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ABSTRACT

We present coherent vortex simulations of two–

dimensional flows past the NACA 23012 airfoil at Reynolds

number 1000. The incompressible Navier–Stokes equations

in vorticity–velocity formulation are discretized first in time

using a second order semi–implicit scheme. The spatial dis-

cretization is based on an adaptive wavelet method with

automatic grid refinement. In this Petrov–Galerkin scheme

the vorticity field is developed into an orthogonal wavelet

series and the test functions are chosen as solutions of the

linear part of the equation. The shape of the airfoil together

with no–slip boundary conditions are imposed using a vol-

ume penalisation method. The presented results show the

ability of the CVS method to deal with complex geometies.

INTRODUCTION

Recently, we proposed a new CFD method, called Co-

herent Vortex Simulation (CVS) [5, 6], for computing fully

developed turbulent flows. It results from the observation

that turbulent flows contain both an organized part (the

coherent vortices) and a random part (the incoherent back-

ground flow) [5, 7]. The CVS method is based on the wavelet

filtered Navier-Stokes equations, which corresponds to the

coherent flow whose evolution is computed deterministically

in an adaptive wavelet basis [8], [11]. The influence of the

incoherent background flow onto the coherent flow is either

statistically modelled or simply neglected. For applications

to compute three–dimensional turbulent mixing layers we

refer to [13].

In this paper we present applications of the CVS method

to compute two–dimensional flows past NACA airfoils. We

use an adaptive wavelet method with automatic grid refine-

ment to integrate the velocity-vorticity formulation of the

two-dimensional Navier-Stokes equations [8, 10]. To take

into account complex geometries, we propose to couple the

CVS method we have developed with the penalisation tech-

nique, introduced by Arquis and Caltagirone [3]. Therewith

walls or solid obstacles, even if their shape varies in time,

are modelled as a porous medium whose porosity η tends
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to zero. A mathematical theory proving convergence of this

physically based approach has been given by Angot et al. [2].

This technique has been applied in the context of low order

methods (finite difference/volume schemes, e.g. [2]) and also

with spectral methods e.g. [9, 12]. The motivation to couple

the penalisation technique with an adaptive wavelet solver

comes from the fact that adaptive wavelet methods dynam-

ically refine the grid in regions of strong gradients. Hence,

we expect the solver to adapt automatically, not only to the

evolution of the flow, but also to the geometry of walls or

bluff bodies.

The paper is organised as follows: first we present the

penalisation method together with the discretization used

to solve the penalised Navier-Stokes equations numerically.

As application we present numerical simulations of 2D vis-

cous incompressible flow around a NACA airfoil, which is

impulsively started. Finally, we give some conclusions and

perspectives for turbulence modeling of bluff body flows.

THE PENALISATION METHOD AND THE NUMERICAL

DISCRETISATION

Governing equations

The penalisation technique is based on the physical idea

which consists in modeling solid walls or obstacles as porous

media whose porosity η is tending to zero [3]. The geome-

try is described by a mask function χ(~x) which is 1 inside

the solid regions and 0 elsewhere. Note that the penali-

sation method can also take into account obstacles with

time–varying shape by simply introducing a time–dependent

mask function. The Navier-Stokes equations are modified by

adding a supplementary term containing the mask function.

For the penalised velocity ~uη we obtain

∂t~uη +~uη ·∇~uη +∇pη−ν∇2~uη +
1

η
χΩs

(~uη−~up(t)) = 0 (1)

where ~uη(~x, t) is the flow velocity, pη(~x, t) the pressure, ~up(t)

the obstacle’s velocity (assumed to be zero here), and ν the

kinematic viscosity. In the following the density ρ is nor-

malized to 1. The mask function to take into account the
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geometry of the airfoil is given by

χΩs
(~x) =

{

1 for ~x ∈ Ω̄s

0 elsewhere
(2)

where Ωs denotes the volume of the airfoil. For η −→ 0 the

flow evolution is governed by the Navier–Stokes equations in

the fluid regions, and by Darcy’s law, i.e. the velocity is pro-

portional to the pressure gradient, in the solid regions where

obstacles or walls are present. In [2] a mathematical proof

has been given that the above equations converge towards

the Navier–Stokes equations with no-slip boundary condi-

tions, with order η3/4 inside the obstacle and with order

η1/4 elsewhere, in the limit η tending to zero. In numeri-

cal simulations an improved convergence of order η has been

reported [2], [9].

The resulting forces ~F on the obstacle, i.e. drag and lift

,can be computed by integrating the penalised velocity over

the obstacle’s volume [2]:

~F = lim
η→0

∫

Ωs

∇pη dx = − lim
η→0

1

η

∫

Ωs

~uη dx (3)

=

∫

∂Ωs

σ(~u, p) · ~nf dγ (4)

where Ωs is the obstacle’s volume, ∂Ωs its boundary, ~n its

outer normal and σ(~u, p) = 1

2ν
(∇~u+(∇~u)t)−pI the stress

tensor. Hence, the lift and drag forces on the obstacle, i.e.

forces parallel and perpendicular to the free–stream velocity

of the flow, are easy to compute as volume integrals instead

of contour integrals.

For two–dimensional flows the vorticity–velocity formu-

lation is prefered and therefore we take the curl of eq. (1),

and we get

∂tωη + (~uη + ~U∞) · ∇ωη − ν∇2 ωη (5)

+∇× (
1

η
χΩs

(~uη)− ~up(t)) = 0

where ω = ∇× ~u is the vorticity and ~U∞ is the free–stream

velocity, defined as lim|~x|−→∞ ~u(~x) = ~U∞.

