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Abstract

Nonlinear thresholding of wavelet coefficients has been shown to be an
efficient method for denoising signals with isolated singularities corrupted
with Gaussian white noise [2]. A quasi optimal value for the threshold can
be computed from the noise level using the formiila = oy (21n N)'/2,
where N is the number of available samples of the signal apd is the
standard deviation of the noise. However, in most situations the noise level is
unknown and has to be estimated. This paper studies an algorithm proposed
in [3] which evaluates the value for the threshold. It recursively approximates
the standard deviation of the noise with the standard deviation of the noisy
signal, computes a threshold value and performs a first split from which it
extracts a better estimate of the noise. Then, it iterates this procedure using
the new estimate of the noise to compute the new threshold. The iteration
stops when the threshold remains unchanged from its previous value. We
show that the convergence of the sequence of estimated thresholds depends
on a functional of the probability density function (PDF) of the noisy signal.
We also find that the sequence converges towards the theoreticalMalue
provided that the wavelet representation of the signal is sufficiently sparse.
We compare the results obtained for examples in 1D and 2D with the results
of a standard method based on the median of the wavelet coefficients of the
noisy signal at small scale. Finally, we show that the recursive algorithm
gives better results than this method when applied to an experimental signal
measuring the atomic density of a Bose-Einstein condensate [8].



1 Introduction

Estimating signals or images from noisy data is a typical problem in data process-
ing and has various fields of application. So far many different parametric and
non-parametric approaches have been proposed, such as linear kernel estimators,
Kalman filters etc. For an overview see e.g. [5]. Nonlinear thresholding of the em-
pirical wavelet coefficients was originally proposed by Donoho and Johnstone [2]
to denoise signals corrupted with Gaussian white noise. This approach was later
generalized to correlated noise and to non Gaussian situations [6]. This method
consists in transforming the estimated signal into wavelet coefficient space, delet-
ing coefficients whose modulus is below a threshold and reconstructing the de-
noised signal from the remaining coefficients. The threshold depends only on the
sample size and on the noise’s variance. Wavelet thresholding estimators minimize
the maximumZ? risk in a whole class of finite energy signals includingléer

and Besov spaces without aaypriori knowledge of the particular shape of the
signal. However, the unknown variance of the noise has to be estimated in order
to determine the threshold. The Median Absolute Deviation (MAD) is a standard
method that estimates the level of the noise from the median of the modulus of
wavelet coefficients at small scales [5].

In the present paper we introduce a new recursive algorithm to estimate the
variance of the noise. We study the mathematical properties of the algorithm re-
garding convergence and stability. Numerical examples validate the convergence
of this scheme and illustrate its properties. We compare the threshold computed
with the recursive scheme to the theoretical value of Donoho and Johnstone [2]
and to the value obtained using the MAD method. The results show that the new
algorithm is competitive and efficient.

The paper is organized as follows: After describing the nonlinear wavelet
thresholding in section 2 we present the recursive algorithm to determine the thresh-
old by estimating recursively the variance of the noise. We prove the convergence
of the algorithm and show that it is a nonlinear projector. In section 4 we present
its numerical validation by applying the algorithm 1@ and2D academic test
signals and to an experimental 2D observation of a Bose-Einstein condensate. The
results of the recursive algorithm are compared to the results given using the MAD
method. Finally, we conclude and give some perspectives for future work.

2 Denoising by nonlinear wavelet thresholding

A classical problem of signal processing consists in estimating a good approxi-
mation of a signalf from noisy samples{. Donoho and Johnstone [2] proposed
to use nonlinear wavelet thresholding. They have shown that this is particularly
attractive for the case whehhas isolated singularities.

Here we consider a discrete sigifat { f[k]}repo,... n—1] Of size N = 27 with
vanishing mean. The valug§k| are samples of a functiofi. We observe noisy



data of sizeV, i.e. X = { X[k]}rco,...n—1) SUch that
X[k] = fK] + WIk] L)

whereW = {W[k|}rcp,..~n—1] are N samples of a Gaussian white noise with
varianceo?, i.e. W € N(0, o).
We decompose the observed datanto an orthogonal wavelet series

X=) X\w, (2)
AEAT
with the wavelet coefficients
Xy = (X|ihy) €))

The multi-index\ = (4, i) denotes the scaleand the positior of the wavelets.
The corresponding index sat’ is given by

A ={\=(ji),j=0.J—-1,i=0.2 -1} (4)

The family (¢,) constitutes an orthogonal multi—resolution analysi& &fR) [5].
By thresholding the wavelet coefficienmts, and reconstructing the correspond-
ing signal we define a nonlinear operator

Pr:X - Fr(X) =Y pr(X\)¢, (5)
A

with
aif |a|>T
pr(@) = {5t ol27 ®)
whereT denotes the threshold. The operakgr hence projects the signal onto
the orthogonal wavelet bas{®, ) and uses the thresholding functipi for se-

lecting those wavelet coefficient§, whose magnitude is larger than the threshold
T. Subsequently, it reconstrudis- (X)) in physical space from the retained coeffi-
cients.

For later convenience we introduce the index subset

AT:{/\GAJ,]X)\]>T}CAJ (@)

which is the set of wavelet coefficienf§ that are selected by the thresholding
function pr,,.
Donoho and Johnstone showed thatwith the threshold

Tp = ow(2In N)/? (8)
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Figure 1: Error€(T') versus different threshold valu&sfor a piecewise regular
signal (see Fig. 2) The vertical line indicates the universal threshpld

yields minimax estimators for ajf € ‘H whereH belongs to a wide class of func-
tion spaces, including dlder and Besov spaces. They showed that the maximum
mean-square error

R(F,H) = sup E{||f - F(X)|*}, 9)
feH
which depends on the function spatiee.g. H = B, and on the used operator
F, is almost minimized by the nonlinear wavelet estimdtgy, .

