
Flow Induced Vibration, de Langre & Axisa ed. Ecole Polytechnique, Paris, 6-9
� �

July 2004

NUMERICAL SIMULATION OF THE TRANSIENT FLOW BEHAVIOUR
IN TUBE BUNDLES USING A VOLUME PENALISATION METHOD

Kai Schneider
Laboratoire de Modélisation et Simulation Numérique en Mécanique,
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ABSTRACT

We present high resolution numerical simulations of
incompressible two-dimensional flows in tube bun-
dles, staggered or inline, as encountered in heat ex-
changers or chemical reactors. We study the time
evolution of several flows in arrays of cylinders or
squares, at Reynolds number 200. The numerical
scheme is either based on adaptive wavelet or Fourier
pseudo-spectral space discretization with adaptive
time stepping. A volume penalisation method is used
to impose no-slip boundary conditions on the tubes.
Lift and drag coefficients for the different geometries
of tube bundles are compared and perspectives for
fluid–structure interaction are given.

1. INTRODUCTION

The numerical simulation of turbulent flows in com-
plex geometries is a key challenge in computational
fluid dynamics (CFD). Grid generation and turbu-
lence modelling near the wall are crucial, especially
to predict lift and drag and to control of the flow. A
suitable approach is the volume penalisation method
which has been introduced by Arquis and Caltagirone
(1984) to compute flows in porous media, and gen-
eralized by Angot et al. (1999) to flows past obsta-
cles. In the latter walls or solid obstacles are mod-
elled as porous media whose porosity tends to zero.
They also give a mathematical proof of the conver-
gence towards the solution of Navier–Stokes equa-
tions with no-slip boundary conditions. In the volume
penalisation method the Navier-Stokes equations are
modified by adding a Darcy force. Fluid regions are
thus considered as fully permeable, and solid regions
as almost impermeable. The geometry of the flow
is taken into account using a spatially varying perma-
bility, which enables an easy implementation and fur-

thermore allows obstacles to move, as it is the case for
flow induced vibrations. The penalisation method has
been applied using finite difference/volume schemes
(Angot et al., 1999; Khadra et al., 2000), pseudospec-
tral methods (Forestier et al., 2000; Kevlahan and
Ghidaglia, 2001; Schneider, 2004) and recently adap-
tive wavelet methods (Schneider and Farge, 2002;
Farge and Schneider, 2001). The latter scheme auto-
matically adapts the spatial grid not only to the evo-
lution of the flow, but also to the geometry of walls or
bluff bodies (Schneider and Farge, 2002).

The paper is organized as follows: first we present
the penalisation method together with the numerical
schemes, i.e. Fourier and wavelet, used to solve the
penalized Navier-Stokes equations. We then study
several applications to tube bundles, as encountered
in heat exchangers, static mixers and chemical reac-
tors. We consider both cylindrical and square cross
sections, for either inline or staggered arrangements.
We compute the drag and lift coefficients for different
geometries, and discuss the influence of the angle of
attack of the flow. Finally, we give some conclusions
and perspectives for three-dimensional flows.

2. VOLUME PENALISATION AND
NUMERICAL DISCRETISATION

2.1. Penalized equations

The volume penalisation method has been proposed
by Arquis and Caltagirone (1984). Its is based on the
physical idea which consists in modelling solid walls
or obstacles as porous media whose porosity tends to
zero. The geometry of the flow is described by a mask
function ��� ���� which is 	 inside the solid regions and


elsewhere. Obstacles which move or with time–
varying shape can be taken into account by simply
using a time–dependent mask function. It is hence



particularly suited to compute fluid–structure inter-
action. The incompressible Navier-Stokes equations
are modified by adding a forcing term containing the
mask function:� � ������ ����	� 
 �������

���	����
�� ����

� ���������� � ������ ���� �  ! ! (1)


"� ���� �$#
where

���� � �%�&  ! is the flow velocity, ��� � �%�&  ! the pres-
sure,

���� �  ! the obstacle’s velocity, � the kinematic
viscosity, � the porosity which tends to zero and
where the density is normalized to � . The above
equations are completed with a suitable initial con-
dition and periodic boundary conditions. The mask
function is

