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of wavelets is the Malvar basis which is also a
generalization of local Fourier basis, and gives a
perfect reconstruction. A new direction of wavelet is
the second-generation wavelets which are con-
structed by lifting scheme and free from the regular
dyadic procedure, and thus applicable to compact
regions as S2 and a finite interval.

See also: Fractal Dimensions in Dynamics; Image
Processing: Mathematics; Intermittency in Turbulence;
Wavelets: Application to Turbulence; Wavelets:
Mathematical Theory.
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Introduction

The wavelet transform unfolds functions into time
(or space) and scale, and possibly directions. The
continuous wavelet transform has been discovered
by Alex Grossmann and Jean Morlet who published
the first paper on wavelets in 1984. This mathema-
tical technique, based on group theory and square-
integrable representations, allows us to decompose a
signal, or a field, into both space and scale, and
possibly directions. The orthogonal wavelet trans-
form has been discovered by Lemarié and Meyer
(1986). Then, Daubechies (1988) found orthogonal
bases made of compactly supported wavelets, and
Mallat (1989) designed the fast wavelet transform
(FWT) algorithm. Further developments were done
in 1991 by Raffy Coifman, Yves Meyer, and Victor
Wickerhauser who introduced wavelet packets and
applied them to data compression. The development
of wavelets has been interdisciplinary, with con-
tributions coming from very different fields such as
engineering (sub-band coding, quadrature mirror
filters, time–frequency analysis), theoretical physics
(coherent states of affine groups in quantum
mechanics), and mathematics (Calderon–Zygmund
operators, characterization of function spaces, har-
monic analysis). Many reference textbooks are
available, some of them we recommend are listed
in the ‘‘Further reading’’ section. Meanwhile, a large
spectrum of applications has grown and is still
developing, ranging from signal analysis and image
processing via numerical analysis and turbulence
modeling to data compression.

In this article, we will first define the continuous
wavelet transform and then the orthogonal wavelet
transform based on a multiresolution analysis.
Properties of both transforms will be discussed
and illustrated by examples. For a general intro-
duction to wavelets, see Wavelets: Applications.

Continuous Wavelet Transform

Let us consider the Hilbert space of square-integr-
able functions L2(R)= {f : jkfk2 <1}, equipped
with the scalar product hf , gi= R

R f (x)g?(x) dx
(? denotes the complex conjugate in the case of
complex-valued functions) and where the norm is
defined by kfk2 = hf , f i1=2.

Analyzing Wavelet

The starting point for the wavelet transform is to
choose a real- or complex-valued function  2
L2(R), called the ‘‘mother wavelet,’’ which fulfills
the admissibility condition,

C ¼
Z 1

0

b ðkÞ��� ���2dkjkj <1 ½1�

where

b ðkÞ ¼ Z 1

�1
 ðxÞ e��2�kx dx ½2�

denotes the Fourier transform, with �=
ffiffiffiffiffiffi�1p

and k
the wave number. If  is integrable, that is,  2
L1(R), this implies that  has zero mean,Z 1

�1
 ðxÞ dx ¼ 0 or b ð0Þ ¼ 0 ½3�

In practice, however, one also requires the wavelet
 to be well localized in both physical and Fourier
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Z 1

�1
xm ðxÞ dx ¼ 0 for m ¼ 0; M� 1 ½4�

that is, monomials up to degree M� 1 are exactly
reproduced. In Fourier space, this property is
equivalent to

dm

dkm
b ðkÞ jk¼0 ¼ 0 for m ¼ 0;M� 1 ½5�

therefore, the Fourier transform of  decays
smoothly at k= 0.

Analysis

From the mother wavelet  , we generate a family of
continuously translated and dilated wavelets,

 a;bðxÞ ¼
1ffiffiffi
a

p  
x� b

a

� �
for a > 0 and b 2 R ½6�

where a denotes the dilation parameter, correspond-
ing to the width of the wavelet support, and b the
translation parameter, corresponding to the position
of the wavelet. The wavelets are normalized in
energy norm, that is, k a, bk2 = 1.
In Fourier space, eqn [6] reads

b a;bðkÞ ¼
ffiffiffi
a

p b ðakÞ e��2�kb ½7�
where the contraction with 1/a in [6] is reflected in
a dilation by a [7] and the translation by b implies a
rotation in the complex plane.

The continuous wavelet transform of a function f
is then defined as the convolution of f with the
wavelet family  a, b:

ef ða; bÞ ¼ Z 1

�1
f ðxÞ �

a;bðxÞ dx ½8�

where  �
a, b denotes, in the case of complex-valued

wavelets, the complex conjugate.
Using Parseval’s identity, we get

ef ða; bÞ ¼ Z 1

�1
bf ðkÞb �

a;bðkÞ dk ½9�

and the wavelet transform could be interpreted as a
frequency decomposition using bandpass filters b a, b

centered at frequencies k= k =a. The wave number
k denotes the barycenter of the wavelet support in
Fourier space

k ¼
R1
0 kjb ðkÞj dkR1
0 jb ðkÞj dk ½10�

Note that these filters have a variable width �k=k;
therefore, when the wave number increases, the

bandwidth becomes wider.