More precisely, the relative quadratic error between the sigreaid its esti-
mator Frr (X)) defined by

If - Fr(X)]?
&) = =7

has its lower bounthiny £(7") close to the minimax error

(10)

min R(F, H).
F

Moreover, the threshold valugp in (8), is close to the threshold,,;, that
minimizes&(T') but which depends on each particular sigiialln contrast the
thresholdZ, depends exclusively on the variance of the noise and therefore it is
called universal threshold.

One has

TD = Tmin

and
E(Tp) 2 E(Tmin)



An illustration of the quasi-optimality ofp is given in Fig. 1. We plot the
relative error€(T') for a piece-wise regular signal corrupted with a Gaussian white
noise versus the threshold valiie We observe that the universal threshaid
almost corresponds to the minimum&(T"), obtained with the optimal threshold.
This example also shows that if the threshold valuis chosen abovép, then the
error increases significantly. On the contrary/'iis chosen below, the error
tends to the valu€(0) corresponding to no denoising at all.

This sensitivity implies that one has to know the value of the thresfipld
precisely to obtain an accurate estiméaigy, of the signalf from the noisy dat&X .
Hence, the knowledge of the variance of the noise is of primordial interest. As the
level of the Gaussian white noisgy involved in the expression @fp is generally
unknown, the problem one encounters in practice is to get a good estimatign of
from the available noisy data.

To address the estimation of the noise, instead of the estimation of the signal,
we adopt a dual point of view. Instead of considerig, (X') which is a version of
the signalX from which a major part of the Gaussian noise has been removed, we
focus on the residual ok’ which was not taken into account -, (X'), namely
(X — Fr,(X)). Itis a quasi optimal estimator of the Gaussian white ndise
whose relative error is

IX — Fr(X) - W|?
[ualis

ET) =

The two points of view are equivalent, as

If +W - Fr(X) -W|*  |IfI7

ENT) =
1) = e =

E(T).

Thus, the value of” minimizing £(T") also minimizest’(T').

Following this dual approach, it is useful to introduce the complementary opera-
tors. The operator that estimates the noise ffons defined by

=1Id— Fr (11)
whereld denotes the identity, and it uses the complementary coefficient selector
Py =1Id—pr (12)
The corresponding complementary index set is defined as
= A\Ap (13)
Hence it follows for the estimator of the noise that

Fi(X) = (X - Fp(X)) = > p7(Xn e, = > X, (14)
AEAT AEAS



3 Recursive algorithm

In [3] we proposed a recursive algorithm to extract coherent vortices from turbulent
vorticity fields using nonlinear wavelet thresholding. The principle of the scheme
consists in extracting first a rough estimation of the Gaussian part by using the
variance of the total signal as estimator for the variance of the noise. In the next
step an improved threshold is obtained by using the variance of the noise thus
extracted. This improved threshold is used to extract a better estimate of the noise.
The above procedure is iterated until the number of wavelet coefficients of the noise
is constant.

In the following we present the algorithm and study its mathematical proper-
ties.

Algorithm :

Initialization
o givenX = {X[k]}rep,..N-1)
e setn=0
e compute the Fast Wavelet TransformXfto obtainX,

e computes? = % 3,7 |X,|? as rough estimate of the variance of the
noise. Note that due to orthonormality of the wavelet basis, the variance of
X can be calculated from its wavelet coefficients.

e set Ny = N, which corresponds to the number of coefficients considered
as noise.

e compute the thresholfi? = 21n(N)o?.

Main loop

Do
e N{, = Nw
e compute the number of wavelet coefficients smaller than
e Ny = Card(A7,)
e compute the new variance

1 ~
Ol = N Z 0%, (X)I?
AeAT



e compute the new threshold

Top1 = (2In(N)op )2

e Setn=n+1

until (N7, ==Nw)

Final step

e computeFr, (X) from the wavelet coefficient§ X, } AeAq, larger than’;,
using inverse Fast Wavelet Transform

e computeFy. (X) =X — Fr,(X)

End

This algorithm defines the sequence of thresh@lds,, ., and the correspond-
ing sequence of variancés,%)n < Which are respectively the successive estimates
of the threshold'’, and the standard deviation of the noigg given by the algo-
rithm. In the following we show that they converge to limits giving a mean square
error& close to its minimum.

The algorithm has the following properties :

e it uses only one Fast Wavelet Transform to determine the threshold and only
one more for computing bothr, (X) and Fif, (X).

e the convergence criterion is always satisfied after a finite number of iterations
smaller thanV (this is shown below, see corollary 1). Therefore no stopping
criterion based on sona hocparameter is needed.

e itis recursive and there exists #aration function
Ix n : RT — R such thal}, 1 = Ix n(Th),

which contains all the information about the convergence of the algorithm for
a given initial condition. This function allows to study the algorithm using
principles of the fixed point theory. It is obtained by merging the definitions
of 0,01 @andTy, 41

1/2 1/2

21n 21n
Ixn(T) = Z lp7 (X = Z X[

AeAN/ AEAS,

(15)



3.1 Properties of the iteration function

Taking the square of (15), it is possible to rewrite the sum as a continuous integral
using delta functions,

T
(D) =2m(N) . [ @ 3 (%] - a)da (16)
=0 yeas

The function(Zx n(7T))? has the following properties:

e it is piece-wise constant with a number of discontinuities being bounded
from above byNV,

e itis monotonically increasing, i.e.