����� � �% ! �(' � for
�%*) +�,# elsewhere

(2)

where +�, denotes the set of solid obstacles including
their boundaries. For ����- # the flow evolution is
governed by the Navier–Stokes equation in the fluid
regions, and by Darcy’s law, i.e. velocity is propor-
tional to pressure gradient, in solid regions. Angot et
al. (1999) have proven that the above equations con-
verge towards the Navier–Stokes equations with no-
slip boundary conditions, the order of convergence
being ��. / 0 inside the obstacle and �21 / 0 elsewhere. In
numerical simulations one finds a convergence of or-
der � , as reported in (Angot et al., 1999), (Kevlahan
and Ghidaglia, 2001).

The hydrodynamic forces
�3

exerted by the flow on
the obstacle, i.e. drag and lift, are simply computed
by integrating the penalized velocity over the obsta-
cle’s volume (Angot et al., 1999):�3 �54 6 7� 8	9;: ��� 

���=<�% � � 4 6 7� 8	9 �� : ��� ����><�%� :�? ���A@ � ���& � ! � �B�CD< E (3)

where +�, is the obstacle’s volume,
� +�, its boundary,�B its outer normal and @ � ���& � ! � 1� F � 
 ���� � 
 �� ! � ! ��2G the stress tensor. Hence, the lift and drag forces on

the obstacle, i.e. forces parallel and perpendicular to
the free–stream velocity of the flow, are easy to com-
pute as volume integrals instead of contour integrals.

For two–dimensional flows the vorticity–velocity
formulation is prefered, therefore we take the curl of
eq. (1) and get� � H �*� � ������ �I>J ! � 
 H �	�K��
�� H � (4)��
ML � �� ����� � ���� ! � ���� �  ! ! �N#

where
H � 
OL �� denotes vorticity and

�I>J �4 6 7�P QR P S 8 J �� � �% ! free–stream velocity.

2.1.1. Fluid-structure interaction

Following Khalak and Williamson (1999) the fluid-
structure interaction can be modelled by an ordinary
differential equation for the position of the obstacle’s
center of mass

�%��
T < � �%��<  � ��U < �%��<  ��V �%�� � �3 (5)

where T is the obstacle’s mass, U the mechanical
damping and V the spring constant. Note that

�3
is

the fluid force (3) and W QR XW � � ���� the velocity of the
obstacle.

2.2. Numerical discretization

To solve the penalized Navier–Stokes equations
we employ, either a classical Fourier pseudo–
spectral method (Canuto et al., 1988; Kevlahan and
Ghidaglia, 2001; Schneider, 2004), or an adap-
tive wavelet scheme (Fröhlich and Schneider, 1997;
Schneider and Farge, 2002). We now describe both
methods.

2.2.1. Fourier pseudo-spectral method

Fourier pseudo–spectral discretizations are classical
schemes in CFD, which are highly accurate for flows
with periodic boundary conditions (Canuto et al.,
1988). Equation (5) is transformed into Fourier space
in order to compute the spatial derivatives and to
evolve the vorticity field in time. Terms contain-
ing products, i.e. the convection and penalisation
terms, are calculated by collocation in physical space.
The vorticity field and the velocity are represented as
Fourier seriesH � �%�&  ! �ZYQ[ \ ] ]�^
_H � �` &  !Da b�c=� d �` � �% ! (6)

where the Fourier transform of
H

is defined as

_H � �` &  ! � �e�f � : H � �%�&  !Da b�c=� � d �` � �% ! < �% (7)

with the wavevector
�` � � ` R & ` g ! . The Fourier dis-

cretization is uniform in space and eq. (6) is truncated
at
` R � ��h R i j and

` R � h R i j � � , ` g � ��h g i j
and
` g � h g i j � � , where h R and h g are the num-

ber of grid points in % and k direction, respectively.
The gradient of

H
is computed by multiplying _H with



� ��
, the Laplacian by multiplying with � �� � � . The ve-

locity �� induced by the vorticity � is reconstructed in
Fourier space using Biot-Savart’s law

���� �	�
 � 
������ � � ��� � �� ����
� ����
� �� � � �� � �� 
 � 
 � !�"#� � ��%$ �	�
 (8)

where
�� � �&� ' � ( 
 � ) 
 .

