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Abstract

Nonlinear thresholding of wavelet coefficients has been shown to be an
efficient method for denoising signals with isolated singularities corrupted
with Gaussian white noise [2]. A quasi optimal value for the threshold can
be computed from the noise level using the formulaTD = σW (2 lnN)1/2,
whereN is the number of available samples of the signal andσW is the
standard deviation of the noise. However, in most situations the noise level is
unknown and has to be estimated. This paper studies an algorithm proposed
in [3] which evaluates the value for the threshold. It recursively approximates
the standard deviation of the noise with the standard deviation of the noisy
signal, computes a threshold value and performs a first split from which it
extracts a better estimate of the noise. Then, it iterates this procedure using
the new estimate of the noise to compute the new threshold. The iteration
stops when the threshold remains unchanged from its previous value. We
show that the convergence of the sequence of estimated thresholds depends
on a functional of the probability density function (PDF) of the noisy signal.
We also find that the sequence converges towards the theoretical valueTD

provided that the wavelet representation of the signal is sufficiently sparse.
We compare the results obtained for examples in 1D and 2D with the results
of a standard method based on the median of the wavelet coefficients of the
noisy signal at small scale. Finally, we show that the recursive algorithm
gives better results than this method when applied to an experimental signal
measuring the atomic density of a Bose-Einstein condensate [8].
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1 Introduction

Estimating signals or images from noisy data is a typical problem in data process-
ing and has various fields of application. So far many different parametric and
non-parametric approaches have been proposed, such as linear kernel estimators,
Kalman filters etc. For an overview see e.g. [5]. Nonlinear thresholding of the em-
pirical wavelet coefficients was originally proposed by Donoho and Johnstone [2]
to denoise signals corrupted with Gaussian white noise. This approach was later
generalized to correlated noise and to non Gaussian situations [6]. This method
consists in transforming the estimated signal into wavelet coefficient space, delet-
ing coefficients whose modulus is below a threshold and reconstructing the de-
noised signal from the remaining coefficients. The threshold depends only on the
sample size and on the noise’s variance. Wavelet thresholding estimators minimize
the maximumL2 risk in a whole class of finite energy signals including Hölder
and Besov spaces without anya priori knowledge of the particular shape of the
signal. However, the unknown variance of the noise has to be estimated in order
to determine the threshold. The Median Absolute Deviation (MAD) is a standard
method that estimates the level of the noise from the median of the modulus of
wavelet coefficients at small scales [5].

In the present paper we introduce a new recursive algorithm to estimate the
variance of the noise. We study the mathematical properties of the algorithm re-
garding convergence and stability. Numerical examples validate the convergence
of this scheme and illustrate its properties. We compare the threshold computed
with the recursive scheme to the theoretical value of Donoho and Johnstone [2]
and to the value obtained using the MAD method. The results show that the new
algorithm is competitive and efficient.

The paper is organized as follows: After describing the nonlinear wavelet
thresholding in section 2 we present the recursive algorithm to determine the thresh-
old by estimating recursively the variance of the noise. We prove the convergence
of the algorithm and show that it is a nonlinear projector. In section 4 we present
its numerical validation by applying the algorithm to1D and2D academic test
signals and to an experimental 2D observation of a Bose-Einstein condensate. The
results of the recursive algorithm are compared to the results given using the MAD
method. Finally, we conclude and give some perspectives for future work.

2 Denoising by nonlinear wavelet thresholding

A classical problem of signal processing consists in estimating a good approxi-
mation of a signalf from noisy samplesX. Donoho and Johnstone [2] proposed
to use nonlinear wavelet thresholding. They have shown that this is particularly
attractive for the case whenf has isolated singularities.

Here we consider a discrete signalf = {f [k]}k∈[0,...,N−1] of sizeN = 2J with
vanishing mean. The valuesf [k] are samples of a functionf . We observe noisy
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data of sizeN , i.e.X = {X[k]}k∈[0,...,N−1] such that

X[k] = f [k] +W [k] (1)

whereW = {W [k]}k∈[0,...,N−1] areN samples of a Gaussian white noise with
varianceσ2

w, i.e.W ∈ N (0, σw).
We decompose the observed dataX into an orthogonal wavelet series

X =
∑

λ∈ΛJ

X̃λψλ
(2)

with the wavelet coefficients

X̃λ =
〈
X|ψλ

〉
(3)

The multi–indexλ = (j, i) denotes the scalej and the positioni of the wavelets.
The corresponding index setΛJ is given by

ΛJ =
{
λ = (j, i), j = 0...J − 1, i = 0...2j − 1

}
(4)

The family(ψλ) constitutes an orthogonal multi–resolution analysis ofL2(R) [5].
By thresholding the wavelet coefficients̃Xλ and reconstructing the correspond-

ing signal we define a nonlinear operator

FT : X 7→ FT (X) =
∑

λ

ρT (X̃λ)ψ
λ

(5)

with
ρT (a) =

{
a if |a|>T
0 if |a|≤T (6)

whereT denotes the threshold. The operatorFT hence projects the signalX onto
the orthogonal wavelet basis(ψ

λ
) and uses the thresholding functionρT for se-

lecting those wavelet coefficients̃Xλ whose magnitude is larger than the threshold
T . Subsequently, it reconstructsFT (X) in physical space from the retained coeffi-
cients.

For later convenience we introduce the index subset

ΛT =
{
λ ∈ ΛJ , |X̃λ| > T

}
⊂ ΛJ (7)

which is the set of wavelet coefficients̃X that are selected by the thresholding
functionρTD

.
Donoho and Johnstone showed thatFT with the threshold

TD = σW (2 lnN)1/2 (8)
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Figure 1: ErrorE(T ) versus different threshold valuesT for a piecewise regular
signal (see Fig. 2) The vertical line indicates the universal thresholdTD.

yields minimax estimators for allf ∈ H whereH belongs to a wide class of func-
tion spaces, including Ḧolder and Besov spaces. They showed that the maximum
mean-square error

R(F,H) = sup
f∈H

E
{
‖f − F (X)‖2

}
, (9)

which depends on the function spaceH e.g.H = Bα
p,q and on the used operator

F , is almost minimized by the nonlinear wavelet estimatorFTD
.

More precisely, the relative quadratic error between the signalf and its esti-
matorFT (X) defined by

E(T ) =
‖f − FT (X)‖2

‖f‖2
(10)

has its lower boundminT E(T ) close to the minimax error

min
F
R(F,H).

Moreover, the threshold valueTD in (8), is close to the thresholdTmin that
minimizesE(T ) but which depends on each particular signalf . In contrast the
thresholdTD depends exclusively on the variance of the noise and therefore it is
called universal threshold.

