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Abstract

Nonlinear thresholding of wavelet coefficients has been shown to
be an efficient method for denoising signals with isolated singularities
corrupted with Gaussian white noise [2]. A quasi optimal value for
the threshold can be computed from the noise level using the formula
TD = σW (2 lnN)1/2, where N is the number of available samples of the
signal and σW is the standard deviation of the noise. However, in most
situations the noise level is unknown and has to be estimated. This
paper studies an algorithm proposed in [3] which evaluates the value
for the threshold. It recursively approximates the standard deviation
of the noise with the standard deviation of the noisy signal, computes
a threshold value and performs a first split from which it extracts a
better estimate of the noise. Then, it iterates this procedure using the
new estimate of the noise to compute the new threshold. The iteration
stops when the threshold remains unchanged from its previous value.
We show that the convergence of the sequence of estimated thresholds
depends on a functional of the probability density function (PDF) of
the noisy signal. We also find that the sequence converges towards
the theoretical value TD provided that the wavelet representation of
the signal is sufficiently sparse. We compare the results obtained for
examples in 1D and 2D with the results of a standard method based
on the median of the wavelet coefficients of the noisy signal at small
scale. Finally, we show that the recursive algorithm gives better results
than this method when applied to an experimental signal measuring
the atomic density of a Bose-Einstein condensate [8].
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1 Introduction

Nonlinear thresholding of the wavelet coefficients has been proposed by
Donoho and Johnstone [2] to denoise signals corrupted by a Gaussian white
noise, and it has later been generalized to correlated and non Gaussian
noises [6]. The noisy signal is transformed into wavelet coefficient space,
then only the coefficients whose modulus is above a given threshold value
are kept, and the denoised signal is obtained using an inverse wavelet trans-
form. The threshold value only depends on the sample’s size and the noise’s
variance. This method automatically adapts to the local structure of the
signal and it has been proven that it minimizes the maximum L2 risk in a
whole class of functions, including Hölder and Besov spaces, without any a
priori knowledge of the signal. It also turned out that it outperforms linear
methods, in particular for functions with an inhomogeneous regularity, e.g.
signals made of piecewise polynomials or of bounded variation. However,
the unknown variance of the noise has to be estimated in order to determine
the threshold. The standard method presently used is the Median Absolute
Deviation (MAD), which estimates the level of the noise from the median
of the modulus of wavelet coefficients at small scales [5].

We propose here a recursive algorithm to estimate the variance of the
noise. We study its convergence and stability, and then apply it, first to
two academic signals and then to an experimental signal, to illustrate its
properties. We compare the threshold computed with the recursive scheme
to the theoretical value of Donoho and Johnstone [2] and to the value ob-
tained using the MAD method. The results show that the new algorithm is
competitive and efficient.

The paper is organized as follows: after describing the nonlinear wavelet
thresholding in section 2 we present the recursive algorithm to determine
the threshold by estimating recursively the variance of the noise. We prove
the convergence of the algorithm and show that it is a nonlinear projector.
In section 4 we present its numerical validation by applying the algorithm
to 1D and 2D academic test signals and to an experimental 2D observation
of a Bose-Einstein condensate. The results of the recursive algorithm are
compared to the results given using the MAD method. Finally, we conclude
and give some perspectives for future work.

2 Denoising by nonlinear wavelet thresholding

A classical problem of signal processing consists in estimating a good ap-
proximation of a signal f from noisy samples X . Donoho and Johnstone [2]
proposed to use nonlinear wavelet thresholding. They have shown that this
is particularly attractive for the case when f has isolated singularities.

Here we consider a discrete signal f = {f [k]}k∈[0,...,N−1] of size N = 2J
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with vanishing mean. The values f [k] are samples of a function f . We
observe noisy data of size N , i.e. X = {X[k]}k∈[0,...,N−1] such that

X[k] = f [k] + W [k] (1)

where W = {W [k]}k∈[0,...,N−1] are N samples of a Gaussian white noise with
variance σ2

w, i.e. W ∈ N (0, σw).
We decompose the observed data X into an orthogonal wavelet series

X =
∑

λ∈ΛJ

X̃λψ
λ

(2)

with the wavelet coefficients

X̃λ =
〈
X |ψλ

〉
(3)

The multi–index λ = (j, i) denotes the scale j and the position i of the
wavelets. The corresponding index set ΛJ is given by

ΛJ =
{
λ = (j, i), j = 0...J − 1, i = 0...2j − 1

}
(4)

The family (ψλ) constitutes an orthogonal multi–resolution analysis of L2(R)
[5].

By thresholding the wavelet coefficients X̃λ and reconstructing the cor-
responding signal we define a nonlinear operator

FT : X �→ FT (X) =
∑

λ

ρT (X̃λ)ψ
λ

(5)

with
ρT (a) =

{
a if |a|>T
0 if |a|≤T (6)

where T denotes the threshold. The operator FT hence projects the signal
X onto the orthogonal wavelet basis (ψ

λ
) and uses the thresholding function

ρT for selecting those wavelet coefficients X̃λ whose magnitude is larger than
the threshold T . Subsequently, it reconstructs FT (X) in physical space from
the retained coefficients.

For later convenience we introduce the index subset

ΛT =
{

λ ∈ ΛJ , |X̃λ| > T
}
⊂ ΛJ (7)

which is the set of wavelet coefficients X̃ that are selected by the thresholding
function ρTD

.
Donoho and Johnstone showed that FT with the threshold

TD = σW (2 ln N)1/2 (8)
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yields minimax estimators for all f ∈ H where H belongs to a wide class of
function spaces, including Hölder and Besov spaces. They showed that the
maximum mean-square error

R(F,H) = sup
f∈H

E
{‖f − F (X)‖2

}
, (9)

which depends on the function space H e.g.H = Bα
p,q and on the used oper-

ator F , is almost minimized by the nonlinear wavelet estimator FTD
.