Adaptive wavelet discretization

For the numerical solution of the penalised equations we

employ a wavelet scheme with adaptive grid refinment [8, 10,

11]. As adaptive schemes dynamically adapt the spatial grid

at each time step, we first discretize the equations (6) in time

using semi-implicit finite differences, i.e. Euler–backwards

for the viscous term and Adams–Bashforth extra-polation

for the nonlinear term, which are both of second order.

The resulting elliptic problem to be solved at each time

step is:

(γI − ν∇2)ωn+1 =
4

3
γωn − 1

3
γωn−1 −∇ · (ω? ~u?) (6)

−∇× (
1

η
χ (~u? − ~up))

where

ω? = 2ωn − ωn−1 ~u? = 2 ~un − ~un−1 (7)

with time step ∆t, γ = 3/(2∆t) and I representing the iden-

tity.

For the space discretization we use a Petrov–Galerkin

scheme. Therefore the vorticity is developed into a set of

trial functions and the minimization of the weighted resid-

ual of (6) requires that the projection onto a space of test

functions vanishes. As space of trial functions we employ a

two-dimensional multiresolution analysis (MRA) [4] and de-

velop ωn at time step n into an orthonormal wavelet series

ωn(x, y) =
∑

λ

〈ωn , ψλ〉 ψλ(x, y) (8)

with the multi–index λ = (j, ix, iy , µ), where j = 0, Jmax−1

denotes the scale 2−j+1, (ix, iy) = 0, ...,2j − 1 the position

and µ = 1, 2, 3 the three different directions of the wavelets.

The test functions θλ are defined as solutions of the linear

part of eq. (6)

(γI − ν∇2)θλ = ψλ (9)

and can be computed in a preprocessing step. This avoids

assembling the stiffness matrix and solving a linear equation

at each time step. The functions θ, called vaguelettes, are

explicitely calculated in Fourier space and have similar lo-

calization properties as wavelets [8]. The solution of (6) in

wavelet space therewith reduces to a change of basis:

ω̃λ = 〈ωn+1 , ψλ〉 (10)

= 〈( 4

3
γωn − 1

3
γωn−1 −∇ · (ω?(~u?))

− ∇× (
1

η
χ(~u? − ~up))), θλ〉 .

Nonlinear wavelet thresholding is applied in each time

step to obtain an adaptive discretization by retaining only

those wavelet coefficients ω̃λ with absolute value above a

given threshold ε = ε0
√
Z, where ε0 is a constant and

Z = 1

2

∫

|ω(~x)|2d~x is the enstrophy. For the next time step

the index coefficient set (which addresses each coefficient in

wavelet space) is determined by adding neighbours to the

retained wavelet coefficients. Consequently, only those co-

efficients ω̃ in (10) belonging to this extrapolated index set

are computed using the adaptive vaguelette decomposition

[8]. The nonlinear term −∇· (ω?(~u?))−∇× ( 1

η
χ (~u?−~up))

is evaluated by partial collocation on a locally refined grid

[11]. The vorticity ω? is reconstructed in physical space

on an adaptive grid from its wavelet coefficients ω̃? using

the adaptive wavelet reconstruction algorithm [8]. From

the adaptive vaguelette decomposition with θ = (∇2)−1 ψ,

we solve ∇2Ψ? = ω? to get the stream function Ψ̃? and

reconstruct Ψ? on a locally refined grid. By means of

centered finite differences of 4th order we compute ∇ω?,

~u? = (−∂yΨ?, ∂xΨ?) and ∇ × ( 1

η
χ (~u? − ~up)) on the

adaptive grid. Subsequently, the nonlinear term is summed

up pointwise, and finally (10) is solved using the adaptive

vaguelette decomposition.

NUMERICAL RESULTS FOR THE NACA 23012 AIRFOIL

The five-digit NACA series of airfoils were developed by

Eastman N. Jacobs in 1935. The position of maximum cam-

ber is unusually far forward, within 5 − 15% of the chord

length from the leading edge. These airfoils had higher max-

imum lift coefficients and lower pitching moments than the

NACA four-digit series. Following Jacobs the best airfoil

in that series was the NACA 23012 airfoil [1]. The NACA

23012 airfoil section was used in the Douglas DC-4, a trans-

porter with four engines during World War II [1].

Here we present CVS computations of a flow around the

NACA 23012 airfoil at Re = 1000, which has been impul-

sively started with an angle of incidence of 30◦. The flow
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Figure 1: Flow configuration. Airfoil NACA 23012, α = 30◦.

configuration is depicted in Fig. 1. Fig. 2 shows the isolines

of vorticity at 4 different time instants using CVS. We ob-

serve at early time the formation of a small vortex at the

trailing edge which then detaches and is advected by the

mean flow. In Fig. 3 we plot the time evolution of the en-

strophy, which increases until the trailing vortex detaches

and then continuously decreases. In the future we shall

present several results (lift and drag coefficients) of CVS

computations for different angles of attack together with

comparisons with results obtained by DNS using a classi-

cal spectral method.

CONCLUSIONS AND PERSPECTIVES

In the paper we have presented an adaptive wavelet

method, called Coherent Vortex Simulation (CVS), coupled

with a volume penalisation technique, to compute two–

dimensional turbulent flows in complex geometries. This

numerical scheme allows automatic adaption of the grid, not

only to the evolution of the flow, but also to the geometry of

walls or bluff bodies. We presented CVS of 2D incompress-

ible viscous flows past a NACA 23012 airfoil at Re = 1000.

In future work, we will also apply the CVS approach to com-

pute 2D and 3D bluff body flows at higher Reynolds numbers

[6].
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Figure 2: Airfoil NACA 23012, α = 30◦, Re = 1000. Isolines

of vorticity at instances T = 0.2, 0.5, 1.0, 2.0.
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Figure 3: Airfoil NACA 23012, α = 30◦, Re = 1000. Time

evolution of total enstrophy.