The convection term �� $+* � and the penalisation
term

*-, � ./10#2�3 � ��4' ��+5�� � 
 
 are evaluated by the
pseudospectral technique using collocation in physi-
cal space. To avoid aliasing errors, i.e. the production
of small scales due to the nonlinear terms which are
not resolved on the grid, we de-aliase at each time
step by truncating the Fourier coefficients using the6 7 8

rule, i.e.

�� � �� 
9�
:;< ;= �� � �� 
 for >�? � @� A @+B �DC > ? � E� A E B �GFIHJ

for > ? � @� A @+B �DC > ? � E� A E B �GKIH
We use Temperton’s Fast Fourier Transform which

has a complexity of order LIM N O � L , with L �L ) L ( .
For the time discretization we use a semi-implicit

scheme with adaptive time–stepping as proposed by
Schneider (2004). The linear diffusion term is dis-
cretized implicitly using exact time integration, since
the Laplace operator is diagonal in Fourier space, and
hence no linear system has to be solved. The remain-
ing terms are discretized explicitly using second or-
der Adams–Bashforth extrapolation. This avoids the
solution of nonlinear equations, nevertheless it im-
plies a CFL condition, i.e. the maximum size of
the time step is limited for stability reasons. How-
ever the semi-implicit discretization proposed here
improves the stability limit with respect to purely ex-
plicit schemes.

For the time step control we compute in each time
step P the maximal rms velocity at each grid point,

��Q R ) �ISUT+	 �)WV � ��� �	�
 
 � C � X�� �	�
 
 � (9)

and the new time step isY � Z [ . �]\ Y 	 7 ��Q R )
with the spatial grid size

Y 	^�W_%` a >�b @A @ 
 b EA E B ,
where c ) 
 c ( denote the length of the domain in 	
and d directions, respectively, and \ FeH is the CFL
constant.

2.2.2. Adaptive wavelet method

As adaptive schemes dynamically adapt the spatial
grid at each time step, we first discretize equation
(5) in time using semi-implicit finite differences, i.e.
Euler–backwards for the viscous term and Adams–
Bashforth extrapolation for the nonlinear term, which
are both second order.

The resulting elliptic problem to be solved at each
time step is:

� f#gh'9i * � 
 � Z [ . �kj8 f � Z ' H8 f � Z l .' *e$ � �Dm �� m 
D' *k, � Hn 0 � �� m ' ��+5 
 
 (10)

where � m � 6 � Z ' � Z l . and �� m � 6 �� Z ' �� Z l . ,
with fU� 8 7 � 6 Y � 
 and g the identity.

For the space discretization we use a Petrov–
Galerkin scheme. The vorticity is developed into a
set of trial functions and, to minimize the weighted
residual of (10), one requires that the projection onto
a space of test functions vanishes. As space of
trial functions we employ a two-dimensional peri-
odic multiresolution analysis (MRA) (Farge, 1992)
and develop � Z at time step P into an orthonormal
wavelet series

� Z � 	#
 d 
%� � oqp � Z 
�r o s r o � 	#
 d 
 (11)

with the multi–index t �u� v+
 � ) 
 � ( 
 w#
 , where vx�J 
 y+Q R ) ' H denotes the scale
6 l+z [ . , � � ) 
 � ( 
&�J 
 { { { 
 6 z ' H the position and w&� H 
 6 
 8 the three

directions of the two–dimensional wavelets.
The test functions | o are defined as solutions of the

linear part of eq. (10)� f#gG'}i * � 
 | o �^r o (12)

which are computed in a preprocessing step for each
scale only. This avoids assembling the stiffness ma-
trix and solving a linear equation at each time step.
The functions | , called vaguelettes, are explicitely
calculated in Fourier space and have similar localiza-
tion properties as wavelets (Fröhlich and Schneider,
1997). The solution of (10) in wavelet space there-
with reduces to a change of basis:~� o � p � Z [ . 
�r o s (13)� p � j 8 f � Z ' H8 f � Z l . ' *e$ � �Dm � �� m 
 