Ixn(T) <Ix (T +AT) VYT,AT € RT

Furthermore, the iteration functiafx v is related to the empirical histogram
of the wavelet coefficientsX |,

1 r=x0+Az/2

h(zo, Az) = > (X — @)da 17)

N r=x0—Az/2 Ty

that counts the number of coefficienfs,| whose value is in the bin of widthz
centered at. The histogrank(zy, Ax) converges to the PDF oK | for the limits
Az tending to zero andv tending to infinity.

By writing the sum

K
1 T
SxN(K,T) = 5> aih(er, ) (18)
k=0

wherez;, = L (k + 3), one observes thatln(N)Sx n (K, T) converges to (16)
for the limit K tending to infinity. Hence, (16) is an empirical estimator of2hé
order moment of the PDF of the coefficieni§| smaller thari".

3.2 Convergence

In the following we prove the convergence of the recursive algorithm. Therefore
we apply fixed point type arguments to the iteration functigny.

Theorem 1. We consider the intervdlly,, 7] ¢ R* with Ix y(7,) > T, and
Ix n(Tp) < Ty If there exists a stepg such thatT,,, € [T,,T}], thenT, =
Ix n(T—1) converges to a limif, within [T}, T3], such thatly = Ix n(T7).



Proof. Suppose thatx n(Ty,) # Tn,

IK,N(TTLO) < Tno
it follows that
Tno+1 < Tno

aslx n is monotonically increasing, we have

IﬁvN(Tno-&-l) < IXJV(TTLO)'

This leads to
Tho+2 < Thno+1
and so, for allh > ng, we obtain
The1 < Th,

which means that the sequen(g, },,>,, decreases.
AsT,, isin[T,,Tp], it follows that

To < Thy
and hence
Ix N(Ta) < Ix N (Thy)-
As we assumed
To < Ix n(Th)
we find

Ta S TnoJrl

therefore, we have for atll > ny

(19)

(20)

(21)

(22)

(23)
(24)

(25)

(26)

(27)

(28)

(29)



Hence{T), }.>n, decreases and is bounded from belowZjy Consequently, it
converges to a limitf; = inf,>,,(7;,) betweenT, andT,,. As the iteration
function Ix n is piece-wise constant with a finite number of discontinuities, its
image including the values taken by the sequeliGg ..~ is countable and finite.
As a consequence, there existgsasuch that

T,, =T, = inf (T). (30)

n>ng

By definition of the lower bound, we have,

Ty = inf (T,) < Thypt1, (31)

n>ng
on the other hand, the sequer@&, },.>,, decreases, therefore
Topr1 = Ix N(Ty,) < T, (32)
Hence
Tn, < Ix N(Ty,) < T, (33)
and therewith, we have shown that
Tn, = Ix N(Ty,) (34)
Conversely, if

IX,N(Tno) > Tno (35)

one can show analogously thgf’, },,>», is increasing and upper-bounded, and
therefore converges betwe&j, and7.
O

Corollary 1. One has
Ix n(0)=0
and
sup Ix n(T) = Ty = (2In(N))? 0.
TeRt
Therefore the sequengé, } ,cn converges to a limit; € [0, 7p]. In addition, the
limit Ty is reached after a finite number of iterationg bounded from above hy.

Proof. Using (15) to computdx n(0) from those coefficients whose modulus is
smaller thar, it naturally follows that/x n(0) = 0. On the other hand, for any
other threshold’, the valuel x n(7') is maximum when all the coefficienfs, are

10



taken in the sum of expression (15). This maximum is equé} tand it is obtained
for any threshold’ larger than

Tnax = Sup \XA\
AEAT

Therefore, there exists a threshdlgl > max(7y, Tiax) such thatlx y(73) =
Ty < Ty,

Now we apply theorem 1 téy n on the intervall0,7;] to show that the se-
quence{T,, } ,en converges to a limif, € [0, Ty]. As Ix n(Ty) = Tp, the limit T}
is actually in[0, Tp].

In addition, the proof of theorem 1 shows tH&f, },cn reaches the limiffy
after a finite number of iterations,. This number is bounded by the finite number
of discontinuities ol y ; and is smaller than the numh&tof wavelet coefficients
X O

Another consequence of theorem 1 is the stability and self consistency of the
recursive algorithm. The following corollary shows that when the noisy part of
a signalX has been removed by the recursive procedure, a second pass does not
change the result previously obtained.

Corollary 2. Let
A: X — Fr,(X)

be the operator corresponding to the recursive algorithm described above, then
A(AX)) = A(X) vV XeH.
This means thatl is a non linear projector.

Hence, if one applies the algorithm to the result of a previous estimation, the
recursive procedure yields a threshold which is equal to zero. Therefore, the re-
sulting estimation coincides with the previous one.

