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Introduction about Turbulence
and Wavelets

What is Turbulence?

Turbulence is a highly nonlinear regime encoun-
tered in fluid flows. Such flows are described by
continuous fields, for example, velocity or pressure,
assuming that the characteristic scale of the fluid
motions is much larger than the mean free path of
the molecular motions. The prediction of the
spacetime evolution of fluid flows from first
principles is given by the solutions of the Navier–
Stokes equations. The turbulent regime develops
when the nonlinear term of Navier–Stokes equa-
tions strongly dominates the linear term; the ratio
of the norms of both terms is the Reynolds number
Re, which characterizes the level of turbulence. In
this regime nonlinear instabilities dominate, which
leads to the flow sensitivity to initial conditions and
unpredictability.

The corresponding turbulent fields are highly
fluctuating and their detailed motions cannot be
predicted. However, if one assumes some statistical
stability of the turbulence regime, averaged quan-
tities, such as mean and variance, or other related
quantities, for example, diffusion coefficients, lift or
drag, may still be predicted.

When turbulent flows are statistically stationary
(in time) or homogeneous (in space), as it is
classically supposed, one studies their energy spec-
trum, given by the modulus of the Fourier transform
of the velocity autocorrelation.

Unfortunately, since the Fourier representation
spreads the information in physical space among the
phases of all Fourier coefficients, the energy spec-
trum loses all structural information in time or
space. This is a major limitation of the classical way
of analyzing turbulent flows. This is why we have
proposed to use the wavelet representation instead
and define new analysis tools that are able to
preserve time and space locality.

The same is true for computing turbulent flows.
Indeed, the Fourier representation is well suited to
study linear motions, for which the superposition
principle holds and whose generic behavior is, either
to persist at a given scale, or to spread to larger
ones. In contrast, the superposition principle does

not hold for nonlinear motions, their archetype
being the turbulent regime, which therefore cannot
be decomposed into a sum of independent motions
that can be separately studied. Generically, their
evolution involves a wide range of scales, exciting
smaller and smaller ones, even leading to finite-time
singularities, e.g., shocks. The ‘‘art’’ of predicting
the evolution of such nonlinear phenomena consists
of disentangling the active from the passive
elements: the former should be deterministically
computed, while the latter could either be discarded
or their effect statistically modeled. The wavelet
representation allows to analyze the dynamics
in both space and scale, retaining only those degrees
of freedom which are essential to predict the
flow evolution. Our goal is to perform a kind
of ‘‘distillation’’ and retain only the elements
which are essential to compute the nonlinear
dynamics.

How One Studies Turbulence?

When studying turbulence one is uneasy about the
fact that there are two different descriptions,
depending on which side of the Fourier transform
one looks from.

� On the one hand, looking from the Fourier space
representation, one has a theory which assumes
the existence of a nonlinear cascade in an
intermediate range of wavenumbers sets, called
the ‘‘inertial range’’ where energy is conserved
and transferred towards high wavenumbers, but
only on average (i.e., considering either ensemble
or time or space averages). This implies that a
turbulent flow is excited at wavenumbers lower
than those of the inertial range and dissipated at
wavenumbers higher. Under these hypotheses, the
theory predicts that the slope of the energy
spectrum in the inertial range scales as k�5=3 in
dimension 3 and as k�3 in dimension 2, k being
the wavenumber, i.e., the modulus of the wave
vector.

� On the other hand, if one studies turbulence from
the physical space representation, there is not yet
any universal theory. One relies instead on
empirical observations, from both laboratory
and numerical experiments, which exhibit the
formation and persistence of coherent vortices,
even at very high Reynolds numbers. They
correspond to the condensation of the vorticity
field into some organized structures that contain
most of the energy (L2-norm of velocity) and
enstrophy (L2-norm of vorticity).
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Moreover, the classical method for modeling turbu-
lent flows consists in neglecting high-wavenumber
motions and replacing them by their average, suppos-
ing their dynamics to be either linear or slaved to the
lowwavenumbermotions. Such a method would work
if there exists a clear separation between low and high
wavenumbers, that is, a spectral gap.

Actually, there is now strong evidence, from
both laboratory and direct numerical simulation
(DNS) experiments, that this is not the case.
Conversely, one observes that turbulent flows are
nonlinearly active all along the inertial range and that
coherent vortices seem to play an essential dynamical
role there, especially for transport and mixing. One
may then ask the following questions: Are coherent
vortices the elementary building blocks of turbulent
flows? How can we extract them? Do their mutual
interactions have a universal character? Can we
compress turbulent flows and compute their evolu-
tion with a reduced number of degrees of freedom
corresponding to the coherent vortices?

The DNS of turbulent flows, based on the integra-
tion of the Navier–Stokes equations using either grid
points in physical space or Fourier modes in spectral
space, requires a number of degrees of freedom per
time step that varies as Re9=4 in dimension 3 (and as
Re in dimension 2). Due to the inherent limitation of
computer performances, one can presently only per-
form DNS of turbulent flows up to Reynolds numbers
Re= 106. To compute higher Reynolds flows, one
should then design ad hoc turbulence models, whose
parameters are empirically adjusted to each type of
flows, in particular to their geometry and boundary
conditions, using data from either laboratory or
numerical experiments.

What are Wavelets?