One has

TD ' Tmin

and
E(TD) >∼ E(Tmin)
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An illustration of the quasi-optimality ofTD is given in Fig. 1. We plot the
relative errorE(T ) for a piece-wise regular signal corrupted with a Gaussian white
noise versus the threshold valueT . We observe that the universal thresholdTD

almost corresponds to the minimum ofE(T ), obtained with the optimal threshold.
This example also shows that if the threshold valueT is chosen aboveTD, then the
error increases significantly. On the contrary, ifT is chosen belowTD, the error
tends to the valueE(0) corresponding to no denoising at all.

This sensitivity implies that one has to know the value of the thresholdTD

precisely to obtain an accurate estimatorFTD
of the signalf from the noisy dataX.

Hence, the knowledge of the variance of the noise is of primordial interest. As the
level of the Gaussian white noiseσW involved in the expression ofTD is generally
unknown, the problem one encounters in practice is to get a good estimation ofσW

from the available noisy dataX.

To address the estimation of the noise, instead of the estimation of the signal,
we adopt a dual point of view. Instead of consideringFTD

(X) which is a version of
the signalX from which a major part of the Gaussian noise has been removed, we
focus on the residual ofX which was not taken into account inFTD

(X), namely
(X − FTD

(X)). It is a quasi optimal estimator of the Gaussian white noiseW ,
whose relative error is

E ′(T ) =
‖X − FT (X)−W‖2

‖W‖2
.

The two points of view are equivalent, as

E ′(T ) =
‖f +W − FT (X)−W‖2

‖W‖2
=
‖f‖2

‖W‖2
E(T ).

Thus, the value ofT minimizingE(T ) also minimizesE ′(T ).

Following this dual approach, it is useful to introduce the complementary opera-
tors. The operator that estimates the noise fromX is defined by

F c
T = Id− FT (11)

whereId denotes the identity, and it uses the complementary coefficient selector

ρc
T = Id− ρT (12)

The corresponding complementary index set is defined as

Λc
T = ΛJ\ΛT (13)

Hence it follows for the estimator of the noise that

F c
T (X) = (X − FT (X)) =

∑
λ∈ΛJ

ρc
T (X̃λ)ψ

λ
=
∑

λ∈Λc
T

X̃λψλ
(14)
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3 Recursive algorithm

In [3] we proposed a recursive algorithm to extract coherent vortices from turbulent
vorticity fields using nonlinear wavelet thresholding. The principle of the scheme
consists in extracting first a rough estimation of the Gaussian part by using the
variance of the total signal as estimator for the variance of the noise. In the next
step an improved threshold is obtained by using the variance of the noise thus
extracted. This improved threshold is used to extract a better estimate of the noise.
The above procedure is iterated until the number of wavelet coefficients of the noise
is constant.

In the following we present the algorithm and study its mathematical proper-
ties.

Algorithm :

Initialization

• givenX = {X[k]}k∈[0,...,N−1]

• set n=0

• compute the Fast Wavelet Transform ofX to obtainX̃λ

• computeσ2
0 = 1

N

∑
λ∈ΛJ |X̃λ|2 as rough estimate of the variance of the

noise. Note that due to orthonormality of the wavelet basis, the variance of
X can be calculated from its wavelet coefficients.

• setNW = N , which corresponds to the number of coefficients considered
as noise.

• compute the thresholdT 2
0 = 2 ln(N)σ2

0.

Main loop

Do

• N ′
W = NW

• compute the number of wavelet coefficients smaller thanTn

• NW = Card(Λc
Tn

)

• compute the new variance

σ2
n+1 =

1
N

∑
λ∈ΛJ

|ρc
Tn

(X̃λ)|2
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• compute the new threshold

Tn+1 = (2 ln(N)σ2
n+1)

1/2

• Set n=n+1

until (N ′
W ==NW )

Final step

• computeFTn(X) from the wavelet coefficients{X̃λ}λ∈ΛTn
larger thanTn

using inverse Fast Wavelet Transform

• computeF c
Tn

(X) = X − FTn(X)

End

This algorithm defines the sequence of thresholds(Tn)n∈N and the correspond-
ing sequence of variances

(
σ2

n

)
n∈N which are respectively the successive estimates

of the thresholdTD and the standard deviation of the noiseσW given by the algo-
rithm. In the following we show that they converge to limits giving a mean square
errorE close to its minimum.

The algorithm has the following properties :

• it uses only one Fast Wavelet Transform to determine the threshold and only
one more for computing bothFTn(X) andF c

Tn
(X).

• the convergence criterion is always satisfied after a finite number of iterations
smaller thanN (this is shown below, see corollary 1). Therefore no stopping
criterion based on somead hocparameter is needed.

• it is recursive and there exists aniteration function

IX,N : R+ 7→ R+ such thatTn+1 = IX,N (Tn),

which contains all the information about the convergence of the algorithm for
a given initial condition. This function allows to study the algorithm using
principles of the fixed point theory. It is obtained by merging the definitions
of σn+1 andTn+1 :

IX,N (T ) =

2 ln(N)
N

∑
λ∈ΛJ

|ρc
T (X̃λ)|2

1/2

=

2 ln(N)
N

∑
λ∈Λc

T

|X̃λ|2
1/2

(15)
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3.1 Properties of the iteration function

Taking the square of (15), it is possible to rewrite the sum as a continuous integral
using delta functions,

(IX,N (T ))2 = 2 ln(N)
1
N

∫ T

x=0
x2
∑

λ∈ΛJ

δ(|X̃λ| − x)dx (16)

The function(IX,N (T ))2 has the following properties:

• it is piece-wise constant with a number of discontinuities being bounded
from above byN ,

• it is monotonically increasing, i.e.

IX,N (T ) ≤ IX,N (T + ∆T ) ∀ T,∆T ∈ R+

Furthermore, the iteration functionIX,N is related to the empirical histogram
of the wavelet coefficients|X̃|,

h(x0,∆x) =
1
N

∫ x=x0+∆x/2

x=x0−∆x/2

∑
λ

δ(|X̃λ| − x)dx (17)

that counts the number of coefficients|X̃λ| whose value is in the bin of width∆x
centered atx0. The histogramh(x0,∆x) converges to the PDF of|X̃| for the limits
∆x tending to zero andN tending to infinity.

By writing the sum

SX,N (K,T ) =
1
N

K∑
k=0

x2
kh(xk,

T

K
) (18)

wherexk = T
K (k + 1

2), one observes that2 ln(N)SX,N (K,T ) converges to (16)

for the limitK tending to infinity. Hence, (16) is an empirical estimator of the2nd

order moment of the PDF of the coefficients|X̃| smaller thanT .