Synthesis

The admissibility condition [1] implies the existence
of a finite energy reproducing kernel, which is a
necessary condition for being able to reconstruct the
function f from its wavelet coefficients ~f . One then
recovers

f ðxÞ ¼ 1

C 

Z 1

0

Z 1

�1
ef ða; bÞ a;bðxÞ

dadb

a2
½11�

which is the inverse wavelet transform.
The wavelet transform is an isometry and one has

Parseval’s identity. Therefore, the wavelet transform
conserves the inner product and we obtain

hf ; gi ¼
Z 1

�1
f ðxÞg�ðxÞ dx

¼ 1

C 

Z 1

0

Z 1

�1
ef ða; bÞeg�ða; bÞ dadb

a2
½12�

As a consequence, the total energy E of a signal
can be calculated either in physical space or in
wavelet space, such as

E ¼
Z 1

�1
jf ðxÞj2 dx

¼ 1

C 

Z 1

0

Z 1

�1
jef ða; bÞj2 dadb

a2
½13�

This formula is also the starting point for the
definition of wavelet spectra and scalogram (see
Wavelets: Application to Turbulence).

Examples

In the following, we apply the continuous wavelet
transform to different academic signals using the
Morlet wavelet. The Morlet wavelet is complex
valued, and consists of a modulated Gaussian with
width k0=�:

 ðxÞ ¼ ðe2��x � e�k2
0
=2Þ e�2�2x2=k2

0 ½14�
The envelope factor k0 controls the number of
oscillations in the wave packet; typically, k0 = 5 is
used. The correction factor e�k2

0
=2, to ensure its

vanishing mean, is very small and often neglected.
The Fourier transform is

b ðkÞ ¼ k0
2

ffiffiffi
�

p e�ðk2
0
=2Þð1þk2Þðe�k2

0
k � 1Þ ½15�

Figure 1 shows wavelet analyses of a cosine, two
sines, a Dirac, and a characteristic function. Below
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the four signals we plot the modulus and the phase
of the corresponding wavelet coefficients.

Higher Dimensions

The continuous wavelet transform can be extended to
higher dimensions in L2(Rn) in different ways. Either
we define spherically symmetric wavelets by setting
 (x)= 1d(jxj) for x 2 Rn or we introduce in addition
to dilations a 2 Rþ and translations b2Rn also rota-
tions to definewaveletswith a directional sensitivity. In
the two-dimensional case, we obtain for example,

 a;b;�ðxÞ ¼
1

a
 R�1

�

x� b

a

� �� �
½16�

where a 2 Rþ, b 2 R2, and where R� is the rotation
matrix

cos � � sin �
sin � cos �

� �
½17�

The analysis formula [8] then becomes

ef ða;b; �Þ ¼ Z
R2

f ðxÞ �
a;b;�ðxÞ dx ½18�

and for the corresponding inverse wavelet transform
[11] we obtain

f ðxÞ¼ 1

C 

Z 1

0

Z
R2

Z 2�

0

ef ða;b;�Þ a;b;�ðxÞ
dadbd�

a3
½19�

Similar constructions can be made in dimensions
larger than 2 using n�1 angles of rotation.
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Figure 1 Examples of a one-dimensional continuous wavelet analysis using the complex-valued Morlet wavelet. Each subfigure

shows on the top the function to be analyzed and below (left) the modulus of its wavelet coefficients and below (right) the phase of its

wavelet coefficients.
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Discrete Wavelets

Frames

It is possible to obtain a discrete set of quasiortho-
gonal wavelets by sampling the scale and position
axes a, b. For the scale a we use a logarithmic
discretization: a is replaced by aj = a�j

0 , where a0 is
the sampling rate of the log a axis (a0 =�( log a))
and where j 2 Z is the scale index. The position b is
discretized linearly: b is replaced by xji = ib0a

�j
0 ,

where b0 is the sampling rate of the position axis at
the largest scale and where i 2 Z is the position
index. Note that the sampling rate of the position
varies with scale, that is, for finer scales (increasing j
and hence decreasing aj), the sampling rate
increases. Accordingly, we obtain the discrete wave-
lets (cf. Figure 2)

 jiðx0Þ ¼ aj
�1=2 

x0 � xji
aj

� �
½20�

and the corresponding discrete decomposition for-
mula is

efji ¼ h ji; f i ¼
Z 1

�1
f ðx0Þ �

jiðx0Þ dx0 ½21�

Furthermore, the wavelet coefficients satisfy the
following estimate:

Akfk22 �
X
j;i

jefjij2 � Bkfk22 ½22�

with frame bounds B � A > 0. In the case A=B we
have a tight frame.