Proof. This property can be shown by looking at the graph of the iteration function
corresponding tod(X) defined as

1/2
2In(N . 5
Lo (@) = | 22 5™ 1o, (R P
AeAT

whereT, > 0 is the threshold obtained with the first recursive procedure. The
iteration function/ 4 x x has the following properties

Lyx)yn(T) <Ixn(T) V Te RT (36)

11



as it corresponds to a partial sum of the termg iy (7). Furthermore, the fact
that

propr, =0 ¥ T<T, (37)
implies
Iyx)n(T)=0 V¥V T<T,. (38)
As we have shown that
Ixny(T)<T ¥ T>T, (39)
it follows that
Iyoyn(@) <T ¥ T>T,. (40)

On the other hand, we have for< T, that

Taxyn(T)=0<T. (41)

The equality holds fof" = 0, which is thus the only fixed point af4(x) y and
therefore this is the only possible limit for the sequence of thresHalgs, cn. O

3.3 Convergence for Gaussian white noise

In this subsection, we study theoretically the situation when the algorithm is ap-
plied to a Gaussian white noi$€. In this case, as the analytic expression of the
probability density function of the noise is known, it is possible to derive conclu-
sions on the behavior of the recursive algorithm.

The orthonormality of(v,) implies that{Wy},cAs is also Gaussian white
noise. Therefore, it is possible to compute the probability for a wavelet coefficient
of the noisél// to be above the threshold,

P (|v”vA| > TD) =1-P (‘W)\‘ < TD)

=1- 2 /Ooex <_w2>du~1
T v Jr, P\ 203, (42)
Tp
=1- erf <OW21/2> = 1 —erf( IH(N))

whereerf(z) = ﬁ o exp(—t?)dt.
An asymptotic expansion eff(x) for largex shows that

1

1
Nam@) <N«/ln(N)>

12

powﬂ>ng: (43)



For the probability that the maximum wavelet coefficient of a Gaussian white
noise sampled ove¥ values is abov&p one has

P <>1\221LX}§ (|V~VA|) > TD> =1-P (Arrgx] (|W)\|) < TD) : (44)

As the coefficients[/T/A are independent, one can express the probability of the
maximum value of¥) as a function of the probability of the single variablg

P (Angg <\WA!) > TD> =1- [P (’WAI = TD>]NN (45)
=1— [erf( ln(N))] .

Using (43) this yields

P <>I\Ié2}\}§ <|V~V>\|> > TD> ~ 0 (71'111(]\7)) (46)

These results show that féf large enough, there is almost no chance for any
value of| V| to be larger than the valuB,. Hence, for almost all realizations, one
has

G, =AM

One can now remark that, following definitions’Bf andTj, one has

Tp = 2In(N) 2o = 2In(N) 2 ox = @In(N) 200 = Tp.
As a consequence, the first step of the algorithm yields

1/2

2In(N ~
Iw N (To) = Iw N (Tp) = ]\(, ) PRI =To=Tp  (47)
AeAT

This shows that the threshold valilig corresponding to the initial value of the
sequencg T, } ¢y is a fixed point of the iteration functiofyy . This results in
stopping the recursive algorithm after the first step.

In addition, using the analytical expression of the Gaussian probability density
function of the noise and the link between the iteration functigny and the
empirical histogram defined in (17), one can show that there exists a threshold
valueT, < Tj such that for alll" in [T, Ty[, one has

Iw n(T)>T.

13



This confirms that the bell shape of the Gaussian PDF of the wavelet coeffi-
cients of the noise, with its large width and its strong decay at the tails, is respon-
sible for the convergence of the algorithm towards the lifhi= Tp = Ty. Note
thatTj also corresponds to the valifg,. defined in the proof of corollary 1.

As a consequence, the noigé is invariant with respect to the recursive noise
extractorA¢ defined as

A X s F§(X) = I1d — A(X)
One has

A(W) =W

In other words, the recursive algorithm is able to perfectly ideififas Gaus-
sian white noise rather than a signal.
The remaining question is to determin€lif is a correct estimator dfp, for X
being a noisy signal resulting of the superposition of a given sigraaid a noise
. The next section does not prove this result formally, but instead shoes as a first
approach that it is verified for a set of various numerical examples.

4 Numerical application

4.1 Application to 1D and 2D test signals.

In the following we validate numerically the above recursive algorithm for for 1D
and 2D test signals and illustrate its properties. We construct a noisy sighgl
superposing to different signajsa Gaussian white noisg” € N (0, o) with
given variancer,, produced by a standard random number generator. First we
apply the recursive algorithm to the signfalvithout any noise, then to the noise
W only, and finally to the noisy signal for several signal to noise ratioS V R),
whereSN R is defined by :

< o7 ) of
SNR =10logyy | = | = 20log () : (48)
Oy ow
The aim is to track the influence gfandW on the results obtained for the total
signal X by looking at the influence af; y and Iy x on the iteration function of
the total signal x . -

For each signal to noise ratio, we compare the results of non-linear wavelet
thresholding using the recursively found thresh}dand the universal threshold
Tp computed with the known variance of the noisg. In order to evaluate the
performance of our method, we also compare the results with those obtained using
the estimatofT;,, of the universal threshold given by the Median Absolute Devi-
ation method (MAD) [2]. This method relies on the fact that the sparsity of the

14



wavelet coefficients of increases for smaller scales for signals with isolated sin-
gularities. Hence, the median of the modulus of the wavelet coefficients of the
noisy signal is insensitive to the amplitude of these few strong outliers. Therefore,
it is a good estimator of the median of the modulus of the coefficients of the noise.
For Gaussian white noise we have,

med Wil) = 0.6745 oy
Aty ey sy UV v

From this formula, one obtains the MAD threshold

(2In(N))1/2 i
Im =065 d X 49
0.6745 A:(j,@é??j,z-),j:.]}(‘ M) (49)

4.1.1 Application to a 1D signal without noise

This section presents the iteration functiony corresponding to the signdl
shown on Fig. 2. It is a piece-wise regular signal provided with\WevelLab
software package [9]. It has been normalized such that

1 N—-1
op = (5 3 WY =10
k=0

We compute the discrete wavelet transform of the discrete sfgsampled on
N = 8192 points using the Coiflet wavelets with four vanishing moments. These
wavelets are almost symmetric, and the coefficients corresponding to the scaling
function at the smallest scale are almost equal to the sanfipl€his reduces the
computation of the wavelet coefficients to the simple Mallat's fast wavelet trans-
form and avoid expensive interpolation procedures.