More precisely, the relative quadratic error between the signal f and its
estimator FT (X) defined by

E(T ) =
‖f − FT (X)‖2

‖f‖2
(10)

has its lower bound minT E(T ) close to the minimax error

min
F

R(F,H).

Moreover, the threshold value TD in (8), is close to the threshold Tmin

that minimizes E(T ) but which depends on each particular signal f . In
contrast the threshold TD depends exclusively on the variance of the noise
and therefore it is called universal threshold.

One has

TD � Tmin

and
E(TD) >∼ E(Tmin)

An illustration of the quasi-optimality of TD is given in Fig. 1. We plot
the relative error E(T ) for a piece-wise regular signal corrupted with a Gaus-
sian white noise versus the threshold value T . We observe that the universal
threshold TD almost corresponds to the minimum of E(T ), obtained with
the optimal threshold. This example also shows that if the threshold value T
is chosen above TD, then the error increases significantly. On the contrary,
if T is chosen below TD, the error tends to the value E(0) corresponding to
no denoising at all.

This sensitivity implies that one has to know the value of the threshold
TD precisely to obtain an accurate estimator FTD

of the signal f from the
noisy data X . Hence, the knowledge of the variance of the noise is of pri-
mordial interest. As the level of the Gaussian white noise σW involved in
the expression of TD is generally unknown, the problem one encounters in
practice is to get a good estimation of σW from the available noisy data X.

To address the estimation of the noise, instead of the estimation of the
signal, we adopt a dual point of view. Instead of considering FTD

(X) which
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Figure 1: Error E(T ) versus different threshold values T for a piecewise
regular signal (see Fig. 2) The vertical line indicates the universal threshold
TD.

is a version of the signal X from which a major part of the Gaussian noise
has been removed, we focus on the residual of X which was not taken into
account in FTD

(X), namely (X − FTD
(X)). It is a quasi optimal estimator

of the Gaussian white noise W , whose relative error is

E ′(T ) =
‖X − FT (X) − W‖2

‖W‖2
.

The two points of view are equivalent, as

E ′(T ) =
‖f + W − FT (X) − W‖2

‖W‖2
=

‖f‖2

‖W‖2
E(T ).

Thus, the value of T minimizing E(T ) also minimizes E ′(T ).

Following this dual approach, it is useful to introduce the complementary
operators. The operator that estimates the noise from X is defined by

F c
T = Id − FT (11)

where Id denotes the identity, and it uses the complementary coefficient
selector

ρc
T = Id − ρT (12)

The corresponding complementary index set is defined as

Λc
T = ΛJ\ΛT (13)

Hence it follows for the estimator of the noise that

F c
T (X) = (X − FT (X)) =

∑
λ∈ΛJ

ρc
T (X̃λ)ψ

λ
=
∑

λ∈Λc
T

X̃λψ
λ

(14)
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3 Recursive algorithm

In [3] we proposed a recursive algorithm to extract coherent vortices from
turbulent vorticity fields using nonlinear wavelet thresholding. The principle
of the scheme consists in extracting first a rough estimation of the Gaussian
part by using the variance of the total signal as estimator for the variance
of the noise. In the next step an improved threshold is obtained by using
the variance of the noise thus extracted. This improved threshold is used to
extract a better estimate of the noise. The above procedure is iterated until
the number of wavelet coefficients of the noise is constant.

In the following we present the algorithm and study its mathematical
properties.

Algorithm:

Initialization

• given X = {X[k]}k∈[0,...,N−1]

• set n=0

• compute the Fast Wavelet Transform of X to obtain X̃λ

• compute σ2
0 = 1

N

∑
λ∈ΛJ |X̃λ|2 as rough estimate of the variance of

the noise. Note that due to orthonormality of the wavelet basis, the
variance of X can be calculated from its wavelet coefficients.

• set NW = N , which corresponds to the number of coefficients consid-
ered as noise.

• compute the threshold T 2
0 = 2 ln(N)σ2

0 .

Main loop

Do

• N ′
W = NW

• compute the number of wavelet coefficients smaller than Tn

• NW = Card(Λc
Tn

)

• compute the new variance

σ2
n+1 =

1
N

∑
λ∈ΛJ

|ρc
Tn

(X̃λ)|2
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• compute the new threshold

Tn+1 = (2 ln(N)σ2
n+1)

1/2

• Set n=n+1

until (N ′
W ==NW )

Final step

• compute FTn(X) from the wavelet coefficients {X̃λ}λ∈ΛTn
larger than

Tn using inverse Fast Wavelet Transform

• compute F c
Tn

(X) = X − FTn(X)

End

This algorithm defines the sequence of thresholds (Tn)n∈N
and the corre-

sponding sequence of variances
(
σ2

n

)
n∈N

which are respectively the successive
estimates of the threshold TD and the standard deviation of the noise σW

given by the algorithm. In the following we show that they converge to
limits giving a mean square error E close to its minimum.

The algorithm has the following properties :

• it uses only one Fast Wavelet Transform to determine the threshold
and only one more for computing both FTn(X) and F c

Tn
(X).

• the convergence criterion is always satisfied after a finite number of it-
erations smaller than N (this is shown below, see corollary 1). There-
fore no stopping criterion based on some ad hoc parameter is needed.

• it is recursive and there exists an iteration function

IX,N : R
+ �→ R

+ such that Tn+1 = IX,N (Tn),

which contains all the information about the convergence of the algo-
rithm for a given initial condition. This function allows to study the
algorithm using principles of the fixed point theory. It is obtained by
merging the definitions of σn+1 and Tn+1 :

IX,N (T ) =


2 ln(N)

N

∑
λ∈ΛJ

|ρc
T (X̃λ)|2




1/2

=


2 ln(N)

N

∑
λ∈Λc

T

|X̃λ|2



1/2

(15)
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3.1 Properties of the iteration function

Taking the square of (15), it is possible to rewrite the sum as a continuous
integral using delta functions,

(IX,N (T ))2 = 2 ln(N)
1
N

∫ T

x=0
x2
∑

λ∈ΛJ

δ(|X̃λ| − x)dx (16)

The function (IX,N(T ))2 has the following properties:

• it is piece-wise constant with a number of discontinuities being bounded
from above by N ,

• it is monotonically increasing, i.e.