The wavelet transform unfolds signals (or fields)
into both time (or space) and scale, and possibly
directions in dimensions higher than 1. The starting
point is a function  2 L2(R), called the ‘‘mother
wavelet’’, which is well localized in physical space
x 2 R, is oscillating ( has at least a vanishing
integral, or better, its first m moments vanish), and
is smooth (its Fourier transform  ̂(k) exhibits fast
decay for wave numbers jkj tending to infinity). The
mother wavelet then generates a family of dilated
and translated wavelets

 a; bðxÞ¼ a�1=2 
x� b

a

� �
with a 2 Rþ the scale parameter and b 2 R the
position parameter, all wavelets being normalized
in L2-norm.

The wavelet transform of a function f 2 L2(R) is
the inner product of f with the analyzing wavelets
 a, b, which gives the wavelet coefficients: ef (a, b)=
hf , a, bi=

R
f (x) a, b(x) dx. They measure the fluc-

tuations of f around the scale a and the position
b. f can then be reconstructed without any loss as
the inner product of its wavelet coefficients ef with
the analyzing wavelets

 a; b : f ðxÞ=C 
�1
Z Z ef ða; bÞ  a; bðxÞa�2da db

C =
R j ̂j2jkj�1 dk being a constant which depends

on the wavelet  .
Like the Fourier transform, the wavelet transform

realizes a change of basis from physical space to
wavelet space which is an isometry. It thus conserves
the inner product (Plancherel theorem), and in
particular energy (Parseval’s identity). Let us men-
tion that, due to the localization of wavelets in
physical space, the behavior of the signal at infinity
does not play any role. Therefore, the wavelet
analysis and synthesis can be performed locally, in
contrast to the Fourier transform where the nonlocal
nature of the trigonometric functions does not allow
to perform a local analysis.

Moreover, wavelets constitute building blocks of
various function spaces out of which some can be
used to contruct orthogonal bases. The main
difference between the continuous and the orthogo-
nal wavelet transforms is that the latter is non-
redundant, but only preserves the invariance by
translation and dilation only for a discrete subset of
wavelet space which corresponds to the dyadic grid
�= (j, i), for which scale is sampled by octaves j and
space by positions 2�ji. The advantage is that all
orthogonal wavelet coefficients are decorrelated,
which is not the case for the continuous wavelet
transform whose coefficients are redundant and
correlated in space and scale. Such a correlation
can be visualized by plotting the continuous wavelet
coefficients of a white noise and the patterns one
thus observes are due to the reproducing kernel of
the continuous wavelet transform, which corre-
sponds to the correlation between the analyzing
wavelets themselves.

In practice, to analyze turbulent signals or fields,
one should use the continuous wavelet transform
with complex-valued wavelets, since the modulus of
the wavelet coefficients allows to read the evolution
of the energy density in both space (or time) and
scales. If one uses real-valued wavelets instead, the
modulus of the wavelet coefficients will present the
same oscillations as the analyzing wavelets and it
will then become difficult to sort out features
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belonging to the signal or to the wavelets. In the case
of complex-valued wavelets, the quadrature between
the real and the imaginary parts of the wavelet
coefficients eliminates these spurious oscillations; this
is why we recommend to use complex-valued wave-
lets, such as the Morlet wavelet. To compress
turbulent flows, and a fortiori to compute their
evolution at a reduced cost, compared to standard
methods (finite difference, finite volume, or spectral
methods), one should use orthogonal wavelets. This
avoids redundancy, since one has the same number of
grid points as wavelet coefficients. Moreover there
exists a fast algorithm to compute the orthogonal
wavelet coefficients which is even faster than the fast
Fourier transform, having O(N) operations instead of
O(N log2 N).

The first paper about the continuous wavelet
transform has been published by Grossmann and
Morlet (1984). Then, discrete wavelets were
constructed, leading to frames (Daubechies et al.
1986) and orthogonal bases (Lemarié and Meyer,
1986). From there the formalism of multiresolution
analysis (MRA) has been constructed which led
to the fast wavelet algorithm (Mallat 1989). The
first application of wavelets to analyze turbulent
flows has been published by Farge and Rabreau
(1988). Since then a long-term research program has
been developed for analyzing, computing and
modeling turbulent flows using either continuous
wavelets, orthogonal wavelets, or wavelet packets.

Wavelet Analysis

Wavelet Spectra

Wavelet space To study turbulent signals one uses
the continuous wavelet transform for analysis, and
the orthogonal wavelet transform for compression
and computation. To perform a continuous wavelet
transform, one can choose:

� either a real-valued wavelet, such as the Marr
wavelet, also called ‘‘Mexican hat,’’ which is the
second derivative of a Gaussian,

 ðxÞ ¼ ð1� x2Þ exp �x2

2

� �
½1�

� or a complex-valued wavelet, such as the Morlet
wavelet,

b ðkÞ ¼ 1

2�
exp �ðk� k Þ2

2

 !
for k > 0

b ðkÞ ¼ 0 for k � 0

8>><>>: ½2�

with the wavenumber k denoting the barycenter of
the wavelet support in Fourier space computed as

k ¼
R1
0 kjb ðkÞjdkR1
0 jb ðkÞjdk ½3�

For the orthogonal wavelet transform, there is
a large collection of possible wavelets and the
choice depends on which properties are preferred,
for instance: compact support, symmetry, smooth-
ness, number of cancelations, computational
efficiency.

From our own experience, we tend to prefer
the Coifman wavelet 12, which is compactly
supported, has four vanishing moments, is quasi-
symmetric, and is defined with a filter of length 12,
which leads to a computational cost for the fast
wavelet transform in 24N operations, since two
filters are used.

As stated above, we recommend the complex-
valued continuous wavelet transform for analysis. In
this case, one plots the modulus and the phase of the
wavelet coefficients in wavelet space, with a linear
horizontal axis for the position b, and a logarithmic
vertical axis for the scale a, with the largest scale at
the bottom and the smallest scale at the top.