3.2 Convergence

In the following we prove the convergence of the recursive algorithm. Therefore
we apply fixed point type arguments to the iteration functionIX,N .

Theorem 1. We consider the interval[Ta, Tb] ⊂ R+ with IX,N (Ta) ≥ Ta and
IX,N (Tb) ≤ Tb. If there exists a stepn0 such thatTn0 ∈ [Ta, Tb], thenTn =
IX,N (Tn−1) converges to a limitT` within [Ta, Tb], such thatT` = IX,N (T`).
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Proof. Suppose thatIX,N (Tn0) 6= Tn0

If

IX,N (Tn0) < Tn0 (19)

it follows that

Tn0+1 < Tn0 (20)

asIX,N is monotonically increasing, we have

IX,N (Tn0+1) ≤ IX,N (Tn0). (21)

This leads to

Tn0+2 < Tn0+1 (22)

and so, for alln ≥ n0, we obtain

Tn+1 < Tn, (23)

(24)

which means that the sequence{Tn}n≥n0 decreases.
As Tn0 is in [Ta, Tb], it follows that

Ta < Tn0 (25)

and hence

IX,N (Ta) ≤ IX,N (Tn0). (26)

As we assumed

Ta ≤ IX,N (Ta) (27)

we find

Ta ≤ Tn0+1 (28)

therefore, we have for alln ≥ n0

Ta ≤ Tn (29)
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Hence{Tn}n≥n0 decreases and is bounded from below byTa. Consequently, it
converges to a limitT` = infn≥n0(Tn) betweenTa andTn0 . As the iteration
function IX,N is piece-wise constant with a finite number of discontinuities, its
image including the values taken by the sequence{Tn}n>n0 is countable and finite.
As a consequence, there exists an` such that

Tn`
= T` = inf

n≥n0

(Tn). (30)

By definition of the lower bound, we have,

T` = inf
n≥n0

(Tn) ≤ Tn`+1, (31)

on the other hand, the sequence{Tn}n≥n0 decreases, therefore

Tn`+1 = IX,N (Tn`
) ≤ Tn`

. (32)

Hence

Tn`
≤ IX,N (Tn`

) ≤ Tn`
(33)

and therewith, we have shown that

Tn`
= IX,N (Tn`

) (34)

Conversely, if

IX,N (Tn0) > Tn0 (35)

one can show analogously that{Tn}n≥n0 is increasing and upper-bounded, and
therefore converges betweenTn0 andTb.

Corollary 1. One has
IX,N (0) = 0

and
sup

T∈R+

IX,N (T ) = T0 = (2 ln(N))1/2 σ0.

Therefore the sequence{Tn}n∈N converges to a limitT` ∈ [0, T0]. In addition, the
limit T` is reached after a finite number of iterationsn` bounded from above byN .

Proof. Using (15) to computeIX,N (0) from those coefficients whose modulus is
smaller than0, it naturally follows thatIX,N (0) = 0. On the other hand, for any
other thresholdT , the valueIX,N (T ) is maximum when all the coefficients̃Xλ are
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taken in the sum of expression (15). This maximum is equal toT0 and it is obtained
for any thresholdT larger than

Tmax = sup
λ∈ΛJ

|X̃λ|.

Therefore, there exists a thresholdTb ≥ max(T0, Tmax) such thatIX,N (Tb) =
T0 ≤ Tb.

Now we apply theorem 1 toIX,N on the interval[0, Tb] to show that the se-
quence{Tn}n∈N converges to a limitT` ∈ [0, Tb]. As IX,N (Tb) = T0, the limitT`

is actually in[0, T0].

In addition, the proof of theorem 1 shows that{Tn}n∈N reaches the limitT`

after a finite number of iterationsn`. This number is bounded by the finite number
of discontinuities ofIX,N and is smaller than the numberN of wavelet coefficients
X̃λ.

Another consequence of theorem 1 is the stability and self consistency of the
recursive algorithm. The following corollary shows that when the noisy part of
a signalX has been removed by the recursive procedure, a second pass does not
change the result previously obtained.

Corollary 2. Let
A : X 7→ FT`

(X)

be the operator corresponding to the recursive algorithm described above, then

A(A(X)) = A(X) ∀ X ∈ H.

This means thatA is a non linear projector.

Hence, if one applies the algorithm to the result of a previous estimation, the
recursive procedure yields a threshold which is equal to zero. Therefore, the re-
sulting estimation coincides with the previous one.

Proof. This property can be shown by looking at the graph of the iteration function
corresponding toA(X) defined as

IA(X),N (T ) =

2 ln(N)
N

∑
λ∈ΛJ

|ρc
T (ρT`

(X̃λ))|2
1/2

whereT` > 0 is the threshold obtained with the first recursive procedure. The
iteration functionIA(X),N has the following properties

IA(X),N (T ) < IX,N (T ) ∀ T ∈ R+ (36)
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as it corresponds to a partial sum of the terms inIX,N (T ). Furthermore, the fact
that

ρc
T ◦ ρT`

= 0 ∀ T < T` (37)

implies

IA(X),N (T ) = 0 ∀ T < T`. (38)

As we have shown that

IX,N (T ) ≤ T ∀ T ≥ T` (39)

it follows that

IA(X),N (T ) < T ∀ T ≥ T`. (40)

On the other hand, we have forT < T` that

IA(X),N (T ) = 0 ≤ T . (41)

The equality holds forT = 0, which is thus the only fixed point ofIA(X),N and
therefore this is the only possible limit for the sequence of thresholds{Tn}n∈N.

3.3 Convergence for Gaussian white noise

In this subsection, we study theoretically the situation when the algorithm is ap-
plied to a Gaussian white noiseW . In this case, as the analytic expression of the
probability density function of the noise is known, it is possible to derive conclu-
sions on the behavior of the recursive algorithm.

The orthonormality of(ψλ) implies that{W̃λ}λ∈ΛJ is also Gaussian white
noise. Therefore, it is possible to compute the probability for a wavelet coefficient
of the noiseW to be above the thresholdTD

P
(
|W̃λ| > TD

)
= 1− P

(
|W̃λ| ≤ TD

)
= 1− 2

σW

√
2π

∫ ∞

TD

exp

(
−w̃2

2σ2
W

)
dw̃

= 1− erf
(

TD

σW 21/2

)
= 1− erf(

√
ln(N))

(42)

whereerf(x) = 2
π1/2

∫ x
0 exp(−t2)dt.