IX,N (T ) ≤ IX,N (T + ∆T ) ∀ T,∆T ∈ R
+

Furthermore, the iteration function IX,N is related to the empirical his-
togram of the wavelet coefficients |X̃|,

h(x0,∆x) =
1
N

∫ x=x0+∆x/2

x=x0−∆x/2

∑
λ

δ(|X̃λ| − x)dx (17)

that counts the number of coefficients |X̃λ| whose value is in the bin of width
∆x centered at x0. The histogram h(x0,∆x) converges to the PDF of |X̃|
for the limits ∆x tending to zero and N tending to infinity.

By writing the sum

SX,N(K,T ) =
1
N

K∑
k=0

x2
kh(xk,

T

K
) (18)

where xk = T
K (k + 1

2), one observes that 2 ln(N)SX,N (K,T ) converges to
(16) for the limit K tending to infinity. Hence, (16) is an empirical estimator
of the 2nd order moment of the PDF of the coefficients |X̃ | smaller than T .

3.2 Convergence

In the following we prove the convergence of the recursive algorithm. There-
fore we apply fixed point type arguments to the iteration function IX,N .

Theorem 1. We consider the interval [Ta, Tb] ⊂ R
+ with IX,N (Ta) ≥ Ta

and IX,N(Tb) ≤ Tb. If there exists a step n0 such that Tn0 ∈ [Ta, Tb], then
Tn = IX,N (Tn−1) converges to a limit T� within [Ta, Tb], such that T� =
IX,N (T�).
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Proof. Suppose that IX,N (Tn0) �= Tn0

If

IX,N (Tn0) < Tn0 (19)

it follows that

Tn0+1 < Tn0 (20)

as IX,N is monotonically increasing, we have

IX,N (Tn0+1) ≤ IX,N(Tn0). (21)

This leads to

Tn0+2 < Tn0+1 (22)

and so, for all n ≥ n0, we obtain

Tn+1 < Tn, (23)
(24)

which means that the sequence {Tn}n≥n0 decreases.
As Tn0 is in [Ta, Tb], it follows that

Ta < Tn0 (25)

and hence

IX,N (Ta) ≤ IX,N (Tn0). (26)

As we assumed

Ta ≤ IX,N (Ta) (27)

we find

Ta ≤ Tn0+1 (28)

therefore, we have for all n ≥ n0

Ta ≤ Tn (29)
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Hence {Tn}n≥n0 decreases and is bounded from below by Ta. Consequently,
it converges to a limit T� = infn≥n0(Tn) between Ta and Tn0 . As the iteration
function IX,N is piece-wise constant with a finite number of discontinuities,
its image including the values taken by the sequence {Tn}n>n0 is countable
and finite. As a consequence, there exists a n� such that

Tn�
= T� = inf

n≥n0

(Tn). (30)

By definition of the lower bound, we have,

T� = inf
n≥n0

(Tn) ≤ Tn�+1, (31)

on the other hand, the sequence {Tn}n≥n0 decreases, therefore

Tn�+1 = IX,N(Tn�
) ≤ Tn�

. (32)

Hence

Tn�
≤ IX,N (Tn�

) ≤ Tn�
(33)

and therewith, we have shown that

Tn�
= IX,N (Tn�

) (34)

Conversely, if

IX,N (Tn0) > Tn0 (35)

one can show analogously that {Tn}n≥n0 is increasing and upper-bounded,
and therefore converges between Tn0 and Tb.

Corollary 1. One has
IX,N (0) = 0

and
sup

T∈R+

IX,N (T ) = T0 = (2 ln(N))1/2 σ0.

Therefore the sequence {Tn}n∈N converges to a limit T� ∈ [0, T0]. In addition,
the limit T� is reached after a finite number of iterations n� bounded from
above by N .
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Proof. Using (15) to compute IX,N(0) from those coefficients whose modulus
is smaller than 0, it naturally follows that IX,N (0) = 0. On the other hand,
for any other threshold T , the value IX,N (T ) is maximum when all the
coefficients X̃λ are taken in the sum of expression (15). This maximum is
equal to T0 and it is obtained for any threshold T larger than

Tmax = sup
λ∈ΛJ

|X̃λ|.

Therefore, there exists a threshold Tb ≥ max(T0, Tmax) such that IX,N (Tb) =
T0 ≤ Tb.

Now we apply theorem 1 to IX,N on the interval [0, Tb] to show that the
sequence {Tn}n∈N converges to a limit T� ∈ [0, Tb]. As IX,N(Tb) = T0, the
limit T� is actually in [0, T0].

In addition, the proof of theorem 1 shows that {Tn}n∈N reaches the limit
T� after a finite number of iterations n�. This number is bounded by the
finite number of discontinuities of IX,N and is smaller than the number N
of wavelet coefficients X̃λ.

Another consequence of theorem 1 is the stability and self consistency of
the recursive algorithm. The following corollary shows that when the noisy
part of a signal X has been removed by the recursive procedure, a second
pass does not change the result previously obtained.

Corollary 2. Let
A : X �→ FT�

(X)

be the operator corresponding to the recursive algorithm described above, then

A(A(X)) = A(X) ∀ X ∈ H.

This means that A is a non linear projector.

Hence, if one applies the algorithm to the result of a previous estimation,
the recursive procedure yields a threshold which is equal to zero. Therefore,
the resulting estimation coincides with the previous one.