In Fig. 3, we plotted the iteration functiafy 5 (7°) for valuesT" in the interval

(103 Tmax » Tinax, Where Ty, = SUP AT |fA] is the magnitude of the largest
wavelet coefficient of the signgl. We observe that the graph of x remains
below the liney = z and hence has no fixed point in this interval. According
to theorem 1, the sequence of threshdl@s },,cn should therefore converge to a
limit 7, below 1087 ax.

When applying the recursive algorithm fo we actually obtain a limiff;, =
1.7107% = 3.110?Tinax. This threshold corresponds to a relative mean square
error£(T,) = 4.710~ which is negligible. The corresponding number of itera-
tions wasn, = 21.

This behavior essentially comes from the piece-wise regularifivefich im-
plies the sparsity of the wavelet representatiofi.oAs a result, most of the wavelet

coefficientsf, have values concentrated close to zero. Therefore, the moment of
2

inertia (ILN(T)) of the empirical histogram of the coefficients smaller than the

thresholdT” increases slower thaf?.

15



Consequently, the signdlis invariant with respect to the recursive denoising
processA4 and one has :

Alf) =7

Hence, similarly to what has been shown analytically in section 3.3 for the
noiseW, the recursive algorithm was able to perfectly identffas being signal
without any noise.

4.1.2 Application to Gaussian white noise

This section validates numerically the conclusions of the theoretical study of sec-
tion 3.3 where the recursive algorithm was applied to a Gaussian white noise.

We compute the iteration functiofy x corresponding to a realizatidi’” of
a Gaussian white noise of si2é = 8192 with a variancer?, = 1 provided by a
standard random number generator. The graphof; is displayed in Fig. 4.

We first notice that this graph shows the piece-wise constant nature of the it-
eration function. Note that this characteristic is more visible for small threshold
values. We also observe that the iteration functigny presents two fixed points.
The right intersection point afyy y andy = = denoted byA corresponds exactly
to the absciss@p = 4.24. For valuesl,, greater thadp, the curve is flat because
Tp = Tp is the maximum value ofy n. Conversely, as mentioned in section
3.3, the graph ofyy v bumps overy = z on the left side of poinA. This is a
consequence dffy v)? being the second order moment of the histograrii/gf
Due to the fast decay of the Gaussian function, the derivativg,of; on the left
side ofTp is almost zero andyy v is nearly horizontal there.

As expected from these observations the recursive algorithm reaches conver-
gence at the first step. Hence one has ny, = 1 with the threshold, = 4.240
being almost equal t@p = 4.245. Using this threshold, we found that only
one of theN = 8192 coefficients whose valu®,, = 4.29 is larger than the
threshold7, = 4.24. This yields an almost perfect estimationldf by A(X) =
Epyg, W) ~ W.

As shown in section 3.3 and as previously observed for si§idf is invariant
with respect to the recursive denoising procdss B

In the following, we consider the situation that arises when n@ises added
to the signalf.

4.1.3 Application to the signal plus noise

In this case, we apply the recursive algorithmXo= f + W. We first study the
results obtained witlry = 10 andoy, = 1, which correspond to signal to noise
ratio is equal t®0 db. The number of points is stiV = 8192. Fig. 5 summarizes
the iteration curves computed faf, f, andW. One observes thdty x is super-
posed only n for small values ofl,, whereas it followsl; x for large values of
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T,, up to the poinCC corresponding to the first iteration of the algorithm.

An explanation of this behavior can be found by looking at the histograms of
the wavelet coefficients X, f andWW which are respectively related to the itera-
tion functionslx x, Iy x andly .

Fig. 6 shows the histograms of the wavelet coefficients corresponding to Fig. 5. As
explained in section 4.1.1, the sparsity of the wavelet representatigrcafises

most coefficients f3) to be close to zero. Therefofg  remains below the line
Y =T

One also observes that the histogranidf,) and the histogram dff) present
the same heavy tails for values larger than the maximum magnitude of the noise
Tp = (2In(N))Y20y, = 4.24 (cf. section 4.1.2). This coincides with the fact that
Ix n superposes upofy y for values larger thaffp. An interpretation of this

superposition is that the heavy tails of the PDF(f)f) have a strong weight in the
second order moment of the histogram of the coeffici¢iits). On the contrary,
the coefficients of the noise being concentrated within the rén@®), 7], their
contribution tolx n(7") for T' larger tharil’, remains negligible.

At the opposite, wherT" is smaller than?p, most of the coefficient$fA)
smaller tharil” have their value close to zero. Therefore their contribution to the
moment of inertia(ILN(T))2 is dominated by the contribution of the coefficients
(W) whose distribution far from zero is wider. Thus the ndiBedominatesf in
the graph offx_y for smallT. This is still true forT approaching’p as soon ag
is sparse enough in wavelet coefficients space. B

The consequence is that the intersectoaf Ix y with y = 2 remains close
to the intersectio of Iy y with y = . Therefore, the limiff; of the recursive
algorithm applied taX is close to the limit obtained for the noise alone which is
equal tolp.

This is true since no other fixed point is present for larger values of the thresh-
old 7', thanks to the fact that betwe@uwandC, Ix y is belowy = z.