In Figure 1a we show the wavelet analysis of
a turbulent signal, corresponding to the time
evolution of the velocity fluctuations of two succes-
sive vortex breakdowns, measured by hot-wire
anemometry at N= 32768= 215 instants (Cuypers
et al. 2003). The modulus of the wavelet coefficients
(Figure 1b) shows that during the vortex break-
down, which is due to strong nonlinear flow
instability, energy is spread over a wide range of
scales. The phase of the wavelet coefficients
(Figure 1c) is plotted only where the modulus is
non-negligible, otherwise the phase information
would be meaningless. In Figure 1c, one observes
that the lines of constant phase point towards the
instants where the signal is less regular, that is,
during vortex breakdowns.

Local wavelet spectrum Since the wavelet trans-
form conserves energy and preserves locality in
physical space, one can extend the concept of energy
spectrum and define a local energy spectrum, such
that

eEðk; xÞ ¼ 1

C k 
ef k 

k
;x

� ����� ����2 for k � 0 ½4�

where k is the centroid wavenumber of the
analyzing wavelet  and C is defined in the
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admissibility condition (respectively, eqns [10] and
[1] in the article Wavelets: Mathematical Theory).

By measuring eE(k, x) at different instants or
positions, one estimates which elements in the
signal contribute most to the global Fourier energy
spectrum, inorder to suggest a way to decompose
the signal into different components. For example,
if one considers turbulent flows, one can compare
the energy spectrum of the coherent structures
(such as isolated vortices in incompressible flows
or shocks in compressible flows) and the energy
spectrum of the incoherent background flow, since
both elements exhibit different correlations and
therefore different spectral slopes.

Global wavelet spectrum Although the wavelet
transform analyzes the flow using localized func-
tions rather than complex exponentials, one can
show that the global wavelet energy spectrum
converges towards the Fourier energy spectrum,
provided the analyzing wavelet has enough vanish-
ing moments. More precisely, the global wavelet
spectrum, defined by integrating [4] over all
positions,

eEðkÞ¼Z 1

�1
eEðk; xÞdx ½5�

gives the correct exponent for a power-law Fourier
energy spectrum E(k)/ k�� if the analyzing wavelet
has at least M > (� �1)=2 vanishing moments.
Thus, the steeper the energy spectrum one studies,
the more vanishing moments the analyzing wavelet
should have.

The inertial range which corresponds to the scales
when turbulent flows are dominated by nonlinear
interactions, exhibits a power-law behavior as
predicted by the statistical theory of homogeneous
and isotropic turbulence.

The ability to correctly evaluate the slope of the
energy spectrum is an important property of the
wavelet transform which is related to its ability to
detect and characterize singularities. We will not
discuss here how wavelet coefficients could be used
to study singularities and fractal measures, since it is
presented in detail elsewhere (see Wavelets:
Applications).

Relation to Classical Analysis

Relation to Fourier spectrum The global wavelet
energy spectrum eE(k) is actually a smoothed version
of the Fourier energy spectrum E(k). This can be
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Figure 1 Example of a one-dimensional continuous wavelet

analysis. (a) the signal to be analyzed, (b) the modulus of its

wavelet coefficients, (c) the phase of its wavelet coefficients.
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seen from the following relation between the two
spectra:

eEðkÞ ¼ 1

C k 

Z 1

0

Eðk0Þ b k k
0

k

� ����� ����2dk0 ½6�

which shows that the global wavelet spectrum is an
average of the Fourier spectrum weighted by the
square of the Fourier transform of the analyzing
wavelets at wavenumber k. Note that the larger k,
the larger the averaging interval, because wavelets
are bandpass filters with �k=k constant. This
property of the global wavelet energy spectrum is
particularly useful to study turbulent flows. Indeed,
the Fourier energy spectrum of a single realization
of a turbulent flow is too oscillating to be able to
clearly detect a slope, while it is no more the case
for the global wavelet energy spectrum, which is a
better estimator of the spectral slope.

The real-valued Marr wavelet [1] has only two
vanishing moments and thus can correctly measure
the energy spectrum exponents up to � < 5. In the
case of the complex-valued Morlet wavelet [2], only
the zeroth-order moment is null, but the higher mth
order moments are very small (/ km e(�k2 =2)),
provided that k is larger than 5. For instance, the
Morlet wavelet transform with k = 6 gives accu-
rate estimates of the power–law exponent of the
energy spectrum up to � < 7.

There is also a family of wavelets with an infinite
number of cancelations

b nðkÞ ¼ �n exp � 1

2
k2 þ 1

k2n

� �� �
n � 1 ½7�

where �n is chosen for normalization.
These wavelets can therefore correctly measure

any power–law energy spectrum, and thus detect the
difference between a power–law energy spectrum
and a Gaussian energy spectrum (E(k) / e(�(k=k0)

2)).
For instance, it is important in turbulence to
determine the wavenumber after which the
energy spectrum decays exponentially, since this
wavenumber defines the end of the inertial range,
dominated by nonlinear interactions, and the begin-
ning of the dissipative range, dominated by linear
dissipation.

Relation to structure functions In this subsection
we will point out the limitations of classical
measures of intermittency and present a set of
wavelet-based alternatives.

The classical measures based on structure func-
tions can be thought of as a special case of wavelet
filtering using a nonsmooth wavelet defined as the
difference of two Diracs (DOD). It is this lack of
regularity of the underlying wavelet that limits the
adequacy of classical measures to analyze smooth
signals. Wavelet-based diagnostics can overcome
these limitations, and produce accurate results,
whatever the signal to be analyzed.