Proof. This property can be shown by looking at the graph of the iteration
function corresponding to A(X) defined as

IA(X),N (T ) =


2 ln(N)

N

∑
λ∈ΛJ

|ρc
T (ρT�

(X̃λ))|2



1/2

where T� > 0 is the threshold obtained with the first recursive procedure.
The iteration function IA(X),N has the following properties

IA(X),N (T ) < IX,N(T ) ∀ T ∈ R
+ (36)
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as it corresponds to a partial sum of the terms in IX,N (T ). Furthermore,
the fact that

ρc
T ◦ ρT�

= 0 ∀ T < T� (37)

implies

IA(X),N (T ) = 0 ∀ T < T�. (38)

As we have shown that

IX,N(T ) ≤ T ∀ T ≥ T� (39)

it follows that

IA(X),N (T ) < T ∀ T ≥ T�. (40)

On the other hand, we have for T < T� that

IA(X),N (T ) = 0 ≤ T . (41)

The equality holds for T = 0, which is thus the only fixed point of IA(X),N

and therefore this is the only possible limit for the sequence of thresholds
{Tn}n∈N.

3.3 Convergence for Gaussian white noise

In this subsection, we study theoretically the situation when the algorithm is
applied to a Gaussian white noise W . In this case, as the analytic expression
of the probability density function of the noise is known, it is possible to
derive conclusions on the behavior of the recursive algorithm.

The orthonormality of (ψλ) implies that {W̃λ}λ∈ΛJ is also Gaussian white
noise. Therefore, it is possible to compute the probability for a wavelet
coefficient of the noise W to be above the threshold TD

P
(
|W̃λ| > TD

)
= 1 − P

(
|W̃λ| ≤ TD

)
= 1 − 2

σW

√
2π

∫ ∞

TD

exp

(−w̃2

2σ2
W

)
dw̃

= 1 − erf
(

TD

σW 21/2

)
= 1 − erf(

√
ln(N))

(42)

where erf(x) = 2
π1/2

∫ x
0 exp(−t2)dt.
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An asymptotic expansion of erf(x) for large x shows that

P
(
|W̃λ| > TD

)
=

1
N
√

π ln(N)
+ o

(
1

N
√

ln(N)

)
(43)

For the probability that the maximum wavelet coefficient of a Gaussian
white noise sampled over N values is above TD one has

P

(
max
λ∈ΛJ

(
|W̃λ|

)
> TD

)
= 1 − P

(
max
λ∈ΛJ

(
|W̃λ|

)
≤ TD

)
. (44)

As the coefficients W̃λ are independent, one can express the probability of
the maximum value of W̃λ as a function of the probability of the single
variable W̃λ

P

(
max
λ∈ΛJ

(
|W̃λ|

)
> TD

)
= 1 −

[
P
(
|W̃λ| ≤ TD

)]N
= 1 −

[
erf(

√
ln(N))

]N
.

(45)

Using (43) this yields

P

(
max
λ∈ΛJ

(
|W̃λ|

)
> TD

)
∼ O

(
1√

π ln(N)

)
(46)

These results show that for N large enough, there is almost no chance
for any value of |W̃ | to be larger than the value TD. Hence, for almost all
realizations, one has

Λc
TD

= ΛJ .

One can now remark that, following definitions of TD and T0, one has

TD = (2 ln(N))1/2 σW = (2 ln(N))1/2 σX = (2 ln(N))1/2 σ0 = T0.

As a consequence, the first step of the algorithm yields

IW,N(T0) = IW,N (TD) =


2 ln(N)

N

∑
λ∈ΛJ

|W̃λ|2



1/2

= T0 = TD (47)

This shows that the threshold value T0 corresponding to the initial value
of the sequence {Tn}n∈N is a fixed point of the iteration function IW,N . This
results in stopping the recursive algorithm after the first step.

In addition, using the analytical expression of the Gaussian probability
density function of the noise and the link between the iteration function
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IW,N and the empirical histogram defined in (17), one can show that there
exists a threshold value Ta < T0 such that for all T in [Ta, T0[, one has

IW,N (T ) ≥ T .

This confirms that the bell shape of the Gaussian PDF of the wavelet
coefficients of the noise, with its large width and its strong decay at the
tails, is responsible for the convergence of the algorithm towards the limit
T� = TD = T0. Note that T0 also corresponds to the value Tmax defined in
the proof of corollary 1.

As a consequence, the noise W is invariant with respect to the recursive
noise extractor Ac defined as

Ac : X �→ F c
T�

(X) = Id −A(X)

One has

Ac(W ) = W

In other words, the recursive algorithm is able to perfectly identify W
as Gaussian white noise rather than a signal.
The remaining question is to determine if T� is a correct estimator of TD, for
X being a noisy signal resulting of the superposition of a given signal f and
a noise W . The next section does not prove this result formally, but instead
shoes as a first approach that it is verified for a set of various numerical
examples.

4 Numerical application

4.1 Application to 1D and 2D test signals.

In the following we validate numerically the above recursive algorithm for
for 1D and 2D test signals and illustrate its properties. We construct a
noisy signal X by superposing to different signals f a Gaussian white noise
W ∈ N (0, σW ) with given variance σ2

W , produced by a standard random
number generator. First we apply the recursive algorithm to the signal f
without any noise, then to the noise W only, and finally to the noisy signal
X for several signal to noise ratios (SNR), where SNR is defined by :

SNR = 10 log10

(
σ2

f

σ2
W

)
= 20 log10

(
σf

σW

)
. (48)

The aim is to track the influence of f and W on the results obtained for the
total signal X by looking at the influence of If,N and IW,N on the iteration
function of the total signal IX,N .
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For each signal to noise ratio, we compare the results of non-linear
wavelet thresholding using the recursively found threshold T� and the uni-
versal threshold TD computed with the known variance of the noise σ2

W . In
order to evaluate the performance of our method, we also compare the re-
sults with those obtained using the estimator Tm of the universal threshold
given by the Median Absolute Deviation method (MAD) [2]. This method
relies on the fact that the sparsity of the wavelet coefficients of f increases
for smaller scales for signals with isolated singularities. Hence, the median
of the modulus of the wavelet coefficients of the noisy signal is insensitive to
the amplitude of these few strong outliers. Therefore, it is a good estimator
of the median of the modulus of the coefficients of the noise. For Gaussian
white noise we have,

med
λ=(j,i)∈{(j,i),j=J}

(|W̃λ|) = 0.6745σW .