For the considered signal to noise ration26f/b, the algorithm converges to
the valueT, = 4.30 which is close to the universal threshdlh = 4.24. The
resulting estimation$’r, (X) and F7, (X) of f andW, respectively, are shown in
Fig. 2.

The iteration functions results for signal to noise ratft§ R = 10, SNR =
40 andSN R = 100 are shown on Fig. 7.

We observe that despite the wide range of diffeigntR, the global behavior
of Ix n is preserved. The iteration function for the total signal is still superimposed
upon Iy y for threshold values smaller thdl, and switches td;  for larger
values of the threshold. The threshold§, obtained are summarized in the table
1. It summarizes the results of wavelet thresholding using different thresholds. We
tested the thresholfl, given by the recursive algorithm, the universal threstold
and the median based threshdlg. The values offy, T,, andTp are displayed
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for different. SN R along with the resulting mean square errors defined in (10) of
the estimationg (1), £(T,,), £(Tp) for the1D signal of Fig. 2. These errors are
related to enhanced signal to noise ratios resulting of the denoising and defined as

/1L,
If = Fr(X)llz,

One can observe thd} gets closer td'p asSN R increases.
We remark that the fact that we obtain an better estimation of the level of the noise
ow = mn(TW for a weaker contribution of the noise to the sigdalmight
sound counterintuitive. This phenomena comes from the fact that the value of
Ix n(T) is insensitive to values dfX)) larger tharlT". As explained above, due
to the sparsity of the wavelet coefficierts, ), the values of X, ) weaker than the
thresholdl'p are strongly dominated by the coefficients of the noise. As a conse-
quence the influence of strong signal to noise ratiod pn;(7') is hidden forT"
being up tolp. However, this depends on the distribution of the wavelet coeffi-
cients of f that are smaller thaii,. Therefore, the evolution of the shift observed
betweeril; andT}, for different.S N R can be different for other types of signal.

SNR'(T) = 201log, < > = —10logo(&E(T)).

We also observe that despite the fact that the threshglds usually closer to
Tp thanT, and the erro€(7,,) is smaller than the erra& (1), the performances
of the two methods are of same order. Moreover, folsSal R, the thresholdp
results in a larger error than the threshdlglsandT). This surprising result shows
the non-optimality of the universal threshold as well as the good performance of
both approaches usifi,, and7), especially for weak signal to noise ratios. How-
ever, for increasingg N R, the performance of the estimation with each method
gets more uniform.

We also observed that the number of iteratiopmcreases with the signal to noise
ratio. This is consistent with the fact that only one iteration is needed for the
noise alone (which corresponds$@v R = —oo) and that the maximum number

of iterations is obtained for the signal without added noise (which corresponds to
SNR = +0o0).

We interpret this result by saying that the wavelet coefficients of the noise are
responsible for deflecting the graphof ; above the lingy = z. This deflection
interrupts the sequence of iteration by forcing the decreasing sequence of thresh-
oldsT;, to converge to the intersection poit The stronger the noise level, the
sooner the deflection and the convergence.

The histograms of the estimated signals (X)), Fr,, (X) obtained using the
thresholdsly; andT,,, and the histogram of the corresponding estimations of the
noise If, (X), Ff, (X) are shown on Fig. 9. One observes that they are very
well superposed. This confirms that for this academic case, the performance of the
recursive algorithm is comparable to the one of the median based wavelet thresh-
olding.
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SNR —00 10 20 40 100 +00
oy 0 102 10 102 10° Z:V;g
ng 0 4 5 7 12 21
T, 424 | 4.34 4.30 4.30 4.23 1.71076
T, 419 [ 4.19 4.20 4.20 4.24 9.91077
Tp 424 | 4.25 4.25 4.25 4.25 0
E(Ty) oo | 7281073 [ 6.4610~* [ 9.72107° [ 2.0410°11 | 471071
E(Ty) 400 | 7.061073 | 6.3610°% [ 9.77107¢ | 2.04107 11 | 8.910~16
E(Tp) +o0o | 7321073 | 6.68107% [ 9.7710°° | 2.04 10~ ! 0
SNR(Ty) —oo | 21.37 31.90 50.12 106.9 133.3
SNR'(Ty,) —oo | 2151 31.96 50.10 106.9 150.5
SNR'(Tp) —oo | 21.35 31.75 50.10 106.9 +00
Flat. of Ff (X) [ 3.05 | 3.08 3.03 3.08 3.14 5.00
Flat. of Ff. (X) [| 3.05 | 3.08 3.03 3.08 3.14 4.28
Flat. of Ff (X) || 3.05 | 3.08 3.03 3.08 3.14 undefined

Table 1: Numerical results for the 1D signal : , number of iterations before con-
vergenceny, thresholdsTy, T,, and Tp, the relative error< (1), £(7,,) and
&(Tp) and the corresponding enhanced signal to noise ratié&’ obtained for
SNR =10 db, 20 db, 40 db and100 db and the two limit caseSN R = +oo. For
all lines columnsgyy = 1, except for the last one (c.f. section 4.1.1). The flatness
of the estimated noisésy, (X), 7, (X) andFyf, (X) is also given
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Figure 2: Construction of a 1D noisy signall = f + W(SNR = 20db), and its
nonlinear wavelet thresholding using the threshild
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Figure 3: The graph of the iteration functidin x(7") for the signal (Fig. 2 top,
left). The pointC corresponds to the first iteration of the algorithm.
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to the intersections between the graphdwfy andIx y with the liney = z,
respectively. The poin corresponds to the first iteration of the algorithm applied
to the total signalX and its abscissa i&.
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4.1.4 Application to a 2D test signal

In this section, we present the results obtained by applying the recursive algorithm
to a 2D discrete signak’ sampled onV = 5122 grid points. The signak is
obtained by the superposition of a 2D signfatomposed of randomly located
axisymmetric cusps, and a 2D realizatidhof a Gaussian white noise.