We will link the scale-dependent moments of the
wavelet coefficients and the structure functions,
which are classically used to study turbulence. In
the case of second-order statistics, the global wavelet
spectrum corresponds to the second-order structure
function. Furthermore, a rigorous bound for the
maximum exponent detected by the structure func-
tions can be computed, but there is a way to
overcome this limitation by using wavelets.

The increments of a signal, also called the
modulus of continuity, can be seen as its wavelet
coefficients using the DOD wavelet

 �ðxÞ ¼ �ðxþ 1Þ � �ðxÞ ½8�

We thus obtain

f ðxþ aÞ � f ðxÞ ¼ efx; a ¼ hf ;  �x; ai ½9�

with  x, a(y)= 1=a[�((y� x)=aþ 1)��((y� x)=a)].
Note that the wavelet is normalized with respect to
the L1-norm. The pth-order structure function Sp(a)
therefore corresponds to the pth-order moment of
the wavelet coefficients at scale a

SpðaÞ ¼
Z

ðefx;aÞpdx ½10�

As the DOD wavelet has only one vanishing
moment (its mean), the exponent of the pth-order
structure function in the case of a self-similar
behavior is limited by p, that is, if Sp(a) / a�(p),
then �(p) < p. To be able to detect larger exponents,
one has to use increments with a larger stencil, or
wavelets with more vanishing moments.

We now concentrate on the case p= 2, that is, the
energy norm. Equation [6] gives the relation
between the global wavelet spectrum eE(k) and the
Fourier spectrum E(k) for an arbitrary wavelet  .
For the DOD wavelet we find, since b �(k)=
eik �1= eik=2(eik=2 � ei k=2) and hence jb �(k)j2 =
2(1� cos k), that

eEðkÞ ¼ 1

C k

Z 1

0

Eðk0Þ 2� 2 cos
k k

0

k

� �� �
dk0 ½11�
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Setting a= k =k, we see that the wavelet spectrum
corresponds to the second-order structure function,
such that

eEðkÞ ¼ 1

C k
S2ðaÞ ½12�

The above results show that, if the Fourier spectrum
behaves like k�� for k!1, eE(k) / k�� if � < 2Mþ
1, where M denotes the number of vanishing
moments of the wavelets. Consequently, we find
for S2(a) that S2(a) / a�(p) = (k =k)

�(p) for a! 0 if
�(2) � 2M. For the DOD wavelet, we have M= 1,
therefore, the second-order structure function
can only detect slopes smaller than 2, corresponding
to an energy spectrum whose slope is shallower
than �3. Thus, the usual structure functions give
spurious results for sufficiently smooth signals. The
relation between structure functions and wavelet
coefficients can be generalized in the context of
Besov spaces, which are classically used for non-
linear approximation theory (see Wavelets: Mathe-
matical Theory).

Intermittency Measures

Intermittency is defined as localized bursts of high-
frequency activity. This means that intermittent
phenomena are localized in both physical and
spectral spaces, and thus a suitable basis for
representing intermittency should reflect this dual
localization. The Fourier basis is well localized in
spectral space, but delocalized in physical space.
Therefore, when a turbulence signal is filtered using
a high-pass Fourier transform and then recon-
structed in physical space, for example, to calculate
the flatness, some spatial information is lost. This
leads to smoothing of strong gradients and spurious
oscillations in the background, which come from the
fact that the modulus and phase of the discarded
high wavenumber Fourier modes have been lost.
The spatial errors introduced by such a Fourier
filtering lead to errors in estimating the flatness, and
hence the signal’s intermittency.

When a quantity (e.g., velocity derivative) is
intermittent, it contains rare but strong events (i.e.,
bursts of intense activity), which correspond to
large deviations reflected in the ‘‘heavy tails’’ of the
PDF. Second-order statistics (e.g., energy spectrum,
second-order structure function) are relatively
insensitive to such rare events whose time or
space supports are very small and thus do not
dominate the integral. However, these events
become increasingly important for higher-order
statistics, where they finally dominate. High-order

statistics therefore characterize intermittency. Of
course, intermittency is not essential for all problems:
second-order statistics are sufficient to measure
dispersion (dominated by energy-containing scales),
but not to calculate drag or mixing (dominated by
vorticity production in thin boundary or shear
layers).

To measure intermittency, one uses the space–
scale information contained in the wavelet coeffi-
cients to define scale-dependent moments and
moment ratios. Useful diagnostics to quantify the
intermittency of a field f are the moments of its
wavelet coefficients at different scales j

Mp;jðf Þ ¼ 2�j
X2j�1

i¼0

jefj;ijp ½13�

Note that the distribution of energy scale by scale,
that is, the scalogram, can be computed from the
second-order moment of the orthogonal wavelet
coefficients: Ej = 2j�1M2, j. Due to orthogonality of
the decomposition, the total energy is just the sum:
E=

P
j�0 Ej.

The sparsity of the wavelet coefficients at each
scale is a measure of intermittency, and it can be
quantified using ratios of moments at different
scales

Qp;q;jðf Þ ¼ Mp;jðf Þ
ðMq;jðf ÞÞp=q

½14�

which may be interpreted as quotient norms
computed in two different functional spaces,
Lp-and Lq-spaces. Classically, one chooses q= 2 to
define typical statistical quantities as a function of
scale. Recall that for p= 4 we obtain the scale-
dependent flatness Fj =Q4, 2, j. It is equal to 3 for a
Gaussian white noise at all scales j, which proves that
this signal is not intermittent. The scale-dependent
skewness, hyperflatness, and hyperskewness are
obtained for p= 3, 5, and 6, respectively. For inter-
mittent signals Qp, q, j increases with j, whatever p
and q.