From this formula, one obtains the MAD threshold

Tm =
(2 ln(N))1/2

0.6745
med

λ=(j,i)∈{(j,i),j=J}
(|X̃λ|) (49)

4.1.1 Application to a 1D signal without noise

This section presents the iteration function If,N corresponding to the sig-
nal f shown on Fig. 2. It is a piece-wise regular signal provided with the
WaveLab software package [9]. It has been normalized such that

σf = (
1
N

N−1∑
k=0

|f [k]|2)1/2 = 10

We compute the discrete wavelet transform of the discrete signal f sam-
pled on N = 8192 points using the Coiflet wavelets with four vanishing
moments. These wavelets are almost symmetric, and the coefficients corre-
sponding to the scaling function at the smallest scale are almost equal to
the samples f . This reduces the computation of the wavelet coefficients to
the simple Mallat’s fast wavelet transform and avoid expensive interpolation
procedures.

In Fig. 3, we plotted the iteration function If ,N(T ) for values T in the
interval [10−8Tmax , Tmax, where Tmax = supλ∈ΛJ |f̃λ| is the magnitude of
the largest wavelet coefficient of the signal f . We observe that the graph
of If,N remains below the line y = x and hence has no fixed point in this
interval. According to theorem 1, the sequence of thresholds {Tn}n∈N should
therefore converge to a limit T� below 10−8Tmax.

When applying the recursive algorithm to f , we actually obtain a limit
T� = 1.7 10−6 = 3.1 10−9Tmax. This threshold corresponds to a relative
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mean square error E(T�) = 4.7 10−14 which is negligible. The corresponding
number of iterations was n� = 21.

This behavior essentially comes from the piece-wise regularity of f which
implies the sparsity of the wavelet representation of f . As a result, most
of the wavelet coefficients f̃λ have values concentrated close to zero. There-

fore, the moment of inertia
(
If,N (T )

)2
of the empirical histogram of the

coefficients smaller than the threshold T increases slower than T 2.
Consequently, the signal f is invariant with respect to the recursive de-

noising process A and one has :

A(f) = f

Hence, similarly to what has been shown analytically in section 3.3 for
the noise W , the recursive algorithm was able to perfectly identify f as being
signal without any noise.

4.1.2 Application to Gaussian white noise

This section validates numerically the conclusions of the theoretical study of
section 3.3 where the recursive algorithm was applied to a Gaussian white
noise.

We compute the iteration function IW,N corresponding to a realization
W of a Gaussian white noise of size N = 8192 with a variance σ2

W = 1
provided by a standard random number generator. The graph of IW,N is
displayed in Fig. 4.

We first notice that this graph shows the piece-wise constant nature of
the iteration function. Note that this characteristic is more visible for small
threshold values. We also observe that the iteration function IW,N presents
two fixed points. The right intersection point of IW,N and y = x denoted
by A corresponds exactly to the abscissa TD = 4.24. For values Tn greater
than TD, the curve is flat because TD = T0 is the maximum value of IW,N .
Conversely, as mentioned in section 3.3, the graph of IW,N bumps over y = x
on the left side of point A. This is a consequence of (IW,N )2 being the second
order moment of the histogram of W̃λ. Due to the fast decay of the Gaussian
function, the derivative of IW,N on the left side of TD is almost zero and
IW,N is nearly horizontal there.

As expected from these observations the recursive algorithm reaches con-
vergence at the first step. Hence one has n = n� = 1 with the threshold
T� = 4.240 being almost equal to TD = 4.245. Using this threshold, we found
that only one of the N = 8192 coefficients whose value W̃λ0 = 4.29 is larger
than the threshold T� = 4.24. This yields an almost perfect estimation of
W by A(X) = F c

T�=TD
(W ) � W .

As shown in section 3.3 and as previously observed for signal f , W is
invariant with respect to the recursive denoising process A.
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In the following, we consider the situation that arises when noise W is
added to the signal f .

4.1.3 Application to the signal plus noise

In this case, we apply the recursive algorithm to X = f +W . We first study
the results obtained with σf = 10 and σW = 1, which correspond to signal
to noise ratio is equal to 20 db. The number of points is still N = 8192.
Fig. 5 summarizes the iteration curves computed for X, f , and W . One
observes that IX,N is superposed on IW,N for small values of Tn whereas it
follows If,N for large values of Tn, up to the point C corresponding to the
first iteration of the algorithm.

An explanation of this behavior can be found by looking at the his-
tograms of the wavelet coefficients of X, f and W which are respectively
related to the iteration functions IX,N , If,N and IW,N .
Fig. 6 shows the histograms of the wavelet coefficients corresponding to
Fig. 5. As explained in section 4.1.1, the sparsity of the wavelet represen-
tation of f causes most coefficients (f̃λ) to be close to zero. Therefore If,N

remains below the line y = x.

One also observes that the histogram of (X̃λ) and the histogram of (f̃λ)
present the same heavy tails for values larger than the maximum magnitude
of the noise TD = (2 ln(N))1/2σW = 4.24 (cf. section 4.1.2). This coincides
with the fact that IX,N superposes upon If,N for values larger than TD. An
interpretation of this superposition is that the heavy tails of the PDF of
(f̃λ) have a strong weight in the second order moment of the histogram of
the coefficients (X̃λ). On the contrary, the coefficients of the noise being
concentrated within the range [−TD, TD], their contribution to IX,N (T ) for
T larger than TD remains negligible.

