 ω + ∇× (
1

η
χΩs

~u) = 0

where ~u is the divergence-free velocity field, i.e. ∇·~u = 0,
ω = ∇ × ~u the vorticity, ν the kinematic viscosity and
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χΩ(~x) the mask function which is 0 inside the cylinder Ω
and 1 elsewhere.

Different invariants of the flow can be derived [? ],
i.e. quantities which are time–independent for vanishing
viscosity:

• the circulation Γ (total vorticity) is defined as

Γ =

∫
Ω

ωd~x =

∮
∂Ω

~u · ds, (1)

• energy E, enstrophy Z and palinstrophy P as

E =
1

2

∫
Ω

|~u|2d~x , Z =
1

2

∫
Ω

|ω|2d~x , P =
1

2

∫
Ω

|∇ω|2d~x,
(2)

respectively.

• the energy dissipation is given by dtE = −2νZ and
the enstrophy dissipation by

dtZ = −ν
∫

Ω

|∇ω|2d~x+

∮
∂Ω

ω(~n · ∇ω)ds, (3)

The right hand term reflects the enstrophy produc-
tion on the boundary.

• the angular mommentum of the flow with respect
to the center of the circle is

L = 2

∫
Ω

ψd~x (4)

where ψ = ∇−2ω denotes the stream–function.

As initial condition we choose a correlated Gaussian
noise, with zero angular momentum. The corresponding
initial Reynolds number based on the kinetic energy E
and the cylinder diameter D is Re = D

√
2E/ν = 104.

The penalisation parameter η is choosen to be sufficiently
small (10−3) and the numerical resolution is 10242.

Fig. 1 shows snap shots of the vorticity field at t = 1
and 2. We observe the formation of vorticity sheets at
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the cylinder wall and the emergence of coherent vortices.
The strong boundary layers persist throughout the simu-
lation. The injection of vorticity and vorticity gradients
into the flow leads to a substantial increase of the energy
dissipation. We also observe the formation of dipolar vor-
tices which move around and interact with the boundary.

Figure 1: Vorticity fields at t = 1, 2.

In Fig. 2 (left) we plot the time evolution of the rms
enstrophy (Z = 1

2

∫
ω2d~x ) which exhibits a self-similar

decay, proportional to t−1/3. At later times, we also ob-
serve a non monotonic behaviour which is due the forma-
tion of vorticity at the no-slip walls. The time evolution
of minimum and maximum vorticity is plotted in Fig. 2
(right), which also exhibits a non monotonic behaviour.

The circulation Γ = 1
2

∫
ωd~x shown in Fig. 3 (left)

oscillates randomly around zero. In Fig. 3 (right)
we plot the time evolution of the angular momentum,
L = 2

∫
Ψd~x where Ψ is the stream function, which con-

firms previous studies of decaying turbulence with no
slip boundary conditions in square and circular domains
[3, 6].

Fig 4 shows the pdfs of vorticity at different time in-
stants. Starting with a Gaussian shape at t = 0 the
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Figure 2: Time evolution of rms enstrophy Z.
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Figure 3: Time evolution min/max vorticity ω.

vorticity pdf becomes more and more non-Gaussian and
exhibits heavy tails, which confirms the formation of vor-
tex sheets and the emergence of coherent vorticies.

Discuss: Energy spectra? Decay of Energy and palin-
strophy.

In conclusion, we have shown that
We have introduced a new numerical method to com-

pute 2D Navier–Stokes turbulence within bounded do-
mains. Discuss decay properties.
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Figure 4: Time evolution of circulation Γ.
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Figure 5: Time evolution of angular momentum L.
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