Surface plots of the signals, f andW are shown in Fig. 10 (top and center).
We choser; = 3.163 andoy = 1 resulting inSN R = 10.

We compute the corresponding iteration functiérsy, I y andly n. They
are displayed on Fig. 11. a

We first remark that conversely to the 1D case, the cuvg corresponding
to the signal alone intersects the lipe= 2 for a small value of the threshold
betweenl' = 10~* and7T = 10~3. We interpret this as a consequence of a less
sparse wavelet representation of the sighalrhese more numerous weak wavelet
coefficients off may be due to the fact that in such a 2D signal, axisymmetric
singularities are difficult to capture for the 2D orthogonal wavelets of a tensor
product multi-resolution analysis. For these reasons, more wavelet coefficients of
little energy are required in order to represgraorrectly.

However, the most striking feature of Fig. 11 is that similarly to the 1D case,
the wavelet coefficients of the noise are responsible for deflecting the graph of
Ix n from I x to Iy v when the threshold valug decreases. We observe that it
intersects the ling = x very close to the intersection betwegp v andy = .

This shows that when applied {8, the recursive algorithm converges to a limit
threshold valud, close tol'p.

When applying the algorithm, we find a liniy = 5.13 ~ Tp = (21n(5122))'/2 =
4.99. The resulting estimationsr, (X) and Ff, (X) for f andW are shown on
Fig. 10 (bottom). As expected, the estimatibip, (X) shows an efficiently de-
noised version of the sign&. The corresponding numerical results are summa-
rized in table 2. As in the 1D case, the results usingT,, andTp are very
close. This shows the validity of the recursive algorithm for estimating the suitable
threshold value. This is confirmed when looking at the histograms of Fig. 13 and
Fig. 14. The results of the estimations usifigandT,,, are almost perfectly super-
posed. Fig. 12 shows the PDF of the wavelet coefficients of, andiW. One can
see that the threshold valllg = 5.13 corresponds to the value for which the PDF
of X, moves from the PDF of), to the one ofiV/y.
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Figure 10: Construction of a 2D noisy signél= f + W (SN R = 10db), and its
nonlinear wavelet thresholding using the threshgid
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Figure 11: Iteration functionby y, Iy y andly ycorresponding to the 2D signals
X, f and to the noiséV’. a

SNR 10
o 102
Ny 4
T, 5.13
T 5.01
Tp 4.99
E(Ty) 7.571073
E(Tw) 7.341073
E(Tp) 7281073
SNR'(Ty) 21.20
SNR/(T,,) 21.34
SNR/(Tp) 21.37
Flat. of /7, (X) 3.32
Flat. of F¢ (X) 3.30
Flat. of F7, (X) 3.30

Table 2: Threshold$y, T,, andTp, the relative error€ (1), £(T,,) and&(Tp)
and the corresponding enhanced signal to noise ratd&’ obtained forSNR =
10 db, with oy = 1.
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Method recursive | median
Threshold T, =032 | T,,, = 0.19
Retained coefficient§ 0.24% 1.41%
Retained variance 35% 98%
Estimated
signal tp noise 288 18.41
ratio
SNR
Flatness of
the estimated 3.66 3.16
noise
Ny 2

Table 3: Numerical results for the experimental signal

4.2 Application to a Bose-Einstein condensate
4.2.1 Description of the signal

The signal presented in this section is an absorption image measuring the density
of atoms in a Bose-Einstein condensate [8]. It was obtained using a CCD camera
for measuring the optical density of lithium atoms confined in a magnetic trap and
cooled by evaporation using a microwave field. Its surface plot is shown in Fig. 15
(top). The number of sample pointsis = 1282,

We apply the recursive wavelet thresholding algorithm to remove the strong
noise observed in the signal and we compare the results obtained using both thresh-
oldsT; andT,,. As the signal and noise components are unknown, we check the
guality of the estimation by looking at the estimated fields in physical space, at
their histograms computed both in physical and wavelet space and their Fourier
power spectra.

4.2.2 Numerical results

Table 3 presents the numerical results obtained. We define an estifitsted

1P (X1

SNR =10 loglo W
T\

corresponding to the estimated signal to the estimated noise ratio. Therefore, it
does not quantifies the performance of the denoising. The quality of the filtering
is given by the agreement between the estima&tdd? and the reab N R that has

to be estimated by some other means. Note &6tR depends on the filtering
method used.
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We observe a large difference betwerandT,,, as well as between the pro-
portion of coefficients and variance retained by either the recursive or the median
based method. Th8 V'R obtained is very different according to the threshold
used. Looking at the noisy signal in physical space (see Fig. 15 and Fig. 15) make
us conjecture thaf V'R = 18.41 does not correspond to the reaN R. The flat-
ness of the estimated noise for both methods is clogewdich is the flatness of
a Gaussian white noise. The noise estimated by the median based method is thus
closer to the Gaussianity.

4.2.3 Results in physical space

One observes in Fig. 15(middle) that the recursive algorithm extracts the signal
from the noise very well. On the contrary, Fig. 15 (bottom) shows that the median
based threshold;,, is too small for removing all parts of the noise. This residual
noise is therefore still present in the estimated sighal (X)) which explains the
large percentage of retained energy that results in the valS&/6® = 18.41.