At the opposite, when T is smaller than TD, most of the coefficients (f̃λ)
smaller than T have their value close to zero. Therefore their contribution
to the moment of inertia

(
IX,N (T )

)2 is dominated by the contribution of the
coefficients (W̃λ) whose distribution far from zero is wider. Thus the noise
W dominates f in the graph of IX,N for small T . This is still true for T
approaching TD as soon as f is sparse enough in wavelet coefficients space.

The consequence is that the intersection B of IX,N with y = x remains
close to the intersection A of IW,N with y = x. Therefore, the limit T� of
the recursive algorithm applied to X is close to the limit obtained for the
noise alone which is equal to TD.

This is true since no other fixed point is present for larger values of the
threshold T , thanks to the fact that between B and C, IX,N is below y = x.

For the considered signal to noise ration of 20db, the algorithm converges
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to the value T� = 4.30 which is close to the universal threshold TD = 4.24.
The resulting estimations FT�

(X) and F c
T�

(X) of f and W , respectively, are
shown in Fig. 2.

The iteration functions results for signal to noise ratios SNR = 10,
SNR = 40 and SNR = 100 are shown on Fig. 7.

We observe that despite the wide range of different SNR, the global
behavior of IX,N is preserved. The iteration function for the total signal
is still superimposed upon IW,N for threshold values smaller that TD and
switches to If,N for larger values of the threshold T . The thresholds T�

obtained are summarized in the table 1. It summarizes the results of wavelet
thresholding using different thresholds. We tested the threshold T� given by
the recursive algorithm, the universal threshold TD and the median based
threshold Tm. The values of T�, Tm and TD are displayed for different SNR
along with the resulting mean square errors defined in (10) of the estimations
E(T�), E(Tm), E(TD) for the 1D signal of Fig. 2. These errors are related to
enhanced signal to noise ratios resulting of the denoising and defined as

SNR′(T ) = 20 log10

( ‖f‖L2

‖f − FT (X)‖L2

)
= −10 log10(E(T )).

One can observe that T� gets closer to TD as SNR increases.
We remark that the fact that we obtain an better estimation of the level
of the noise σW = TD

(2 ln(N))1/2 for a weaker contribution of the noise to the
signal X might sound counterintuitive. This phenomena comes from the
fact that the value of IX,N (T ) is insensitive to values of (X̃λ) larger than
T . As explained above, due to the sparsity of the wavelet coefficients (f̃λ),
the values of (X̃λ) weaker than the threshold TD are strongly dominated by
the coefficients of the noise. As a consequence the influence of strong signal
to noise ratios on IX,N (T ) is hidden for T being up to TD. However, this
depends on the distribution of the wavelet coefficients of f that are smaller
than TD. Therefore, the evolution of the shift observed between T� and TD

for different SNR can be different for other types of signal.

We also observe that despite the fact that the threshold Tm is usually
closer to TD than T� and the error E(Tm) is smaller than the error E(T�),
the performances of the two methods are of same order. Moreover, for all
SNR, the threshold TD results in a larger error than the thresholds Tm

and T�. This surprising result shows the non-optimality of the universal
threshold as well as the good performance of both approaches using Tm and
T�, especially for weak signal to noise ratios. However, for increasing SNR,
the performance of the estimation with each method gets more uniform.

We also observed that the number of iterations n� increases with the signal
to noise ratio. This is consistent with the fact that only one iteration is
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SNR −∞ 10 20 40 100 +∞
σf 0 10

1
2 10 102 105 σW =0

σf =10
n� 0 4 5 7 12 21
T� 4.24 4.34 4.30 4.30 4.23 1.7 10−6

Tm 4.19 4.19 4.20 4.20 4.24 9.9 10−7

TD 4.24 4.25 4.25 4.25 4.25 0
E(T�) +∞ 7.28 10−3 6.46 10−4 9.72 10−6 2.04 10−11 4.7 10−14

E(Tm) +∞ 7.06 10−3 6.36 10−4 9.77 10−6 2.04 10−11 8.9 10−16

E(TD) +∞ 7.32 10−3 6.68 10−4 9.77 10−6 2.04 10−11 0
SNR′(T�) −∞ 21.37 31.90 50.12 106.9 133.3
SNR′(Tm) −∞ 21.51 31.96 50.10 106.9 150.5
SNR′(TD) −∞ 21.35 31.75 50.10 106.9 +∞

Flat. of F c
T�

(X) 3.05 3.08 3.03 3.08 3.14 5.00
Flat. of F c

Tm
(X) 3.05 3.08 3.03 3.08 3.14 4.28

Flat. of F c
TD

(X) 3.05 3.08 3.03 3.08 3.14 undefined

Table 1: Numerical results for the 1D signal : , number of iterations before
convergence n�, thresholds T�, Tm and TD, the relative errors E(T�), E(Tm)
and E(TD) and the corresponding enhanced signal to noise ratios SNR′

obtained for SNR = 10 db, 20 db, 40 db and 100 db and the two limit cases
SNR = ±∞. For all lines columns, σW = 1, except for the last one (c.f.
section 4.1.1). The flatness of the estimated noises F c

T�
(X), F c

Tm
(X) and

F c
TD

(X) is also given
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needed for the noise alone (which corresponds to SNR = −∞) and that
the maximum number of iterations is obtained for the signal without added
noise (which corresponds to SNR = +∞).

We interpret this result by saying that the wavelet coefficients of the
noise are responsible for deflecting the graph of IX,N above the line y = x.
This deflection interrupts the sequence of iteration by forcing the decreas-
ing sequence of thresholds Tn to converge to the intersection point B. The
stronger the noise level, the sooner the deflection and the convergence.

The histograms of the estimated signals FT�
(X), FTm(X) obtained using

the thresholds T� and Tm, and the histogram of the corresponding estima-
tions of the noise F c

T�
(X), F c

Tm
(X) are shown on Fig. 9. One observes that

they are very well superposed. This confirms that for this academic case,
the performance of the recursive algorithm is comparable to the one of the
median based wavelet thresholding.
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Figure 2: Construction of a 1D noisy signal X = f +W (SNR = 20 db), and
its nonlinear wavelet thresholding using the threshold T�.
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Figure 3: The graph of the iteration function If,N (T ) for the signal (Fig. 2
top, left). The point C corresponds to the first iteration of the algorithm.