The discrete reconstruction formula is

f ðxÞ ¼ C
X1
j¼�1

X1
i¼�1

efji jiðxÞ þ RðxÞ ½23�

where C is a constant and R(x) is a residual, both
depending on the choice of the wavelet and the
sampling of the scale and position axes. For the parti-
cular choice a0 = 2 (which corresponds to a scale
sampling by octaves) and b0 = 1, we have the dyadic
sampling, for which there exist special wavelets ji that
form an orthonormal basis of L2(R), that is, such that

h ji;  j0i0 i ¼ �jj0�ii0 ½24�
where � denotes the Kronecker symbol. This means
that the wavelets  ji are orthogonal with respect to
their translates by discrete steps 2�ji and their dilates
by discrete steps 2�j corresponding to octaves. In
this case, the reconstruction formula is exact with
C= 1 and R= 0. Note that the discrete wavelet
transform has lost the invariance by translation and
dilation of the continuous one.

Orthogonal Wavelets and Multiresolution Analysis

The construction of orthogonal wavelet bases and the
associated fast numerical algorithm is based on the
mathematical concept of multiresolution analysis
(MRA). The underlying idea is to consider approx-
imations fj of the function f at different scales j.
The amount of information needed to go from a coarse
approximation fj to a finer resolution approximation
fjþ1 is then described using orthogonal wavelets. The
orthogonal wavelet analysis can thus be interpreted as
decomposing the function into approximations of the
function at coarser and coarser scales (i.e., for
decreasing j), where the differences between the
approximations are encoded using wavelets.

The definition of the MRA was introduced by
Stéphane Mallat in 1988 (Mallat 1989). This
technique constitutes a mathematical framework of
orthogonal wavelets and the related FWT.

A one-dimensional orthogonal MRA of L2(R) is
defined as a sequence of successive approximation
spacesVj, j 2 Z, which are closed imbedded subspaces
of L2(R). They verify the following conditions:

Vj � Vjþ1 8j 2 Z ½25�
[
j2Z

Vj ¼ L2ðRÞ ½26�

\
j2Z

Vj ¼ f0g ½27�

f ðxÞ 2 Vj , f ð2xÞ 2 Vjþ1 ½28�
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j
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Figure 2 Orthogonal quintic spline wavelets  j , i (x )=2j=2 

(2j x � i) at different scales and positions: (a)  5, 6(x ),

 6, 32(x), 7, 108(x), and (b) corresponding wavelet coefficients.
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A scaling function �(x) is required to exist. Its
translates generate a basis in each Vj, that is,

VjVj ¼ spanf�jigi2Z ½29�
where

�jiðxÞ ¼ 2j=2�ð2jx� iÞ; j; i 2 Z ½30�
At a given scale j, this basis is orthonormal with respect
to its translates by steps i=2j but not to its dilates,

h�ji; �jki ¼ �ik ½31�
The nestedness of the approximation spaces [28]
generated by the scaling function � implies that it
satisfies a refinement equation:

�j�1;iðxÞ ¼
X1

n¼�1
hn�2i�jnðxÞ ½32�

with the filter coefficients hn = h�jn,�j�1,0i, which
determine the scaling function completely. In gen-
eral, only the filter coefficients hn are known and no
analytical expression of � is given. Equation [32]
implies that the approximation of a function at
coarser scale can be described by linear combina-
tions of the same function at finer scales.

The orthogonal projection of a function f 2 L2(R)
on VJ is defined as

PVJ
: f�!PVJ

f ¼ fJ ½33�
with

fJðxÞ ¼
X
k2Z

hf ; �jki�jkðxÞ ½34�

This coarse graining at a given scale J is done by
filtering the function with the scaling function �. As
a filter, the scaling function � does not have
vanishing mean but is normalized so thatR1
�1 � (x) dx= 1.
As VJ�1 is included in VJ, we can define its

orthogonal complement space in VJ:

VJ ¼ VJ�1 �WJ�1 ½35�
Correspondingly, the approximation of the func-

tion f at scale 2�J, belonging to VJ, can be
decomposed as a sum of orthogonal projections on
VJ�1 and WJ�1, such that

PVJ
f ¼ PVJ�1

f þ PWJ�1
f ½36�

Based on the scaling function �, one can construct a
function  , the so-called mother wavelet, given by
the relation

 jiðxÞ ¼
X
n2Z

gn�2i�j;nðxÞ ½37�

with gn = h�jn, j�1, 0i, and where  ji(x)= 2j=2

 (2jx� i), j, i 2 Z (cf. Figure 2). The filter coeffi-
cients gn can be computed from the filter coefficients
hn using the relation

gn ¼ ð�1Þ1�nh1�n ½38�

The translates and dilates of the wavelet  
constitute orthonormal bases of the spaces Wj,

Wj ¼ spanf jigi2Z ½39�

As in the continuous case, the wavelets have
vanishing mean, and also possibly vanishing higher-
order moments; therefore,

Z 1

�1
xm ðxÞ dx ¼ 0 for m ¼ 0; . . . ;M� 1 ½40�

Let us now consider approximations of a function
f 2 L2(R) at two different scales j:

	 at scale j

fjðxÞ ¼
X1
i¼�1

f ji�jiðxÞ ½41�

	 at scale j� 1

fj�1ðxÞ ¼
X1
i¼�1

f j�1;i�j�1;iðxÞ ½42�

with the scaling coefficients

fji ¼ hf ; �jii ½43�

which correspond to local averages of the function
f at position i2�j and at scale 2�j.