4.2.4 Histograms of the wavelet coefficients

Figures 16(top) and 16(bottom) show the histogram of the wavelet coefficients of
the signal superposed on the histograms obtained for the estimated signal and the
estimated noise for both methods. One can observe the effect of the threshold-
ing on these histograms which are simply separated by the value corresponding
to the threshold9; andT,,. The vertical line at the value zero corresponds to
the coefficients set to zero after thresholding. One observes that the thré&ghold
corresponds to the point where the histogram of the noisy signal changes from a
Gaussian-like shape to the more irregular shape of large non-Gaussian tails. On
the contrary, the median based threshBldcorresponds to an intermediate value

of the Gaussian part of the histogram. A comparison with the fitted Gaussian curve
shows, however, that the fit is not perfect. Taking the median of the modulus of the
weak wavelet coefficients responsible for this part of the histogram could therefore
yield an incorrect estimation of the variance of the noise.

4.2.5 Histograms computed in physical space

The histograms of the noisy signdl and the estimated signal and noise are pre-
sented for both methods in Fig. 17(top) and Fig. 17(bottom). One observes that the
tails of the histogram of the estimated signal are shorter when using the threshold
T, than when using the threshdld,. This is consistent with the fact that no spuri-

ous noisy oscillation are observed on the denoised field obtainediwitihereas

the signal estimated usirig,, shows this type of noisy structures which results in a
wider histogram. As a counterpart, the noise looks more Gaussian when extracted
using the median based threshold. This is related to the value of the flatness of the
noise which is closer t8 for the median method. We also observe that for both
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X

Figure 15: Wavelet filtering of an experimental 2D noisy signal (top) using the
thresholdT}, found with the recursive algorithm (middle) and the median based
thresholdr;,, (bottom).
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Figure 16: PDFs of the wavelet coefficients,, (£, (X)), and(F§, (X)), ob-
tained using the recursive algorithm (top) and PDFs of the wavelet coefficients
X (Pr,, (X)) and(F% (X)), obtained using the median based threstijd
(bottom)
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methods, the histogram of the estimated signal is not well superposed to the one of
the noisy signal. This may be a consequence of the low signal to noise ratio.

4.2.6 Fourier spectra

The isotropic Fourier power spectra of the noisy signal and its two estimated com-
ponents are shown for both methods in Fig. 18 and Fig. 19. One can observe a very
strong signature of the noise as a linear part of the spectrukh af small scales.

This linear part exhibits a slope™, typical of white noise. We observe that when
using the threshold;,, the spectrum of the estimated signal also present such a
linear part, revealing the presence of remaining noise. On the contrary, the spec-
trum of the estimated signal obtained using the recursive algorithm is free from this
linear component. Hence, we conclude that the noise has been correctly removed.

4.2.7 Conclusion for the experimental case

The recursive algorithm is more efficient than the median based method for the de-
noising of this experimental signal. We conjecture that this is a consequence of the
not perfectly Gaussian distribution of the noise that leads to a wrong estimation of
the threshold computed from the median of the modulus of the wavelet coefficients
of the noisy signal. On the contrary, the recursive algorithm, by converging to the

fixed point of the iteration function actually converges to the threshold correspond-

ing to the change of behavior in the histogram of the wavelet coefficients of the

noisy signal. This convergence is more robust with respect to a not exactly Gaus-
sian distribution of the noise. This robustness explains why the median threshold
gives a slightly better result with academic signals for which the Gaussianity of the

noise is guaranteed, but fails to remove the noise completely from a real experi-
mental signal.

5 Conclusions

We presented a new recursive algorithm to determine automatically the threshold
value of the wavelet coefficients to recover a signal in the presence of Gaussian
white noise. This efficient and simple algorithm is based on a recursion in wavelet
coefficient space to estimate the variance of the noise. A mathematical justifica-
tion of the scheme is given applying fixed point type arguments to guarantee the
convergence of the process. We proved that the algorithm is stable and converges
with a finite number of iterations bounded from above by the number of samples,
but usually much less. Numerical examples in one and two dimensions illustrated
the properties and validity of the scheme for different signal to noise ratios. We
observed that the number of iterations increases with the signal to noise ratio. Fol-
lowing our experience we have some evidence that it also depends on the sparsity
of the wavelet representation of the signal, i.e. the more sparse the wavelet rep-
resentation of the signal, the faster the convergence. For the academic examples
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Figure 18: Energy spectra of, Frr,(X), Ff, (X) obtained using the recursive
algorithm.
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Figure 19: Energy spectra of, Fr,, (X), 7 (X) obtained using the median
based threshold,.
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studied here we found that the threshold obtained with the algorithm and that the
error £(T') of the corresponding estimation are very close to the ones obtained
using the universal threshold proposed by Donoho & Johnstone [2] and the thresh-
old estimated from the median of the wavelet coefficients of the noisy signal at
small scales. Moreover, the recursive algorithm gave better results than the me-
dian based wavelet thresholding estimator when applied to an experimental signal.
This suggests that the algorithm is more robust with respect to a departure from the
academic situation of a perfectly Gaussian white noise.

Future work is concerned with the generalization of the algorithm to non Gaus-
sian distributions of the noise and to the case of colored, i.e. correlated, noise. We
are also extending the approach to vector-valued signals, e.g. velocity or vorticity
fields, in order to apply it to coherent vortex extraction in turbulent flows.
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