T
n
+

1

TD

A

W

1e−10

1e−08

1e−06

0.0001

0.01

1

100

10000

1e−08 1e−06 0.0001 0.01 1 100 10000

y=x

Tn

Figure 4: The graph of IW,N , when the process W is Gaussian white noise.
The point A corresponds to the right hand intersection between the graphs
of IW,N and y = x.
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functions IW,N ,If ,N ,IX,N for W f and X respectively. The points A and B
correspond to the intersections between the graphs of IW,N and IX,N with
the line y = x, respectively. The point C corresponds to the first iteration
of the algorithm applied to the total signal X and its abscissa is T0.
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Figure 7: Iteration functions IX=f+W,N , If,N and IW,N for σW = 1 and σf

taken successively equal to 101/2 (plot (a), SNR = 10 db), 102 (plot (b)
SNR = 40 db) and 105 (plot (c) SNR = 100 db).
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4.1.4 Application to a 2D test signal

In this section, we present the results obtained by applying the recursive
algorithm to a 2D discrete signal X sampled on N = 5122 grid points.
The signal X is obtained by the superposition of a 2D signal f composed of
randomly located axisymmetric cusps, and a 2D realization W of a Gaussian
white noise.

Surface plots of the signals X , f and W are shown in Fig. 10 (top and
center). We chose σf = 3.163 and σW = 1 resulting in SNR = 10.

We compute the corresponding iteration functions IX,N , If,N and IW,N .
They are displayed on Fig. 11.

We first remark that conversely to the 1D case, the curve If,N corre-
sponding to the signal alone intersects the line y = x for a small value of
the threshold between T = 10−4 and T = 10−3. We interpret this as a
consequence of a less sparse wavelet representation of the signal f . These
more numerous weak wavelet coefficients of f may be due to the fact that in
such a 2D signal, axisymmetric singularities are difficult to capture for the
2D orthogonal wavelets of a tensor product multi-resolution analysis. For
these reasons, more wavelet coefficients of little energy are required in order
to represent f correctly.

However, the most striking feature of Fig. 11 is that similarly to the
1D case, the wavelet coefficients of the noise are responsible for deflecting
the graph of IX,N from If,N to IW,N when the threshold value T decreases.
We observe that it intersects the line y = x very close to the intersection
between IW,N and y = x. This shows that when applied to X , the recursive
algorithm converges to a limit threshold value T� close to TD.

When applying the algorithm, we find a limit T� = 5.13 � TD =
(2 ln(5122))1/2 = 4.99. The resulting estimations FT�

(X) and F c
T�

(X) for f
and W are shown on Fig. 10 (bottom). As expected, the estimation FT�

(X)
shows an efficiently denoised version of the signal X. The corresponding
numerical results are summarized in table 2. As in the 1D case, the results
using T�, Tm and TD are very close. This shows the validity of the recur-
sive algorithm for estimating the suitable threshold value. This is confirmed
when looking at the histograms of Fig. 13 and Fig. 14. The results of the
estimations using T� and Tm are almost perfectly superposed. Fig. 12 shows
the PDF of the wavelet coefficients of X , f , and W . One can see that the
threshold value T� = 5.13 corresponds to the value for which the PDF of X̃λ

moves from the PDF of f̃λ to the one of W̃λ.
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Figure 10: Construction of a 2D noisy signal X = f + W (SNR = 10 db),
and its nonlinear wavelet thresholding using the threshold T�.
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SNR 10
σf 10

1
2

n� 4
T� 5.13
Tm 5.01
TD 4.99

E(T�) 7.57 10−3

E(Tm) 7.34 10−3

E(TD) 7.28 10−3

SNR′(T�) 21.20
SNR′(Tm) 21.34
SNR′(TD) 21.37

Flat. of F c
T�

(X) 3.32
Flat. of F c

Tm
(X) 3.30

Flat. of F c
TD

(X) 3.30

Table 2: Thresholds T�, Tm and TD, the relative errors E(T�), E(Tm) and
E(TD) and the corresponding enhanced signal to noise ratios SNR′ obtained
for SNR = 10 db, with σW = 1.
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Method recursive median
Threshold T� = 0.32 Tm = 0.19

Retained coefficients 0.24% 1.41%
Retained variance 35% 98%

Estimated
signal to noise

ratio
SNR

-2.88 18.41

Flatness of
the estimated

noise
3.66 3.16

n� 2

Table 3: Numerical results for the experimental signal

4.2 Application to a Bose-Einstein condensate

4.2.1 Description of the signal

The signal presented in this section is an absorption image measuring the
density of atoms in a Bose-Einstein condensate [8]. It was obtained using
a CCD camera for measuring the optical density of lithium atoms confined
in a magnetic trap and cooled by evaporation using a microwave field. Its
surface plot is shown in Fig. 15 (top). The number of sample points is
N = 1282.

We apply the recursive wavelet thresholding algorithm to remove the
strong noise observed in the signal and we compare the results obtained
using both thresholds T� and Tm. As the signal and noise components are
unknown, we check the quality of the estimation by looking at the estimated
fields in physical space, at their histograms computed both in physical and
wavelet space and their Fourier power spectra.