The difference between the two approximations is
encoded by the wavelets

fjðxÞ � fj�1ðxÞ ¼
X1
i¼�1

efj�1; i j�1;iðxÞ ½44�

with the wavelet coefficients

efji ¼ hf ;  jii ½45�

which correspond to local differences of the function
at position (2iþ 1)2�(jþ1) between approximations
at scales 2�j and 2�(jþ1).

Iterating the two-scale decomposition [44], any
function f 2 L2(R) can be expressed as a sum of a
coarse-scale approximation at a reference scale j0
that we set to 0 here, and their successive
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differences. These details are needed to go from one
scale j to the next finer scale jþ 1 for
j= 0, . . . , J � 1,

f ðxÞ ¼
X1
i¼�1

f 0;i�0;iðxÞ þ
X1
j¼0

X1
i¼�1

efji jiðxÞ ½46�

For numerical applications, the sums in eqn [46]
have to be truncated in both scale j and position i.
The truncation in scale corresponds to a limitation
of f to a given finest scale J, which is in practice
imposed by the available sampling rate. Due to the
finite length of the available data, the sum over i
also becomes finite. The decomposition [46] is
orthogonal, as, by construction,

h ji;  j0i0 i ¼ �jj0�ii0 ½47�

h ji; �j0i0 i ¼ 0 for j � j0 ½48�
in addition to [31].

Fast Wavelet Transform

Starting with a function f 2 L2(R) given at the finest
resolution 2�J (i.e., we know fJ 2 VJ and hence the
coefficients f Ji for i 2 Z), the FWT computes its
wavelet coefficients efji by decomposing successively
each approximation fJ into a coarser scale approx-
imation fJ�1, plus the corresponding details which
are encoded by the wavelet coefficients. The
algorithm uses a cascade of discrete convolutions
with the low pass filter hn and the bandpass filter gn,
followed by downsampling, in which only one
coefficient out of two is retained. The direct wavelet
transform algorithm is

	 initialization

given f 2 L2ðRÞ and f Ji ¼ f
i

2 J

� �
for i 2 Z

	 decomposition
for j= J to 1, step �1, do

f j�1;i ¼
X
n2Z

hn�2if jn ½49�

efj�1;i ¼
X
n2Z

gn�2if jn ½50�

The inverse wavelet transform is based on
successive reconstructions of fine-scale approxima-
tions fj from coarser scale approximations fj�1,
plus the differences between approximations at
scale j� 1 and the finer scale j which are encoded
by efj�1, i. The algorithm uses a cascade of discrete
convolutions with the filters hn and gn, preceded by

upsampling which adds zeros in between two
successive coefficients.

	 reconstruction
for j= 1 to J, step 1, do

f ji ¼
X1

n¼�1
hi�2nf j�1;n þ

X1
n¼�1

gi�2n
efj;n ½51�

The FWT has been introduced by Stéphane Mallat
in 1989. If the scaling functions (and wavelets) are
compactly supported, the filters hn and gn have only
a finite number of nonvanishing coefficients. In this
case, the numerical complexity of the FWT is O(N)
where N denotes the number of samples.

Choice of Wavelets

Orthogonal wavelets are typically defined by their
filter coefficients hn, since in general no analytic
expression for  is available. In the following, we
give the filter coefficients of hn for some typical
orthogonal wavelets. The filter coefficients of gn can
be obtained using the quadrature relation between
the two filters [38].

	 Haar D1 (one vanishing moment):

h0 ¼ 1=
ffiffiffi
2

p

h1 ¼ 1=
ffiffiffi
2

p

	 Daubechies D2 (two vanishing moments):

h0 ¼ 0:482962 913 145

h1 ¼ 0:836516 303 736

h2 ¼ 0:224143 868 042

h3 ¼ �0:129 409 522 551

	 Daubechies D3 (three vanishing moments):

h0 ¼ 0:332670 552 950

h1 ¼ 0:806891 509 311

h2 ¼ 0:459877 502 118

h3 ¼ �0:135 011 020 010

h4 ¼ �0:085 441 273 882

h5 ¼ 0:035226 291 882

	 Coiflets C12 (four vanishing moments): the
wavelets and the corresponding scaling function
are shown in Figure 3.