' *k, � Hn 0 � �� m ' ��+5 
 
 
 
 | o s
A nonlinear wavelet thresholding is applied in each

time step to obtain an adaptive discretization. One



only retains only the wavelet coefficients
���� whose

absolute value is above a given threshold ����� � 	 
 ,
where � � is a constant and


 ���
���� ��� ���� � 
 � �� is
the total enstrophy. For the next time step the in-
dex coefficient set (which addresses each coefficient
in wavelet space) is determined by adding neighbours
to the retained wavelet coefficients. Consequently,
only those coefficients

�� in (13) belonging to this
extrapolated index set are computed using the adap-
tive vaguelette decomposition (Fröhlich and Schnei-
der, 1997). The nonlinear term ����� � ����� ���� � � ���� � �!#" � ���� � ���$ � � is evaluated by partial collocation on
a locally refined grid (Schneider and Farge, 2002), as
illustrated in Fig. 1. We find that only % & ' & ( out of) * * + )

wavelet coefficients, i.e. % )�, ) - , are used for
the computation. The vorticity � � is reconstructed

Figure 1: Adaptive wavelet computation of a flow
past a tube bundle with circular cross section at .�/��0 & & for 12� + & 3 . Left: instantaneous vorticity at4 � * with maximal resolution 5#67�85#9�� 0 * ) and: �8% &�;�< . Right: corresponding adaptive grid.

in physical space on an adaptive grid from its wavelet
coefficients

���� using the adaptive wavelet reconstruc-
tion algorithm (Fröhlich and Schneider, 1997). From
the adaptive vaguelette decomposition with =>�� � 
 � ; �@? , we solve � 
 A � � � � to get the stream
function

�A � and reconstruct
A � on a locally refined

grid. By means of centered finite differences of 4th
order we compute � � � , �� � � � ��B 9 A ��C B 6 A � � and
�D � �! " � �� � � ���$ � � on the adaptive grid. Sub-
sequently, the nonlinear term is summed up point-
wise, and finally (13) is solved using the adaptive
vaguelette decomposition.

3. NUMERICAL RESULTS

In this section we compute the transient flow be-
haviour in tube bundles at .�/�� 0 & & . We consider
either circular cross sections or square cross sections
and different angles of attack, i.e. 1D�E& 3 , cor-
responding to inline and 1F� + & 3 C G * 3 correspond-
ing to staggered bundles. These configurations are
frequently used for cross–flow heat exchangers and

static mixers. For the different cases we show flow vi-
sualizations of instantaneous vorticity fields � and we
plot the time evolution of lift and drag coefficients.

3.1. Tubes with circular cross section

In Fig. 2 we sketch the flow configuration for bundles
of tubes with a circular cross section where 1 is the
angle of attack of the free–stream velocity

�H@I
. The

geometry is characterized by the pitch to diameter ra-
tio J�K L , where L denotes the tube’s diameter and J
the bundle’s pitch. In industrial applications the ratio
is typically in the range between 1.3 and 2. We define
a Reynolds number based on the tube’s diameter and
the free–stream velocity, i.e. .�/M� H@I LNK O .

P

V D8

α

Figure 2: Sketch of the flow configuration: tube bun-
dles with tube pitch J , tube diameter L and pitch to
diameter ratio J�K L (which is typically between 1.3
to 2).

In the present simulations we take LP�F% , J�� 0 ,
and 1Q�R& 3 C + & 3 and G * 3 , corresponding to an in-line,
or two staggered arrangements, respectively. The
free–stream velocity

�H@I
is normalized to one and the

time unit is S8�TJ�K H@I . The spatial resolution is5#6U�D5#9V� 0 * ) which guarantees at least 4 grid
points within the boundary layer. The boundary layer
thicknessas W is evaluated using Prandtl’s wall law,
i.e. WMX8% K 	 .�/ .