An asymptotic expansion oferf(x) for largex shows that

P
(
|W̃λ| > TD

)
=

1
N
√
π ln(N)

+ o

(
1

N
√

ln(N)

)
(43)
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For the probability that the maximum wavelet coefficient of a Gaussian white
noise sampled overN values is aboveTD one has

P

(
max
λ∈ΛJ

(
|W̃λ|

)
> TD

)
= 1− P

(
max
λ∈ΛJ

(
|W̃λ|

)
≤ TD

)
. (44)

As the coefficientsW̃λ are independent, one can express the probability of the
maximum value ofW̃λ as a function of the probability of the single variableW̃λ

P

(
max
λ∈ΛJ

(
|W̃λ|

)
> TD

)
= 1−

[
P
(
|W̃λ| ≤ TD

)]N
= 1−

[
erf(

√
ln(N))

]N
.

(45)

Using (43) this yields

P

(
max
λ∈ΛJ

(
|W̃λ|

)
> TD

)
∼ O

(
1√

π ln(N)

)
(46)

These results show that forN large enough, there is almost no chance for any
value of|W̃ | to be larger than the valueTD. Hence, for almost all realizations, one
has

Λc
TD

= ΛJ .

One can now remark that, following definitions ofTD andT0, one has

TD = (2 ln(N))1/2 σW = (2 ln(N))1/2 σX = (2 ln(N))1/2 σ0 = T0.

As a consequence, the first step of the algorithm yields

IW,N (T0) = IW,N (TD) =

2 ln(N)
N

∑
λ∈ΛJ

|W̃λ|2
1/2

= T0 = TD (47)

This shows that the threshold valueT0 corresponding to the initial value of the
sequence{Tn}n∈N is a fixed point of the iteration functionIW,N . This results in
stopping the recursive algorithm after the first step.

In addition, using the analytical expression of the Gaussian probability density
function of the noise and the link between the iteration functionIW,N and the
empirical histogram defined in (17), one can show that there exists a threshold
valueTa < T0 such that for allT in [Ta, T0[, one has

IW,N (T ) ≥ T .

13



This confirms that the bell shape of the Gaussian PDF of the wavelet coeffi-
cients of the noise, with its large width and its strong decay at the tails, is respon-
sible for the convergence of the algorithm towards the limitT` = TD = T0. Note
thatT0 also corresponds to the valueTmax defined in the proof of corollary 1.

As a consequence, the noiseW is invariant with respect to the recursive noise
extractorAc defined as

Ac : X 7→ F c
T`

(X) = Id−A(X)

One has

Ac(W ) = W

In other words, the recursive algorithm is able to perfectly identifyW as Gaus-
sian white noise rather than a signal.
The remaining question is to determine ifT` is a correct estimator ofTD, for X
being a noisy signal resulting of the superposition of a given signalf and a noise
W . The next section does not prove this result formally, but instead shoes as a first
approach that it is verified for a set of various numerical examples.

4 Numerical application

4.1 Application to 1D and 2D test signals.

In the following we validate numerically the above recursive algorithm for for 1D
and 2D test signals and illustrate its properties. We construct a noisy signalX by
superposing to different signalsf a Gaussian white noiseW ∈ N (0, σW ) with
given varianceσ2

W , produced by a standard random number generator. First we
apply the recursive algorithm to the signalf without any noise, then to the noise
W only, and finally to the noisy signalX for several signal to noise ratios (SNR),
whereSNR is defined by :

SNR = 10 log10

(
σ2

f

σ2
W

)
= 20 log10

(
σf

σW

)
. (48)

The aim is to track the influence off andW on the results obtained for the total
signalX by looking at the influence ofIf,N andIW,N on the iteration function of
the total signalIX,N .

For each signal to noise ratio, we compare the results of non-linear wavelet
thresholding using the recursively found thresholdT` and the universal threshold
TD computed with the known variance of the noiseσ2

W . In order to evaluate the
performance of our method, we also compare the results with those obtained using
the estimatorTm of the universal threshold given by the Median Absolute Devi-
ation method (MAD) [2]. This method relies on the fact that the sparsity of the
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wavelet coefficients off increases for smaller scales for signals with isolated sin-
gularities. Hence, the median of the modulus of the wavelet coefficients of the
noisy signal is insensitive to the amplitude of these few strong outliers. Therefore,
it is a good estimator of the median of the modulus of the coefficients of the noise.
For Gaussian white noise we have,

med
λ=(j,i)∈{(j,i),j=J}

(|W̃λ|) = 0.6745σW .

From this formula, one obtains the MAD threshold

Tm =
(2 ln(N))1/2

0.6745
med

λ=(j,i)∈{(j,i),j=J}
(|X̃λ|) (49)

4.1.1 Application to a 1D signal without noise

This section presents the iteration functionIf,N corresponding to the signalf
shown on Fig. 2. It is a piece-wise regular signal provided with theWaveLab
software package [9]. It has been normalized such that

σf = (
1
N

N−1∑
k=0

|f [k]|2)1/2 = 10

We compute the discrete wavelet transform of the discrete signalf sampled on
N = 8192 points using the Coiflet wavelets with four vanishing moments. These
wavelets are almost symmetric, and the coefficients corresponding to the scaling
function at the smallest scale are almost equal to the samplesf . This reduces the
computation of the wavelet coefficients to the simple Mallat’s fast wavelet trans-
form and avoid expensive interpolation procedures.

In Fig. 3, we plotted the iteration functionIf,N (T ) for valuesT in the interval

[10−8Tmax , Tmax, whereTmax = supλ∈ΛJ |f̃λ| is the magnitude of the largest
wavelet coefficient of the signalf . We observe that the graph ofIf,N remains
below the liney = x and hence has no fixed point in this interval. According
to theorem 1, the sequence of thresholds{Tn}n∈N should therefore converge to a
limit T` below10−8Tmax.

When applying the recursive algorithm tof , we actually obtain a limitT` =
1.7 10−6 = 3.1 10−9Tmax. This threshold corresponds to a relative mean square
errorE(T`) = 4.7 10−14 which is negligible. The corresponding number of itera-
tions wasn` = 21.

This behavior essentially comes from the piece-wise regularity off which im-
plies the sparsity of the wavelet representation off . As a result, most of the wavelet

coefficientsf̃λ have values concentrated close to zero. Therefore, the moment of

inertia
(
If,N (T )

)2
of the empirical histogram of the coefficients smaller than the

thresholdT increases slower thanT 2.
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Consequently, the signalf is invariant with respect to the recursive denoising
processA and one has :

A(f) = f

Hence, similarly to what has been shown analytically in section 3.3 for the
noiseW , the recursive algorithm was able to perfectly identifyf as being signal
without any noise.