Remarks The construction of orthogonal wavelets
in L2(R) can be modified to obtain wavelets on the
interval, that is, in L2([0, 1]). Therewith, boundary
wavelets are introduced, while in the interior of the
interval the wavelets are not modified.
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A periodic MRA of L2(T), where T=R=Z
denotes the torus, can also be constructed by
periodizing the wavelets in L2(R), using

 perðxÞ ¼
X
k2Z

 ðxþ kÞ

Relaxing the condition of orthogonality allows
greater flexibility in the choice of the basis
functions. For example, biorthogonal wavelets can
be designed using different basis functions for
analysis (a) and synthesis (s) which are related
but no longer orthogonal. A couple of refinable
scaling functions (�a,�s) with related wavelets
( a, s) which are by construction biorthogonal
generate a biorthogonal MRA Va

j ,V
s
j . From an

algorithmic point of view, only two different filter
couples (ga, ha) for the forward and (gs, hs) for the
backward FWT are used, without changing the
algorithm.

The multiresolution approach can be further
generalized, for samplings on nonequidistant
grids leading to the so-called second-generation
wavelets.

Higher Dimensions

The previously presented one-dimensional construc-
tion can be extended to higher dimensions. For
simplicity, we will consider only the two-
dimensional case, since higher dimensions can be
treated analogously.

Tensor product construction Having developed a
one-dimensional orthonormal basis  ji of L

2(R), one
could use these functions as building blocks in
higher dimensions. One way of doing so is to take
the tensor product of two one-dimensional bases
and to define

 jx;jy;ix;iyðx; yÞ ¼  jx;ixðxÞ jy;iyðyÞ ½52�
The resulting functions constitue an orthonormal
wavelet basis for L2(R2). Each function f 2 L2(R2)
can then be developed into

f ðx; yÞ ¼
X
jx;ix

X
jy;iy

efjx;jy;ix;iy jx;jy;ix;iyðx; yÞ ½53�

with efjx, jy, ix, iy = hf , jx, jy, ix, iyi. However, in this basis
the two variables x and y are dilatated separately
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Figure 3 Orthogonal wavelets Coiflet C12. (a) Scaling function �(x) (left) and j�̂(!)j. (b) Wavelet  (x ) (left) and j ̂(!)j.
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and therefore no longer form an MRA. This means
that the functions  jx, jy involve two scales, 2jx and
2jy , and each of the functions is essentially supported
on a rectangle with these side-lengths. Hence, the
decomposition is often called rectangular wavelet
decomposition (cf. Figure 4a). From the algorithmic
viewpoint, this is equivalent to applying the one-
dimensional wavelet transform to the rows and the
columns of a matrix or a function. For some
applications, such a basis is advantageous, for others
not. Often the notion of a scale has a certain
meaning. For an application, one would like to have
a unique scale assigned to each basis function.

Multiresolution construction Another much more
interesting construction is the construction of a truly
two-dimensional MRA of L2(R2). It can be obtained
through the tensor product of two one-dimensional
MRAs of L2(R). More precisely, one defines the
spaces V j, j 2 Z by

V j ¼ Vj 
 Vj ½54�
and V j = span{�j, ix, iy(x, y)=�j, ix(x)�j, iy(y), ix, iy 2 Z}
fulfilling analogous properties as in the one-
dimensional case.

Likewise, we define the complement space W j to
be the orthogonal complement of V j in V jþ1, that is,

V jþ1 ¼ Vjþ1 
 Vjþ1

¼ ðVj �WjÞ 
 ðVj �WjÞ ½55�

¼Vj 
 Vj � ððWj 
 VjÞ
� ðVj 
WjÞ � ðWj 
WjÞÞ ½56�

¼ V j �W j ½57�
It follows that the orthogonal complement W j =
V jþ1 � V j consists of three different types of func-
tions and is generated by three different wavelets

 "j;ix;iyðx; yÞ ¼
 j;ixðxÞ�j;iyðyÞ; " ¼ 1

�j;ixðxÞ j;iyðyÞ; " ¼ 2

 j;ixðxÞ j;iyðyÞ; " ¼ 3

8><
>: ½58�

Observe that here the scale parameter j simulta-
neously controls the dilatation in x and y. We recall
that in d dimensions this construction yields 2d � 1
types of wavelets spanning W j.

Using [58], each function f 2 L2(R2) can be
developed into a multiresolution basis as

f ðx; yÞ ¼
X
j

X
ix;iy

X
"¼1;2;3

ef "j;ix;iy "j;ix;iyðx; yÞ ½59�

with ef "j, ix, iy =< f , "j, ix, iy>. A schematic representa-
tion of the wavelet coefficients is shown in
Figure 4b. The algorithmic structure of the one-
dimensional transforms carries over to the two-
dimensional case by simple tensorization, that is,
applying the filters at each decomposition step to
rows and columns.

Remark The described two-dimensional wavelets
and scaling functions are separable. This advantage is
the ease of generation starting from one-
dimensional MRAs. However, the main drawback
of this construction is that three wavelets are needed
to span the orthogonal complement space W j.
Another property should be mentioned. By construc-
tion, the wavelets are anisotropic, that is, horizontal,
diagonal, and vertical directions are preferred.