Wavelet Compression

Principle

To study turbulent signals, we now propose to
separate the rare and extreme events from the dense
events, and then calculate their statistics indepen-
dently. A major difficulty in turbulence research is
that there is no clear scale separation between these
two kinds of events. This lack of ‘‘spectral gap’’
excludes Fourier filtering for disentangling these
two behaviors. Since the rare events are well
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localized in physical space, one might try to use an
on–off filter defined in physical space to extract
them. However, this approach changes the spectral
properties by introducing spurious discontinuities,
adding an artificial scaling (e.g., k�2 in one
dimension) to the energy spectrum. To avoid these
problems, we use the wavelet representation, which
combines both physical and spectral space localiza-
tions (bounded from below by Heisenberg’s uncer-
tainty principle). In turbulence, the relevant rare
events are the coherent vortices and the dense
events correspond to the residual background flow.
We have proposed a nonlinear wavelet filtering of
the wavelet coefficients of vorticity to extract the
coherent vortices out of turbulent flows. We now
detail the different steps of this procedure.

Extraction of Coherent Structures

Principle We propose a new method to extract
coherent structures from turbulent flows, as encoun-
tered in fluids (e.g., vortices, shocklets) or plasmas
(e.g., bursts), in order to study their role in transport
and mixing.

We first replace the Fourier representation by the
wavelet representation, which keeps track of both
time and scale, instead of frequency only. The
second improvement consists in changing our view-
point about coherent structures. Since there is not
yet a universal definition of coherent structures, we
prefer starting from a minimal but more consensual
statement about them, that everyone hopefully could
agree with: ‘‘coherent structures are not noise.’’
Using this apophatic method, we propose the
following definition: ‘‘coherent structures are what
remain after denoising.’’

For the noise we use the mathematical definition
stating that a noise cannot be compressed in any
functional basis. Another way to say this is to
observe that the shortest description of a noise is the
noise itself. Notice that often one calls ‘‘noise’’ what
is actually ‘‘experimental noise,’’ but not noise in the
mathematical sense.

Considering our definition of coherent structures,
turbulent signals can be split into two contribu-
tions: coherent bursts, corresponding to that part of
the signal which can be compressed in a wavelet
basis, and incoherent noise, corresponding to that
part of the signal which cannot be compressed,
neither in wavelets nor in any other basis. We will
then check a posteriori that the incoherent con-
tribution is spread, and therefore does not com-
press, in both Fourier and grid-point basis. Since we
use the orthogonal wavelet representation, both
coherent and incoherent components are

orthogonal and therefore the L2-norm, for example,
energy or enstrophy, is a superposition of coherent
and incoherent contributions (Mallat 1998).

Assuming that coherent structures are what
remain after denoising, we need a model, not for
the structures themselves, but for the noise. As a first
guess, we choose the simplest model and suppose the
noise to be additive, Gaussian and white, that is,
uncorrelated. Having this model in mind, we use
Donoho and Johnstone’s theorem to compute the
value to threshold the wavelet coefficients. Since the
threshold value depends on the variance of the noise,
which in the case of turbulence is not a priori
known, we propose a recursive method to estimate
it from the variance of the weakest wavelet
coefficients, that is, those whose modulus is below
the threshold value.

Wavelet decomposition We describe the wavelet
algorithm to extract coherent vortices out of
turbulent flows and apply it as example to a 3D
turbulent flow. We consider the vorticity field
w=r� v, computed at resolution N= 23J,N being
the number of grid points and J the number of
octaves in each spatial direction. Each vorticity
component is developed into an orthogonal wavelet
series from the largest scale lmax = 20 to the smallest
scale lmin = 2J�1 using a three-dimensional (3D) MRA:

!ðxÞ ¼ �!0;0;0 �0;0;0ðxÞ

þ
XJ�1

j¼0

X2j�1

ix¼0

X2j�1

iy¼0

X2j�1

iz¼0

X7
d¼1

~!d
j;ix;iy;iz

 d
j;ix;iy;iz

ðxÞ ½15�

with �j, ix, iyi, iz (x)=�j, ix(x)�j, iy(y)�j, iz (z), and

 d
j;ix;iy;iz

ðxÞ ¼

 j;ixðxÞ�j;iyðyÞ�j;izðzÞ d ¼ 1

�j;ixðxÞ j;iyðyÞ�j;izðzÞ d ¼ 2

�j;ixðxÞ�j;iyðyÞ j;izðzÞ d ¼ 3

 j;ixðxÞ�j;iyðyÞ j;izðzÞ d ¼ 4

 j;ixðxÞ j;iyðyÞ�j;izðzÞ d ¼ 5

�j;ixðxÞ j;iyðyÞ j;izðzÞ d ¼ 6

 j;ixðxÞ j;iyðyÞ j;izðzÞ d ¼ 7

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

½16�

where �j, i and  j, i are the one-dimensional
scaling function and the corresponding wavelet,
respectively. Due to orthogonality, the scaling coeffi-
cients are given by �!0, 0, 0 = h!,�0, 0, 0i and the wavelet
coefficients are given by ~!d

j, ix, iy, iz
= h!, d

j, ix, iy, iz
i, where

h�,�i denotes the L2-inner product.
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Nonlinear thresholding The vorticity field is then
split into wC and wI by applying a nonlinear threshold-
ing to the wavelet coefficients. The threshold is defined
as 	= ð43Z lnNÞ1=2. It only depends on the total
enstrophy Z= 1

2

R jwj2dx and on the number of grid
pointsNwithout any adjustable parameter. The choice
of this threshold is based on theorems by Donoho
and Johnstone proving optimality of the wavelet
representation to denoise signals in the presence of
Gaussian white noise, since this wavelet-based
estimator minimizes the maximal L2-error for func-
tions with inhomogeneous regularity (Mallat 1998).