4.1.2 Application to Gaussian white noise

This section validates numerically the conclusions of the theoretical study of sec-
tion 3.3 where the recursive algorithm was applied to a Gaussian white noise.

We compute the iteration functionIW,N corresponding to a realizationW of
a Gaussian white noise of sizeN = 8192 with a varianceσ2

W = 1 provided by a
standard random number generator. The graph ofIW,N is displayed in Fig. 4.

We first notice that this graph shows the piece-wise constant nature of the it-
eration function. Note that this characteristic is more visible for small threshold
values. We also observe that the iteration functionIW,N presents two fixed points.
The right intersection point ofIW,N andy = x denoted byA corresponds exactly
to the abscissaTD = 4.24. For valuesTn greater thanTD, the curve is flat because
TD = T0 is the maximum value ofIW,N . Conversely, as mentioned in section
3.3, the graph ofIW,N bumps overy = x on the left side of pointA. This is a
consequence of(IW,N )2 being the second order moment of the histogram ofW̃λ.
Due to the fast decay of the Gaussian function, the derivative ofIW,N on the left
side ofTD is almost zero andIW,N is nearly horizontal there.

As expected from these observations the recursive algorithm reaches conver-
gence at the first step. Hence one hasn = n` = 1 with the thresholdT` = 4.240
being almost equal toTD = 4.245. Using this threshold, we found that only
one of theN = 8192 coefficients whose valuẽWλ0 = 4.29 is larger than the
thresholdT` = 4.24. This yields an almost perfect estimation ofW by A(X) =
F c

T`=TD
(W ) 'W .

As shown in section 3.3 and as previously observed for signalf ,W is invariant
with respect to the recursive denoising processA.

In the following, we consider the situation that arises when noiseW is added
to the signalf .

4.1.3 Application to the signal plus noise

In this case, we apply the recursive algorithm toX = f + W . We first study the
results obtained withσf = 10 andσW = 1, which correspond to signal to noise
ratio is equal to20 db. The number of points is stillN = 8192. Fig. 5 summarizes
the iteration curves computed forX, f , andW . One observes thatIX,N is super-
posed onIW,N for small values ofTn whereas it followsIf,N for large values of
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Tn, up to the pointC corresponding to the first iteration of the algorithm.

An explanation of this behavior can be found by looking at the histograms of
the wavelet coefficients ofX, f andW which are respectively related to the itera-
tion functionsIX,N , If,N andIW,N .
Fig. 6 shows the histograms of the wavelet coefficients corresponding to Fig. 5. As
explained in section 4.1.1, the sparsity of the wavelet representation off causes

most coefficients(f̃λ) to be close to zero. ThereforeIf,N remains below the line
y = x.

One also observes that the histogram of(X̃λ) and the histogram of(f̃λ) present
the same heavy tails for values larger than the maximum magnitude of the noise
TD = (2 ln(N))1/2σW = 4.24 (cf. section 4.1.2). This coincides with the fact that
IX,N superposes uponIf,N for values larger thanTD. An interpretation of this

superposition is that the heavy tails of the PDF of(f̃λ) have a strong weight in the
second order moment of the histogram of the coefficients(X̃λ). On the contrary,
the coefficients of the noise being concentrated within the range[−TD, TD], their
contribution toIX,N (T ) for T larger thanTD remains negligible.

At the opposite, whenT is smaller thanTD, most of the coefficients(f̃λ)
smaller thanT have their value close to zero. Therefore their contribution to the
moment of inertia

(
IX,N (T )

)2
is dominated by the contribution of the coefficients

(W̃λ) whose distribution far from zero is wider. Thus the noiseW dominatesf in
the graph ofIX,N for smallT . This is still true forT approachingTD as soon asf
is sparse enough in wavelet coefficients space.

The consequence is that the intersectionB of IX,N with y = x remains close
to the intersectionA of IW,N with y = x. Therefore, the limitT` of the recursive
algorithm applied toX is close to the limit obtained for the noise alone which is
equal toTD.

This is true since no other fixed point is present for larger values of the thresh-
old T , thanks to the fact that betweenB andC, IX,N is belowy = x.

For the considered signal to noise ration of20db, the algorithm converges to
the valueT` = 4.30 which is close to the universal thresholdTD = 4.24. The
resulting estimationsFT`

(X) andF c
T`

(X) of f andW , respectively, are shown in
Fig. 2.

The iteration functions results for signal to noise ratiosSNR = 10, SNR =
40 andSNR = 100 are shown on Fig. 7.

We observe that despite the wide range of differentSNR, the global behavior
of IX,N is preserved. The iteration function for the total signal is still superimposed
uponIW,N for threshold values smaller thatTD and switches toIf,N for larger
values of the thresholdT . The thresholdsT` obtained are summarized in the table
1. It summarizes the results of wavelet thresholding using different thresholds. We
tested the thresholdT` given by the recursive algorithm, the universal thresholdTD

and the median based thresholdTm. The values ofT`, Tm andTD are displayed
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for differentSNR along with the resulting mean square errors defined in (10) of
the estimationsE(T`), E(Tm), E(TD) for the1D signal of Fig. 2. These errors are
related to enhanced signal to noise ratios resulting of the denoising and defined as

SNR′(T ) = 20 log10

(
‖f‖L2

‖f − FT (X)‖L2

)
= −10 log10(E(T )).

One can observe thatT` gets closer toTD asSNR increases.
We remark that the fact that we obtain an better estimation of the level of the noise
σW = TD

(2 ln(N))1/2 for a weaker contribution of the noise to the signalX might
sound counterintuitive. This phenomena comes from the fact that the value of
IX,N (T ) is insensitive to values of(X̃λ) larger thanT . As explained above, due
to the sparsity of the wavelet coefficients(f̃λ), the values of(X̃λ) weaker than the
thresholdTD are strongly dominated by the coefficients of the noise. As a conse-
quence the influence of strong signal to noise ratios onIX,N (T ) is hidden forT
being up toTD. However, this depends on the distribution of the wavelet coeffi-
cients off that are smaller thanTD. Therefore, the evolution of the shift observed
betweenT` andTD for differentSNR can be different for other types of signal.

We also observe that despite the fact that the thresholdTm is usually closer to
TD thanT` and the errorE(Tm) is smaller than the errorE(T`), the performances
of the two methods are of same order. Moreover, for allSNR, the thresholdTD

results in a larger error than the thresholdsTm andT`. This surprising result shows
the non-optimality of the universal threshold as well as the good performance of
both approaches usingTm andT`, especially for weak signal to noise ratios. How-
ever, for increasingSNR, the performance of the estimation with each method
gets more uniform.