Approximation Properties

Reproduction of Polynomials

A fundamental property of the MRA is the exact
reproduction of polynomials. The vanishing
moments of the wavelet  , that is,

R
R xm (x)dx= 0

......

...

... ...

...

...

fj x–1, jy–1, ix , iy

~

fj –1, ix , iy

~1

fj, ix , iy

~1

fj, ix , iy

~2
fj, ix , iy

~3

fj –1
, ix , iy

~3
fj –1

, ix , iy

~2fjx, jy–1, ix , iy

~

fjx, jy , ix , iy

~
...

~
fj x–1, jy, ix , iy

(a) (b)

Figure 4a Schematic representation of the 2D (b) wavelet transforms: (a) Tensor product construction and (b) 2D MRA.
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for m= 0,M� 1, is equivalent to the fact that
polynomials up to degree M� 1, can be expressed
exactly as a linear combination of scaling functions,
pm(x)=

P
n2Zn

m�(x�n) for m=0,M�1. This so-
called Strang–Fix condition proves that  has M
vanishing moments if and only if any polynomial of
degree M�1 can be written as a linear combination
of scaling functions �. Note that, as pm 62L2(R), the
coefficients nm are not in l2(Z).

Regularity and Local Decay of Wavelet
Coefficients

The local or global regularity of a function is closely
related to the decay of its wavelet coefficients. If a
function is locally in Cs(R) (the space of s-times
continuously differentiable functions), it can be well
approximated locally by a Taylor series of degree s.
Consequently, its wavelet coefficients are small at
fine scales, as long as the wavelet  has enough
vanishing moments. The decay of the coefficients
hence determines directly the error being made when
truncating a wavelet sum at some scale.

Depending on the type of norm used and whether
global or local characterization is concerned, various
relations of this kind have been developed. Let us
take as example the case of an �-Lipschitz function.

Suppose f 2 L2(R), then for [a, b] � R the func-
tion f is �-Lipschitz with 0 < � < 1 for any x0 2
[a, b], that is, jf (x0 þ h)� f (x0)j � Cjhj�, if and
only if there exists a constant A such that jefjij �
A2�j��1=2 for any (j, i) with i=2j 2 [a, b].

This shows the relation between the local reg-
ularity of a function and the decay of its wavelet
coefficients in scale.

Example To illustrate the local decay of the
wavelet coefficients, we consider in Figure 5 the
function f (x)= sin (2�x) for x � 1=4 and x � 3=4
and f (x)=�sin (2�x) for 1=4 < x < 3=4. The corre-
sponding wavelet coefficients for quintic spline
wavelets are plotted in logarithmic scale. The
wavelet coefficients show that only in a local region
around singularities the fine-scale coefficients are
significant.

Linear Approximation

The exact reproduction of polynomials can be used
to derive error estimates for the approximation of a
function f at a given scale, which corresponds to
linear approximation. We consider f belonging to
the Sobolev space Ws, p(Rd), that is, the weak
derivatives of f up to order s belong to Lp(Rd). The
linear approximation of f at scale J, corresponding
to the projection of f onto VJ, is then given by

fJðxÞ ¼
XJ�1

j¼0

X
i2Z

efj;i j;iðxÞ ½60�

The approximation error can be estimated by

kf � fJkLp < C2�Jminðs;mÞ=d ½61�

where s denotes the smoothness of the function in
Lp, d the space dimension, and m the number of
vanishing moments of the wavelet  . In the case of
poor global regularity of f, that is, for small s, a
large number of scales J is needed to get a good
approximation of f.

In Figure 6, we plot the linear approximation of
the function f shown in Figure 5. The function f6 is
reconstructed using wavelet coefficients up to scale
J � 1= 5, so that in total only 64 out of 512
coefficients are retained. We observe an oscillating
behavior of fJ near the discontinuities of f which
dominates the approximation error.

Nonlinear Approximation

Retaining the N largest wavelet coefficients in the
wavelet expansion of f in [46], without imposing
any a priori cutoff scale, yields the best N-term
approximation f N. In contrast to the linear approx-
imation [60], it is called nonlinear approximation,
since the choice of the retained coefficients depends

–4.00E + 00 Logarithm 1.00E + 00

(a)

(b)

Figure 5 Orthogonal wavelet decomposition using quintic

spline wavelets: (a) function f (x )= sin (2�x ) for x � 1=4 and x �
3=4 and f (x )= �sin(2�x ) for 1=4< x < 3=4 sampled on a grid

xi = i=2J , i=0, . . . ,2J �1 with J=9 and (b) corresponding wavelet

coefficients log10 jefj , i j for i=0, . . . ,2j �1 and j=0, . . . ,J�1.
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on the function f. The mathematical theory has been
formalized by Cohen, Dahmen, and De Vore.