4.2.2 Numerical results

Table 3 presents the numerical results obtained. We define an estimated
SNR

SNR = 10 log10
‖FT (X)‖2

‖F c
T (X)‖2

corresponding to the estimated signal to the estimated noise ratio. There-
fore, it does not quantifies the performance of the denoising. The quality of
the filtering is given by the agreement between the estimated SNR and the
real SNR that has to be estimated by some other means. Note that SNR
depends on the filtering method used.
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We observe a large difference between T� and Tm as well as between the
proportion of coefficients and variance retained by either the recursive or the
median based method. The SNR obtained is very different according to the
threshold used. Looking at the noisy signal in physical space (see Fig. 15
and Fig. 15) make us conjecture that SNR = 18.41 does not correspond to
the real SNR. The flatness of the estimated noise for both methods is close
to 3, which is the flatness of a Gaussian white noise. The noise estimated
by the median based method is thus closer to the Gaussianity.

4.2.3 Results in physical space

One observes in Fig. 15(middle) that the recursive algorithm extracts the
signal from the noise very well. On the contrary, Fig. 15 (bottom) shows
that the median based threshold Tm is too small for removing all parts of
the noise. This residual noise is therefore still present in the estimated signal
FTm(X) which explains the large percentage of retained energy that results
in the value of SNR = 18.41.

4.2.4 Histograms of the wavelet coefficients

Figures 16(top) and 16(bottom) show the histogram of the wavelet coeffi-
cients of the signal superposed on the histograms obtained for the estimated
signal and the estimated noise for both methods. One can observe the ef-
fect of the thresholding on these histograms which are simply separated by
the value corresponding to the thresholds T� and Tm. The vertical line at
the value zero corresponds to the coefficients set to zero after thresholding.
One observes that the threshold T� corresponds to the point where the his-
togram of the noisy signal changes from a Gaussian-like shape to the more
irregular shape of large non-Gaussian tails. On the contrary, the median
based threshold Tm corresponds to an intermediate value of the Gaussian
part of the histogram. A comparison with the fitted Gaussian curve shows,
however, that the fit is not perfect. Taking the median of the modulus of
the weak wavelet coefficients responsible for this part of the histogram could
therefore yield an incorrect estimation of the variance of the noise.

4.2.5 Histograms computed in physical space

The histograms of the noisy signal X and the estimated signal and noise
are presented for both methods in Fig. 17(top) and Fig. 17(bottom). One
observes that the tails of the histogram of the estimated signal are shorter
when using the threshold T� than when using the threshold Tm. This is
consistent with the fact that no spurious noisy oscillation are observed on
the denoised field obtained with T� whereas the signal estimated using Tm

shows this type of noisy structures which results in a wider histogram. As a
counterpart, the noise looks more Gaussian when extracted using the median
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Figure 15: Wavelet filtering of an experimental 2D noisy signal (top) using
the threshold T� found with the recursive algorithm (middle) and the median
based threshold Tm (bottom).
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based threshold. This is related to the value of the flatness of the noise which
is closer to 3 for the median method. We also observe that for both methods,
the histogram of the estimated signal is not well superposed to the one of
the noisy signal. This may be a consequence of the low signal to noise ratio.

4.2.6 Fourier spectra

The isotropic Fourier power spectra of the noisy signal and its two estimated
components are shown for both methods in Fig. 18 and Fig. 19. One can
observe a very strong signature of the noise as a linear part of the spectrum
of X at small scales. This linear part exhibits a slope k+1, typical of white
noise. We observe that when using the threshold Tm the spectrum of the
estimated signal also present such a linear part, revealing the presence of
remaining noise. On the contrary, the spectrum of the estimated signal
obtained using the recursive algorithm is free from this linear component.
Hence, we conclude that the noise has been correctly removed.

4.2.7 Conclusion for the experimental case

The recursive algorithm is more efficient than the median based method
for the denoising of this experimental signal. We conjecture that this is
a consequence of the not perfectly Gaussian distribution of the noise that
leads to a wrong estimation of the threshold computed from the median of
the modulus of the wavelet coefficients of the noisy signal. On the contrary,
the recursive algorithm, by converging to the fixed point of the iteration
function actually converges to the threshold corresponding to the change
of behavior in the histogram of the wavelet coefficients of the noisy signal.
This convergence is more robust with respect to a not exactly Gaussian
distribution of the noise. This robustness explains why the median threshold
gives a slightly better result with academic signals for which the Gaussianity
of the noise is guaranteed, but fails to remove the noise completely from a
real experimental signal.

5 Conclusions

We presented a new recursive algorithm to determine automatically the
threshold value of the wavelet coefficients to denoise a signal corrupted by
a Gaussian white noise. This efficient and simple algorithm is based on a
recursion in wavelet coefficient space to estimate the variance of the noise.
A mathematical justification of the scheme has been given by applying fixed
point type arguments to guarantee the convergence of the process. We
proved that the algorithm is stable and converges with a finite number of
iterations bounded from above by the number of samples, but in practice
we need very few iterations. Numerical examples in one and two dimensions
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Figure 17: PDFs of X , FT�
(X) and F c
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(X) in physical space obtained using

the recursive algorithm (top) and PDFs of X , FTm(X) and F c
Tm

(X) obtained
using the median based threshold Tm (bottom)
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illustrated the properties and validity of the scheme for different signal to
noise ratios. We observed that the number of iterations decreases with the
signal to noise ratio. We have some evidence that it actually depends on
the sparsity of the wavelet representation of the signal, i.e. the more sparse
the wavelet representation of the signal, the faster the convergence. For
the academic examples studied here we found that the threshold obtained
with the algorithm and that the error E(T ) of the corresponding estimation
are very close to the ones obtained using the universal threshold proposed
by Donoho & Johnstone [2] and the threshold estimated from the median
of the wavelet coefficients of the noisy signal at small scales. Moreover,
the recursive algorithm gave better results than the median based wavelet
thresholding estimator when applied to an experimental signal. This sug-
gests that the algorithm is more robust with respect to a departure from
the academic situation of a perfectly Gaussian white noise.

Future work is concerned with the generalization of the algorithm to non
Gaussian distributions of the noise and to the case of colored, i.e. correlated,
noise. We are also extending the approach to vector-valued signals, e.g.
velocity or vorticity fields, in order to apply it to coherent vortex extraction
in turbulent flows.
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