We also observed that the number of iterationsn` increases with the signal to noise
ratio. This is consistent with the fact that only one iteration is needed for the
noise alone (which corresponds toSNR = −∞) and that the maximum number
of iterations is obtained for the signal without added noise (which corresponds to
SNR = +∞).

We interpret this result by saying that the wavelet coefficients of the noise are
responsible for deflecting the graph ofIX,N above the liney = x. This deflection
interrupts the sequence of iteration by forcing the decreasing sequence of thresh-
oldsTn to converge to the intersection pointB. The stronger the noise level, the
sooner the deflection and the convergence.

The histograms of the estimated signalsFT`
(X), FTm(X) obtained using the

thresholdsT` andTm, and the histogram of the corresponding estimations of the
noiseF c

T`
(X), F c

Tm
(X) are shown on Fig. 9. One observes that they are very

well superposed. This confirms that for this academic case, the performance of the
recursive algorithm is comparable to the one of the median based wavelet thresh-
olding.
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SNR −∞ 10 20 40 100 +∞

σf 0 10
1
2 10 102 105 σW =0

σf =10
n` 0 4 5 7 12 21

T` 4.24 4.34 4.30 4.30 4.23 1.7 10−6

Tm 4.19 4.19 4.20 4.20 4.24 9.9 10−7

TD 4.24 4.25 4.25 4.25 4.25 0

E(T`) +∞ 7.28 10−3 6.46 10−4 9.72 10−6 2.04 10−11 4.7 10−14

E(Tm) +∞ 7.06 10−3 6.36 10−4 9.77 10−6 2.04 10−11 8.9 10−16

E(TD) +∞ 7.32 10−3 6.68 10−4 9.77 10−6 2.04 10−11 0
SNR′(T`) −∞ 21.37 31.90 50.12 106.9 133.3
SNR′(Tm) −∞ 21.51 31.96 50.10 106.9 150.5
SNR′(TD) −∞ 21.35 31.75 50.10 106.9 +∞

Flat. ofF c
T`

(X) 3.05 3.08 3.03 3.08 3.14 5.00
Flat. ofF c

Tm
(X) 3.05 3.08 3.03 3.08 3.14 4.28

Flat. ofF c
TD

(X) 3.05 3.08 3.03 3.08 3.14 undefined

Table 1: Numerical results for the 1D signal : , number of iterations before con-
vergencen`, thresholdsT`, Tm and TD, the relative errorsE(T`), E(Tm) and
E(TD) and the corresponding enhanced signal to noise ratiosSNR′ obtained for
SNR = 10 db, 20 db, 40 db and100 db and the two limit casesSNR = ±∞. For
all lines columns,σW = 1, except for the last one (c.f. section 4.1.1). The flatness
of the estimated noisesF c

T`
(X), F c

Tm
(X) andF c

TD
(X) is also given
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↙ ↘
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Figure 2: Construction of a 1D noisy signalX = f +W (SNR = 20 db), and its
nonlinear wavelet thresholding using the thresholdT`.
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1

Tn

Figure 3: The graph of the iteration functionIf,N (T ) for the signal (Fig. 2 top,
left). The pointC corresponds to the first iteration of the algorithm.

T
n
+

1

Tn

Figure 4: The graph ofIW,N , when the processW is Gaussian white noise. The
pointA corresponds to the right hand intersection between the graphs ofIW,N and
y = x.
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Figure 5: Analysis of the 1D signal withSNR = 20 db : the iteration functions
IW,N ,If,N ,IX,N for W f andX respectively. The pointsA and B correspond
to the intersections between the graphs ofIW,N andIX,N with the liney = x,
respectively. The pointC corresponds to the first iteration of the algorithm applied
to the total signalX and its abscissa isT0.
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Figure 6: Histograms of the wavelet coefficientsX̃λ, f̃λ, andW̃λ for the 1D signal
with SNR = 20 db
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Figure 7: Iteration functionsIX=f+W,N , If,N andIW,N for σW = 1 andσf taken

successively equal to101/2 (plot (a),SNR = 10 db),102 (plot (b)SNR = 40 db)
and105 (plot (c)SNR = 100 db).
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Figure 8: Histograms of signalf , the noisy signalX and the noiseW for the 1D
signal withSNR = 20 db.
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Figure 9: Histograms of the estimated signal and noise using thresholdsT` andTm

for the 1D signal withSNR = 20 db.
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4.1.4 Application to a 2D test signal

In this section, we present the results obtained by applying the recursive algorithm
to a 2D discrete signalX sampled onN = 5122 grid points. The signalX is
obtained by the superposition of a 2D signalf composed of randomly located
axisymmetric cusps, and a 2D realizationW of a Gaussian white noise.

Surface plots of the signalsX, f andW are shown in Fig. 10 (top and center).
We choseσf = 3.163 andσW = 1 resulting inSNR = 10.

We compute the corresponding iteration functionsIX,N , If,N andIW,N . They
are displayed on Fig. 11.

We first remark that conversely to the 1D case, the curveIf,N corresponding
to the signal alone intersects the liney = x for a small value of the threshold
betweenT = 10−4 andT = 10−3. We interpret this as a consequence of a less
sparse wavelet representation of the signalf . These more numerous weak wavelet
coefficients off may be due to the fact that in such a 2D signal, axisymmetric
singularities are difficult to capture for the 2D orthogonal wavelets of a tensor
product multi-resolution analysis. For these reasons, more wavelet coefficients of
little energy are required in order to representf correctly.

However, the most striking feature of Fig. 11 is that similarly to the 1D case,
the wavelet coefficients of the noise are responsible for deflecting the graph of
IX,N from If,N to IW,N when the threshold valueT decreases. We observe that it
intersects the liney = x very close to the intersection betweenIW,N andy = x.
This shows that when applied toX, the recursive algorithm converges to a limit
threshold valueT` close toTD.

When applying the algorithm, we find a limitT` = 5.13 ' TD = (2 ln(5122))1/2 =
4.99. The resulting estimationsFT`

(X) andF c
T`

(X) for f andW are shown on
Fig. 10 (bottom). As expected, the estimationFT`

(X) shows an efficiently de-
noised version of the signalX. The corresponding numerical results are summa-
rized in table 2. As in the 1D case, the results usingT`, Tm andTD are very
close. This shows the validity of the recursive algorithm for estimating the suitable
threshold value. This is confirmed when looking at the histograms of Fig. 13 and
Fig. 14. The results of the estimations usingT` andTm are almost perfectly super-
posed. Fig. 12 shows the PDF of the wavelet coefficients ofX, f , andW . One can
see that the threshold valueT` = 5.13 corresponds to the value for which the PDF
of X̃λ moves from the PDF of̃fλ to the one ofW̃λ.
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Figure 10: Construction of a 2D noisy signalX = f +W (SNR = 10 db), and its
nonlinear wavelet thresholding using the thresholdT`.
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n
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Tn

Figure 11: Iteration functionsIX,N , If,N andIW,Ncorresponding to the 2D signals
X, f and to the noiseW .