The nonlinear approximation of the function f can
then be written as

f NðxÞ ¼
X

ðj;iÞ2�N

efj;i  j;iðxÞ ½62�

where �N denotes the ensemble of all multi-indices
�= (j, i), indexing the N largest coefficients (mea-
sured in the lp norm),

�N ¼f�k;k¼ 1;Nj kef�kklp > kef	klp 8	2�g ½63�
with �= {	= (j, i), j� 0, i2Z}. The nonlinear
approximation leads to the following error estimate:

kf � fNkLp < CN�s=d ½64�
where s denotes the smoothness of f in the larger
space Lq(Rd) with

1

q
¼ 1

p
þ s

d

which corresponds to the Sobolev embedding line
(Figure 7). This estimate shows that the nonlinear
approximation converges faster than the linear one,
if f has a larger regularity in Lq, that is, f 2 Ws, q

(Rd), which is for example the case for functions
with isolated singularities and for small q.

In Figure 8, we plot the nonlinear approximation
of the function f shown in Figure 5. The function fN

is reconstructed using the strongest 64 wavelet
coefficients out of 512 coefficients. Compared to
the linear approximation (cf. Figure 6), the oscilla-
tions around the discontinuities disappear and the
approximation error is reduced while using the same
number of coefficients.

Compression and Preconditioning of Operators

The nonlinear approximation of functions can be
extended to certain operators leading to an efficient

s

t

Cα(IRd )

Lp(IRd)1/p 1/q = 1/p + t /d

Em
be

dd
ing

Linear approx.
O(N–t /d )

Nonlinear approx.
O(N–t /d )

Ws,p(IRd )

Figure 7 Schematic representation of linear and nonlinear

approximation.
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(a)

(b)

Figure 6 (a) Linear approximation fJ of the function f in

Figure 5 for J =6, reconstructed from 64 wavelet coefficients

using quintic splines wavelets and (b) corresponding wavelet

coefficients log10 jefj , i j for i =0, . . . , 2j � 1 and j = 0, . . . , J � 1.

Note that the coefficients for J > 5 have been set to zero.
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(a)

(b)

Figure 8 (a) Nonlinear approximation f N of the function f in

Figure 5 reconstructed from the 64 largest wavelet coefficients

using quintic splines wavelets, (b) retained wavelet coefficients

log10 jefj , i j for i =0, . . . , 2j � 1 and j =0, . . . , J � 1.
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representation in wavelet space, that is, to sparse
matrices. For integral operators, for example,
Calderon–Zygmund operators T on R defined by

Tf ðxÞ ¼
Z
R

Kðx; yÞf ðyÞ dy ½65�

where the kernel k satisfies

jkðx; y; Þj � C

jx� yj
and

@

@x
kðx; yÞ

����
����þ @

@y
kðx; y; Þ

����
���� � C

jx� yj2

their wavelet representation hT j, i, j0, i0 i is sparse
and a large number of weak coefficients can be
suppressed by simple thresholding of the matrix
entries while controlling the precision. The resulting
numerical scheme is called BCR algorithm and is
due to Beylkin et al. (1991).

The characterization of function spaces by the
decay of the wavelet coefficients and the corre-
sponding norm equivalences can be used for
diagonal preconditioning of integral or differential
operators which leads to matrices with uniformly
bounded condition numbers. For elliptic differential
operators, for example, the Laplace operator r2 the
norm equivalence kr2fk ’ k22jefjik can be used for
preconditioning the matrix hr2 j, i, j0, i0 i by a simple
diagonal scaling with 2�2j to obtain a uniformly
bounded condition number. For further details, we
refer to the book of Cohen (2000).

Wavelet Denoising

We consider a function f which is corrupted by a
Gaussian white noise n 2 N (0, 
2). The noise is
spread over all wavelet coefficients es�, while,
typically, the original function f is determined by
only few significant wavelet coefficients. The aim is
then to reconstruct the function f from the observed
noisy signal s= f þ n.

The principle of the wavelet denoising can be
summarized in the following procedure:

	 Decomposition. Compute the wavelet coefficientses� using the FWT.
	 Thresholding. Apply the thresholding function �"

to the wavelet coefficients es�, thus reducing the
relative importance of the coefficients with small
absolute value.

	 Reconstruction. Reconstruct a denoised version sC
from the thresholded wavelet coefficients using
the fast inverse wavelet transform.