Wavelet reconstruction The coherent vorticity field
wC is reconstructed from the wavelet coefficients
whose modulus is larger than 	 and the incoherent
vorticity field wI from the wavelet coefficients whose
modulus is smaller or equal to 	. The two fields thus
obtained, wC and wI, are orthogonal, which ensures
a separation of the total enstrophy into Z=ZC þ ZI

because the interaction term hwC,wIi vanishes. We
then use Biot–Savart’s relation v=r� (r�2w) to
reconstruct the coherent velocity vC and the inco-
herent velocity vI from the coherent and incoherent
vorticities, respectively.

Application to 3D Turbulence

We consider a 3D homogeneous isotropic turbulent
flow, computed by DNS at resolution N= 2563,
which corresponds to a Reynolds number based
on the Taylor microscale R�= 168 (Farge et al.
2003). The computation uses a pseudospectral
code, with a Gaussian random vorticity field as initial
condition, and the flow evolution is integrated until a
statistically stationary state is reached. Figure 2 shows
the modulus of the vorticity fluctuations of the total
flow, zooming on a 643 subcube to enhance structural
details. The flow exhibits elongated, distorted, and
folded vortex tubes, as observed in laboratory and
numerical experiments.

We apply to the total flow the wavelet compres-
sion algorithm described above. We find that only
2.9% wavelet modes correspond to the coherent
flow, which retains 79% of the energy (L2-norm of
velocity) and 75% of the enstrophy (L2-norm of
vorticity), while the remaining 97.1% incoherent
modes contain only 1% of the energy and 21% of
the enstrophy. We display the modulus of the
coherent (Figure 3) and incoherent (Figure 4) vorti-
city fluctuations resulting from the wavelet
decomposition.

Note that the values of the three isosurfaces chosen
for visualization (j!j= 6Z1=2, 8Z1=2 and 10Z1=2, with
Z the total enstrophy) are the same for the total and

coherent vorticities, but they have been reduced by a
factor 2 for the incoherent vorticity whose fluctuations
are much smaller. In the coherent vorticity (Figure 3)
we recognize the same vortex tubes as those present in
the total vorticity (Figure 2). In contrast, the remaining
vorticity (Figure 4) is much more homogeneous and

ω
Figure 2 Isosurfaces of total vorticity field, for

jwj= 3
, 4
, 5
 with opacity 1, 0.5, 0.1, respectively, and 
2 the

total enstrophy. Simulation with resolution N =2563 for R� =168.

Zoom on a subcube 643. Reprinted with permission from Farge

et al. Coherent vortex extraction in three-dimensional homo-

geneous turbulence: Comparison between CVS-wavelet and

POD-Fourier decompositions. Physics of Fluids 15(10): 2886–

2896. Copyright 2003, American Institute of Physics.

ω>

Figure 3 Isosurfaces of coherent vorticity field, for

jwj=3
, 4
, 5
 with opacity 1, 0.5, 0.1, respectively. Simulation

with resolution N =2563. Zoom on a subcube 643: Reprinted with

permission from Farge et al. Coherent vortex extraction in three-

dimensional homogeneous turbulence: Comparison between CVS-

wavelet and POD-Fourier decompositions. Physics of Fluids

15(10): 2886–2896. Copyright 2003, American Institute of Physics.
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does not exhibit coherent structures. Hence, the
wavelet compression retains all the vortex tubes and
preserves their structure at all scales. Consequently, the
coherent flow is as intermittent as the total flow, while
the incoherent flow is structureless and non intermit-
tent. Modeling the effect of the incoherent flow onto
the coherent flow should then be much simpler than
with methods based on Fourier filtering.

Figure 5 shows the velocity PDF in semilogarithmic
coordinates. We observe that the coherent velocity has

the same Gaussian distribution as the total velocity,
while the incoherent velocity remains Gaussian, but its
variance is much smaller. The corresponding energy
spectra are plotted on Figure 6. We observe that the
spectrum of the coherent energy is identical to the
spectrum of the total energy all along the inertial
range. This implies that the vortex tubes are respon-
sible for the k�5=3 energy scaling, which corresponds to
a long-range correlation, characteristic of 3D turbu-
lence as predicted by Kolmogorov’s theory. In con-
trast, the incoherent energy has a scaling close to k2,
which corresponds to an energy equipartition between
all wave vectors k, since the isotropic spectrum is
obtained by integrating energy in 3D k-space over 2D
shells k= jkj. The incoherent velocity field is therefore
spatially uncorrelated, which is consistent with the
observation that incoherent vorticity is structureless
and homogeneous.