SNR 10
σf 10

1
2

n` 4
T` 5.13
Tm 5.01
TD 4.99
E(T`) 7.57 10−3

E(Tm) 7.34 10−3

E(TD) 7.28 10−3

SNR′(T`) 21.20
SNR′(Tm) 21.34
SNR′(TD) 21.37

Flat. ofF c
T`

(X) 3.32
Flat. ofF c

Tm
(X) 3.30

Flat. ofF c
TD

(X) 3.30

Table 2: ThresholdsT`, Tm andTD, the relative errorsE(T`), E(Tm) andE(TD)
and the corresponding enhanced signal to noise ratiosSNR′ obtained forSNR =
10 db, with σW = 1.
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Figure 12: Histograms of wavelet coefficients̃Xλ, f̃λ, W̃λ for the 2D case
withSNR = 10 db.
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Figure 13: Histograms of the 2D signalf , noisy signalX and noiseW , with
SNR = 10 db.
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Figure 14: Histograms of estimated signalsFT`
(X) andFTm(X), and the corre-

sponding noisesF c
T`

(X) andF c
Tm

(X) (SNR = 10 db).
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Method recursive median

Threshold T` = 0.32 Tm = 0.19
Retained coefficients 0.24% 1.41%

Retained variance 35% 98%
Estimated

signal to noise
ratio
SNR

-2.88 18.41

Flatness of
the estimated

noise
3.66 3.16

n` 2

Table 3: Numerical results for the experimental signal

4.2 Application to a Bose-Einstein condensate

4.2.1 Description of the signal

The signal presented in this section is an absorption image measuring the density
of atoms in a Bose-Einstein condensate [8]. It was obtained using a CCD camera
for measuring the optical density of lithium atoms confined in a magnetic trap and
cooled by evaporation using a microwave field. Its surface plot is shown in Fig. 15
(top). The number of sample points isN = 1282.

We apply the recursive wavelet thresholding algorithm to remove the strong
noise observed in the signal and we compare the results obtained using both thresh-
oldsT` andTm. As the signal and noise components are unknown, we check the
quality of the estimation by looking at the estimated fields in physical space, at
their histograms computed both in physical and wavelet space and their Fourier
power spectra.

4.2.2 Numerical results

Table 3 presents the numerical results obtained. We define an estimatedSNR

SNR = 10 log10

‖FT (X)‖2

‖F c
T (X)‖2

corresponding to the estimated signal to the estimated noise ratio. Therefore, it
does not quantifies the performance of the denoising. The quality of the filtering
is given by the agreement between the estimatedSNR and the realSNR that has
to be estimated by some other means. Note thatSNR depends on the filtering
method used.
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We observe a large difference betweenT` andTm as well as between the pro-
portion of coefficients and variance retained by either the recursive or the median
based method. TheSNR obtained is very different according to the threshold
used. Looking at the noisy signal in physical space (see Fig. 15 and Fig. 15) make
us conjecture thatSNR = 18.41 does not correspond to the realSNR. The flat-
ness of the estimated noise for both methods is close to3, which is the flatness of
a Gaussian white noise. The noise estimated by the median based method is thus
closer to the Gaussianity.

4.2.3 Results in physical space

One observes in Fig. 15(middle) that the recursive algorithm extracts the signal
from the noise very well. On the contrary, Fig. 15 (bottom) shows that the median
based thresholdTm is too small for removing all parts of the noise. This residual
noise is therefore still present in the estimated signalFTm(X) which explains the
large percentage of retained energy that results in the value ofSNR = 18.41.

4.2.4 Histograms of the wavelet coefficients

Figures 16(top) and 16(bottom) show the histogram of the wavelet coefficients of
the signal superposed on the histograms obtained for the estimated signal and the
estimated noise for both methods. One can observe the effect of the threshold-
ing on these histograms which are simply separated by the value corresponding
to the thresholdsT` andTm. The vertical line at the value zero corresponds to
the coefficients set to zero after thresholding. One observes that the thresholdT`

corresponds to the point where the histogram of the noisy signal changes from a
Gaussian-like shape to the more irregular shape of large non-Gaussian tails. On
the contrary, the median based thresholdTm corresponds to an intermediate value
of the Gaussian part of the histogram. A comparison with the fitted Gaussian curve
shows, however, that the fit is not perfect. Taking the median of the modulus of the
weak wavelet coefficients responsible for this part of the histogram could therefore
yield an incorrect estimation of the variance of the noise.

4.2.5 Histograms computed in physical space

The histograms of the noisy signalX and the estimated signal and noise are pre-
sented for both methods in Fig. 17(top) and Fig. 17(bottom). One observes that the
tails of the histogram of the estimated signal are shorter when using the threshold
T` than when using the thresholdTm. This is consistent with the fact that no spuri-
ous noisy oscillation are observed on the denoised field obtained withT` whereas
the signal estimated usingTm shows this type of noisy structures which results in a
wider histogram. As a counterpart, the noise looks more Gaussian when extracted
using the median based threshold. This is related to the value of the flatness of the
noise which is closer to3 for the median method. We also observe that for both
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Figure 15: Wavelet filtering of an experimental 2D noisy signal (top) using the
thresholdT` found with the recursive algorithm (middle) and the median based
thresholdTm (bottom).
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Figure 16: PDFs of the wavelet coefficients̃Xλ, (F̃T`
(X))λ, and(F̃ c

T`
(X))λ ob-

tained using the recursive algorithm (top) and PDFs of the wavelet coefficients
X̃λ, (F̃Tm(X))λ and(F̃ c

Tm
(X))λ obtained using the median based thresholdTm

(bottom)

35



methods, the histogram of the estimated signal is not well superposed to the one of
the noisy signal. This may be a consequence of the low signal to noise ratio.

4.2.6 Fourier spectra

The isotropic Fourier power spectra of the noisy signal and its two estimated com-
ponents are shown for both methods in Fig. 18 and Fig. 19. One can observe a very
strong signature of the noise as a linear part of the spectrum ofX at small scales.
This linear part exhibits a slopek+1, typical of white noise. We observe that when
using the thresholdTm the spectrum of the estimated signal also present such a
linear part, revealing the presence of remaining noise. On the contrary, the spec-
trum of the estimated signal obtained using the recursive algorithm is free from this
linear component. Hence, we conclude that the noise has been correctly removed.