The thresholding parameter " depends on the
variance of the noise and on the sample size N.
The thresholding function � we consider corre-
sponds to hard thresholding:

�"ðaÞ ¼ a if jaj > "
0 if jaj � "

�
½66�

Donoho and Johnstone (1994) have shown that
there exists an optimal " for which the relative
quadratic error between the signal s and its
estimator sC is close to the minimax error for all
signals s 2 H, where H belongs to a wide class of
function spaces, including Hölder and Besov spaces.
They showed using the threshold

"D ¼ 
n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN

p
½67�

yields an error which is close to the minimum error.
The threshold "D depends only on the sampling N
and on the variance of the noise 
n; hence, it is
called universal threshold. However, in many
applications, 
n is unknown and has to be estimated
from the available noisy data s. For this, the present
authors have developed an iterative algorithm (see
Azzolini et al. (2005)), which is sketched in the
following:

1. Initialization
(a) given sk, k= 0, . . . ,N � 1. Set i= 0 and com-

pute the FWT of s to obtain es�;
(b) compute the variance 
20 of s as a rough

estimate of the variance of n and compute the
corresponding threshold "0 = (2 lnN
20)

1=2;
(c) set the number of coefficients considered as

noise Nnoise =N.
2. Main loop repeat

(a) set N0
noise =Nnoise and count the wavelet

coefficients Nnoise with modulus smaller
than "i;

(b) compute the new variance 
2iþ1 from the
wavelet coefficients whose modulus is smal-
ler than "i and the new threshold "iþ1 =
(2( ln N)
2iþ1)

1=2;
(c) set i= iþ 1 until (N0

noise = =Nnoise).
3. Final step

(a) compute sC from the coefficients with mod-
ulus larger than "i using the inverse FWT.

Example To illustrate the properties of the denoising
algorithm, we apply it to a one-dimensional test signal.
We construct a noisy signal s by superposing a
Gaussian white noise, with zero mean and variance

2W = 1, to a function f, normalized such that
((1=N)

P
k jfkj2)1=2 = 10. The number of samples is

436 Wavelets: Mathematical Theory



N= 8192. Figure 9a shows the function f together
with the noise n; Figure 9b shows the constructed
noisy signal s and Figure 9c shows the wavelet
denoised signal sC together with the extracted noise.
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Main Definition

WDVV equations of associativity (after E Witten,
R Dijkgraaf, E Verlinde, and H Verlinde) is
tantamount to the following problem: find a func-
tion F(v) of n variables v= (v1, v2, . . . , vn) satisfying
the conditions [1], [3], and [4] given below. First,

@3FðvÞ
@v1@v�@v�

� �� ½1�

must be a constant symmetric nondegenerate matrix.
Denote (��)= (��)

�1 the inverse matrix and intro-
duce the functions

c���ðvÞ ¼ ��
@3FðvÞ

@v�@v�@v�
; �; �; � ¼ 1; . . . ; n ½2�

The main condition says that, for arbitrary
v1, . . . , vn these functions must be structure con-
stants of an associative algebra, that is, introducing
a v-dependent multiplication law in the n-dimen-
sional space by

a  b :¼ c1��ðvÞa�b�; . . . ; cn��ðvÞa�b�
� �

one obtains an n-parameter family of n-dimensional
associative algebras (these algebras will automati-
cally be also commutative). Spelling out this condi-
tion one obtains an overdetermined system of
nonlinear PDEs for the function F(v) often also
called WDVV associativity equations

@3FðvÞ
@v�@v�@v�

�	
@3FðvÞ

@v	@v�@v�

¼ @3FðvÞ
@v�@v�@v�

�	
@3FðvÞ

@v	@v�@v�
½3�

for arbitrary 1 � �, �, �, � � n. (Summation over
repeated indices will always be assumed.) The last
one is the so-called quasihomogeneity condition

EF ¼ ð3� dÞF þ 1
2A��v

�v� þ B�v
� þ C ½4�

where

E ¼ a��v
� þ b�

� � @

@v�

for some constants a�� ,b
� satisfying

a�1 ¼ ��1 ; b1 ¼ 0

A��,B�,C, d are some constants. E is called Euler
vector field and d is the charge of the Frobenius
manifold.

For n= 1 one has F(v)= (1=6)v3. For n= 2 one
can choose

Fðu; vÞ ¼ 1
2 uv

2 þ f ðuÞ
only the quasihomogeneity [4] makes a constraint
for f (v). The first nontrivial case is for n= 3. The
solution to WDVV is expressed in terms of a
function f = f (x, y) in one of the two forms (in the
examples all indices are written as lower):

d 6¼ 0 : F ¼ 1
2 v

2
1v3 þ 1

2 v1v
2
2 þ f ðv2; v3Þ

f 2xxy ¼ fyyy þ fxxxfxyy

d ¼ 0 : F ¼ 1
6 v

3
1 þ v1v2v3 þ f ðv2; v3Þ

fxxxfyyy � fxxyfxyy ¼ 1

½5�

The function f (x, y) satisfies additional constraint
imposed by [4]. Because of this the above PDEs [5]
can be reduced (Dubrovin 1992, 1996) to a
particular case of the Painlevé-VI equation (see
Painlevé Equations).

The problem [1], [3], [4] is invariant with respect
to linear changes of coordinates preserving the
direction of the vector @=@v1:

v� 7! ~v� ¼ P��v
� þQ�; detðP��Þ6¼ 0; P�1 ¼ ��1
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