In Fig. 3 we show snapshots of the vorticity field
at
4 �Y% & S for three different angles on attack which

exhibit different flow behaviours. The inline config-
uration, i.e. 1Z�F& 3 , (Fig. 3, top, left), presents four
horizontal shear layers which are stable. After a short
transition phase, the flow becomes stationary as re-
flected by a constant drag coefficient (Fig. 4, left). In
this case we observe that the flow remains symmetric
which is consistent with the vanishing lift coefficient.
For the staggered configurations 1Q� + & 3 and G * 3 we
see much stronger production of vorticity at the tubes.
A shear layer is thus formed, which becomes unsta-
ble, and rolls up into vortices which are periodically
shed. This is confirmed by the time evolution of lift
and drag coefficients which oscillate with a period of0 S (Fig. 4).
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Figure 3: Flow past tube bundles with circular cross
section at

������� � �
with �
	 � �
� ��� 
 � and� ��� ����� . Vorticity fields at � ��� � � for three angles

of incidence, � ��� � � � � � � ��
 � .
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Figure 4: Flow past tube bundles with circular cross
section at

������� � �
for � ��� � � � � � � ��
 � . Time

evolution of drag (left) and lift (right) coefficients.

3.2. Tubes with square cross section

We now consider a bundle of tubes with square cross
section at

������� � �
for three angles of incidence

� � � � � � � � � ��
 � . The main difference with the pre-
vious case is that here the detachement point of the
boundary layer is always located at the corner of the
tubes, while for circular tubes its location varies with
the Reynolds number and the angle of incidence. We
also observe that the vorticity production is increased
by a factor of 4 with respect to the circular case.

For the inline geometry ( � �!� � ) we find in both
cases a similar behaviour, again four parallel shear
layers are being formed (Fig. 5, top, left), and the
flow becomes stationary after a transition phase up
to � �"
 � . Hence the drag forces are constant and
the lift coefficient vanishes (Fig. 6). The flows in
the staggered geometries ( � ��� � � � ��
 � ) exhibit, like
for the circular tubes, the formation of vortices which

are however less pronounced (Fig. 5, top, right and
bottom, left). For � �!��
 � we also see the striking
symmetry of the flow, which is broken at later times,
around � �#� (cf. Fig. 6). In both cases, we observe
time oscillations of the drag coefficients, with period� �

. For � ��� � � we also see a superposition of sec-
ondary oscillations with period

��$ 
 �
. We also notice

an increase of drag and lift forces by a factor three
compared to the circular tubes.
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Figure 5: Flow past tube bundles with square cross
section at

������� � �
with �
	 � �
� ��� 
 � and� � � � ��� . Vorticity fields at � ��� � for three angles

of incidence, � ��� � � � � � � ��
 � .
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Figure 6: Flow past tube bundles with square cross
section at

������� � �
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 � . Time

evolution of drag (left) and lift (right) coefficients.

4. CONCLUSIONS AND PERSPECTIVES

We presented a numerical scheme for computing the
time evolution of two–dimensional flows in complex
geometries. The utilisation of a volume penalisation
method enables us to take into account complex ge-
ometries using a mask function without modifying



the numerical scheme.
We applied the numerical method to different in-

dustrially relevant devices, such as heat-exchangers
and chemical reactors. We studied the transient flow
behaviour in tube bundles with circular and square
cross sections at Reynolds number

� � �
for different

angles of attack. The two–dimensional approxima-
tion of the simulation can be justified in this case
due to the dense packing of the tubes. The numerical
scheme is able to resolve the thin shear layers formed
at the tube’s wall, which become unstable and lead to
the formation of vortices. Depending on the param-
eters, we observed strong oscillations of the lift and
drag forces exerted by the flow on the tubes. These
flow induced oscillations may dammage the tubes (cf.
(Axisa et al., 1990)), especially when the vortex shed-
ding frequency is close to the tubes’ resonance fre-
quency.

The adaptive wavelet method presented in this
paper allows automatic grid generation and refine-
ment around the obstacles and also in shear layers
which develop during the flow evolution. There-
with the number of required grid–points in the sim-
ulations is significantly reduced. We conjecture that
the compression rate thus obtained increases with the
Reynolds number.

In future work we will extend the penalisation
scheme to compute fluid-structure interaction in
three–dimensional flows and perform computations
at high Reynolds numbers using the Coherent Vortex
Simulation approach, proposed by Farge and Schnei-
der (2001).
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