4.2.7 Conclusion for the experimental case

The recursive algorithm is more efficient than the median based method for the de-
noising of this experimental signal. We conjecture that this is a consequence of the
not perfectly Gaussian distribution of the noise that leads to a wrong estimation of
the threshold computed from the median of the modulus of the wavelet coefficients
of the noisy signal. On the contrary, the recursive algorithm, by converging to the
fixed point of the iteration function actually converges to the threshold correspond-
ing to the change of behavior in the histogram of the wavelet coefficients of the
noisy signal. This convergence is more robust with respect to a not exactly Gaus-
sian distribution of the noise. This robustness explains why the median threshold
gives a slightly better result with academic signals for which the Gaussianity of the
noise is guaranteed, but fails to remove the noise completely from a real experi-
mental signal.

5 Conclusions

We presented a new recursive algorithm to determine automatically the threshold
value of the wavelet coefficients to recover a signal in the presence of Gaussian
white noise. This efficient and simple algorithm is based on a recursion in wavelet
coefficient space to estimate the variance of the noise. A mathematical justifica-
tion of the scheme is given applying fixed point type arguments to guarantee the
convergence of the process. We proved that the algorithm is stable and converges
with a finite number of iterations bounded from above by the number of samples,
but usually much less. Numerical examples in one and two dimensions illustrated
the properties and validity of the scheme for different signal to noise ratios. We
observed that the number of iterations increases with the signal to noise ratio. Fol-
lowing our experience we have some evidence that it also depends on the sparsity
of the wavelet representation of the signal, i.e. the more sparse the wavelet rep-
resentation of the signal, the faster the convergence. For the academic examples
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Figure 17: PDFs ofX, FT`
(X) andF c
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(X) in physical space obtained using the

recursive algorithm (top) and PDFs ofX, FTm(X) andF c
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(X) obtained using
the median based thresholdTm (bottom)
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Figure 18: Energy spectra ofX, FT`
(X), F c

T`
(X) obtained using the recursive

algorithm.

Figure 19: Energy spectra ofX, FTm(X), F c
Tm

(X) obtained using the median
based thresholdTm.
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studied here we found that the threshold obtained with the algorithm and that the
error E(T ) of the corresponding estimation are very close to the ones obtained
using the universal threshold proposed by Donoho & Johnstone [2] and the thresh-
old estimated from the median of the wavelet coefficients of the noisy signal at
small scales. Moreover, the recursive algorithm gave better results than the me-
dian based wavelet thresholding estimator when applied to an experimental signal.
This suggests that the algorithm is more robust with respect to a departure from the
academic situation of a perfectly Gaussian white noise.

Future work is concerned with the generalization of the algorithm to non Gaus-
sian distributions of the noise and to the case of colored, i.e. correlated, noise. We
are also extending the approach to vector-valued signals, e.g. velocity or vorticity
fields, in order to apply it to coherent vortex extraction in turbulent flows.
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Notes des Activités Instrumentales

Contact :Jean Jouzel, Directeur de l’IPSL

Présentation de l’IPSL : IPSL overview :
• L’Institut Pierre-Simon Laplace (IPSL) est une fédéra-
tion de recherche qui regroupe six laboratoires en région
francilienne (CETP, LBCM, LSCE, LMD, LODYC, SA).

• The Institut Pierre-Simon Laplace (IPSL) is a federa-
tive research institute that gathers six laboratories in the
Paris area (CETP, LBCM, LSCE, LMD, LODYC, SA).

• L’IPSL est sous la tutelle conjointe du Centre Natio-
nal de la Recherche Scientifique, des Universités Pierre
et Marie Curie et Versailles Saint-Quentin, du Commis-
sariat à l’Energie Atomique, de l’Institut de Recherche
pour le Développement, de l’Ecole Normale Supérieure
et de l’Ecole Polytechnique.

• IPSL is under the joint tutorship of CNRS (France’s
major basic-research organization), CEA (France’s ato-
mic energy research center), IRD (France’s cooperative
research and development agency) and France’s four lea-
ding institutions of higher learning in the sciences : Uni-
versity Pierre et Marie Curie, University Versailles Saint-
Quentin, Ecole Normale Supérieure and Ecole Polytech-
nique.

• L’IPSL remplit une triple mission de recherche, d’en-
seignement et de service d’observation. L’étude des diffé-
rentes composantes de l’environnement terrestre (océan,
atmosphère, biosphère, cryosphère, surfaces continen-
tales) constitue l’objectif central de recherche de l’IPSL.
Cette étude va de l’échelle locale à l’échelle globale, elle
concerne l’évolution passée et future de la planète Terre,
l’étude de l’environnement ionisé de la Terre et celle des
environnements planétaires. Elle se fonde sur une ap-
proche incluant développements expérimentaux, obser-
vation et modélisation.

• The missions of IPSL include research, teaching and
scientific monitoring. The research programmes conduc-
ted within the Institute include the study of the main com-
ponents of the Earth’s environment from the local to the
global scale (ocean, atmosphere, biosphere, cryosphere,
continental surfaces). These research concern the past
and future evolution of the planet Earth, the study of
the ionised environment of the Earth and of planetary
atmospheres in the solar system. These scientific activi-
ties are based on experimental developments, observation
and modelling.

• L’IPSL et ses laboratoires sont rattachés aux Ecoles
Doctorales "̆aSciences de l’Environnement" et "Astro-
physique" d’Ile-de-France.

• The Institut Pierre-Simon Laplace and its laborato-
ries are part of the Graduate Schools "ăEnvironmental
Sciences" and "Astrophysics" of Ile-de-France.

IPSL - UPMC Case 102 IPSL - UVSQ
4, Place Jussieu 23, rue du Refuge
75252 Paris Cedex 05 - France 78035 Versailles - France

http ://www.ipsl.jussieu.fr

Laboratoires :
• Centre d’Etudes des Environnements Terrestre et Planétaires [CETP] http ://www.cetp.ipsl.fr
• Laboratoire de Biochimie et Chimie Marines [LBCM]
• Laboratoire des Sciences du Climat et de l’Environnement [LSCE] http ://www-lsce.cea.fr
• Laboratoire de Météorologie Dynamique [LMD] http ://www.lmd.jussieu.fr
• Laboratoire d’Océanographie Dynamique et de Climatologie [LODYC] http ://www.lodyc.jussieu.fr
• Service d’Aéronomie [SA] http ://www.aero.jussieu.fr