From these observations, we propose the following
scenario to interpret the turbulent cascade: the
coherent energy injected at large scales is transferred
towards small scales by nonlinear interactions between
vortex tubes. In the meantime, these nonlinear inter-
actions also produce incoherent energy at all scales,
which is dissipated at the smallest scales by molecular
kinematic viscosity. Thus, the coherent flow causes
direct transfer of the coherent energy into incoherent
energy. Conversely, the incoherent flow does not
trigger any energy transfer to the coherent flow, as it
is structureless and uncorrelated. We conjecture that
the coherent flow is dynamically active, while the
incoherent flow is slaved to it, being only passively
advected and mixed by the coherent vortex tubes. This
is a different view from the classical interpretation
since it does not suppose any scale separation. Both

ω<

Figure 4 Isosurfaces of incoherent vorticity field, for

jwj=3=2
, 2
, 5=2
 with opacity 1, 0.5, 0.1, respectively. Simula-

tion with resolution N = 2563. Zoom on a subcube 643. Reprinted

with permission from Farge et al. Coherent vortex extraction in

three-dimensional homogeneous turbulence: Comparison between

CVS-wavelet and POD-Fourier decompositions. Physics of Fluids

15(10): 2886–2896. Copyright 2003, American Institute of Physics.
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coherent and incoherent flows are active all along the
inertial range, but they are characterized by different
probability distribution functions and correlations:
non-Gaussian and long-range correlated for the
former, while Gaussian and uncorrelated for the latter.

Wavelet Computation

Principle

The mathematical properties of wavelets (see Wave-
lets: Mathematical Theory) motivate their use for
solving of partial differential equations (PDEs).

The localization of wavelets, both in scale and
space, leads to effective sparse representations of
functions and pseudodifferential operators (and their
inverse) by performing nonlinear thresholding of the
wavelet coefficients of the function and of the matrices
representing the operators. Wavelet coefficients allow
to estimate the local regularity of solutions of PDEs
and thus can define autoadaptive discretizations with
local mesh refinements. The characterization of func-
tion spaces in terms of wavelet coefficients and the
corresponding norm equivalences lead to diagonal
preconditioning of operators in wavelet space.

Moreover, the existence of the fast wavelet trans-
form yields algorithms with optimal linear complex-
ity. The currently existing algorithms can be
classified in different ways. We can distinguish
between Galerkin, collocation, and hybrid schemes.
Hybrid schemes combine classical discretizations,
for example, finite differences or finite volumes, and
wavelets, which are only used to speed up the linear
algebra and to define adaptive grids. On the other
hand, Galerkin and collocation schemes employ
wavelets directly for the discretization of the
solution and the operators. Wavelet methods have
been developed to solve Burger’s, Stokes, Kura-
moto–Sivashinsky, nonlinear Schrödinger, Euler,
and Navier–Stokes equations. As an example, we
present an adaptive wavelet algorithm, of Galerkin
type, to solve the 2D Navier–Stokes equations.

Adaptive Wavelet Scheme

We consider the 2D Navier–Stokes equations writ-
ten in terms of vorticity ! and stream function �,
which are both scalars in two dimensions,

@t!þ v � r!� �r2! ¼ r� F ½17�

r2� ¼ ! and v ¼ r?� ½18�
for x 2 [0, 1]2, t > 0. The velocity is denoted by v,F
is an external force, � > 0 is the molecular kinematic
viscosity, and r? = (�@y, @x).

The above equations are completed with bound-
ary conditions and a suitable initial condition.

Time discretization Introducing a classical semi-
implicit time discretization with a time step �t and
setting !n(x) 	 !(x, n�t), we obtain

ð1���tr2Þ!nþ1 ¼!nþ�tðr�Fn�vn �r!nÞ ½19�

r2�nþ1 ¼ !nþ1 and vnþ1 ¼ r?�nþ1 ½20�

Hence, in each time step two elliptic problems
have to be solved and a differential operator has to
be applied.

Formally the above equations can be written in
the abstract form Lu= f , where L is an elliptic
operator with constant coefficients. This corre-
sponds to a Helmholtz type equation for ! with
L= (1� ��tr2) and a Poisson equation for � with
L=r2.

Spatial discretization For the spatial discretization,
we use the method of weighted residuals, that is, a
Petrov–Galerkin scheme. The trial functions
are orthogonal wavelets � and the test functions
are operator adapted wavelets, called ‘‘vaguelettes,’’
�. To solve the elliptic equation Lu= f at time
step tnþ1, we develop unþ1 into an orthogonal
wavelet series, that is, unþ1 =

P
� eunþ1

�  �, where
�= (j, ix, iy, d) denotes the multi-index for scale j,
space i, and direction d. Requiring that the residual
vanishes with respect to all test functions ��, we
obtain a linear system for the unknown wavelet
coefficients eunþ1

� of the solution u:X
�

eunþ1
� hL �; ��0 i ¼ hf ; ��0 i ½21�

The test functions � are defined such that the
stiffness matrix turns out to be the identity.
Therefore, the solution of Lu= f reduces to a
change of basis, that is, unþ1 =

P
�hf , ��i �. The

right-hand side (RHS) f can then be developed into a
biorthogonal operator adapted wavelet
basis f =

P
�hf , ��i��, with ��=L?�1 � and

��=L �,
? denoting the adjoint operator. By

construction, � and � are biorthogonal, that is,
such that h��, ��0 i= ��,�0 . It can be shown that
both have similar localization properties in physical
and Fourier space as  , and that they form a Riesz
basis.

Adaptive discretization To get an adaptive space
discretization for the linear problem Lu= f , we
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consider only the significant wavelet coefficients of
the solution. Hence, we only retain coefficients eun�
whose modulus is larger than a given threshold ",
that is, jeun�j > ". The corresponding coefficients
are shown in Figure 7 (white area under the solid
line curve).

Adaption strategy To be able to integrate the
equation in time we have to account for the
evolution of the solution in wavelet coefficient
space (indicated by the arrow in Figure 7). There-
fore, we add at time step tn the neighbors to the
retained coefficients, which constitute a security
zone (gray area in Figure 7). The equation is then
solved in this enlarged coefficient set (white and
gray areas below the curves in Figure 7) to obtaineunþ1
� . Subsequently, we threshold the coefficients

and retain only those whose modulus jeunþ1
� j > "

(coefficients under the dashed curve in Figure 7).
This strategy is applied in each time step and hence
allows to automatically track the evolution of the
solution in both scale and space.

Evaluation of the nonlinear term For the
evaluation of the nonlinear term f (un), where the
wavelet coefficients eun are given, there are two
possibilities:

� Evaluation in wavelet coefficient space. As
illustration, we consider a quadratic nonlinear
term, f (u)= u2. The wavelet coefficients of f can
be calculated using the connection coefficients,
that is, one has to calculate the bilinear expres-
sion,

P
�

P
�0 eu�I��0�00eu�0 with the interaction

tensor I��0�00 = h � �0 , ��00 i. Although many coeffi-
cients of I are zero or very small, the size of I
leads to a computation which is quite untractable
in practice.

� Evaluation in physical space. This approach is
similar to the pseudospectral evaluation of the
nonlinear terms used in spectral methods, there-
fore it is called pseudowavelet technique. The

advantage of this scheme is that general nonlinear
terms, for example, f (u)= (1� u) e�C=u, can be
treated more easily. The method can be summar-
ized as follows: starting from the significant
wavelet coefficients, jeu�j > ", one reconstructs u
on a locally refined grid and gets u(x�). Then one
can evaluate f (u(x�)) pointwise and the wavelet
coefficients ef� are calculated using the adaptive
decomposition.

Finally, one computes the scalar products of the
RHS of [21] with the test functions � to advance the
solution in time. We compute eu�= hf , ��i belonging
to the enlarged coefficient set (white and gray
regions in Figure 7).

The algorithm is of O(N) complexity, where N
denotes the number of wavelet coefficients retained
in the computation.

Application to 2D Turbulence

To illustrate the above algorithm we present an
adaptive wavelet computation of a vortex dipole in
a square domain, impinging on a no-slip wall at
Reynolds number Re= 1000. To take into account
the solid wall, we use a volume penalization
method, for which both the fluid flow and the
solid container are modeled as a porous medium
whose porosity tends towards zero in the fluid and
towards infinity in the solid region.

The 2D Navier–Stokes equations are thus mod-
ified by adding the forcing term F =�(1=
)�v
in eqn [18], where 
 is the penalization parameter
and � is the characteristic function whose value is 1
in the solid region and 0 elsewhere. The equations
are solved using the adaptive wavelet method in
a periodic square domain of size 1.1, in which
the square container of size 1 is imbedded,
taking 
= 10�3. The maximal resolution corre-
sponds to a fine grid of 10242 points. Figure 8a
shows snapshots of the vorticity field at times
t= 0.2, 0.4, 0.6, and 0.8 (in arbitrary units). We
observe that the vortex dipole is moving towards
the wall and that strong vorticity gradients are
produced when the dipole hits the wall. The
computational grid is dynamically adapted during
the flow evolution, since the nonlinear wavelet filter
automatically refines the grid in regions where
strong gradients develop. Figure 8b shows the
centers of the retained wavelet coefficients at
corresponding times.

Note that during the computation only 5% out of
10242 wavelet coefficients are used. The time
evolution of total kinetic energy and the total
enstrophy F=�( 1y )�v, are plotted in Figure 9 to

J

0

j

i

∼|ω | > ε

Figure 7 Illustration of the dynamic adaption strategy in

wavelet coefficient space.
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show the production of enstrophy and the concomi-
tant dissipation of energy when the vortex dipole
hits the wall.

This computation illustrates the fact that the
adaptive wavelet method allows an automatic grid
refinement, both in the boundary layers at the
wall and also in shear layers which develop during
the flow evolution far from the wall. Therewith,
the number of grid points necessary for the
computation is significantly reduced, and we con-
jecture that the resulting compression rate will
increase with the Reynolds number.

(a) (b)

Figure 8 Dipole wall interaction at Re=1000. (a) Vorticity field, (b) corresponding centers of the active wavelets, at t =0.2, 0.4, 0.6,

and 0.8 (from top to bottom).
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Introduction

Wavelet analysis was first developed in the early
1980s in the field of seismic signal analysis in the
form of an integral transform with a localized kernel
function with continuous parameters of dilation and
translation. When a seismic wave or its derivative
has a singular point, the integral transform has a
scaling property with respect to the dilation para-
meter; thus, this scaling behavior can be available to
locate the singular point. In the mid-1980s, the
orthonormal smooth wavelet was first constructed,
and later the construction method was generalized
and reformulated as multiresolution analysis
(MRA). Since then, several kinds of wavelets have
been proposed for various purposes, and the concept
of wavelet has been extended to new types of basis
functions. In this sense, the most important effect of
wavelets may be that they have awakened deep
interest in bases employed in data analysis and data
processing. Wavelets are now widely used in various
fields of research; some of their applications are
discussed in this article.

From the perspective of time–frequency analysis,
the wavelet analysis may be regarded as a windowed
Fourier analysis with a variable window width,
narrower for higher frequency. The wavelets can
therefore give information on the local frequency
structure of an event; they have been applied to
various kinds of one-dimensional (1D) or multi-
dimensional signals, for example, to identify an
event or to denoise or to sharpen the signal.

1D wavelets  (a,b)(x) are defined as

 ða;bÞðxÞ ¼ 1ffiffiffiffiffiffijajp  
x� b

a

� �
where a( 6¼0), b are real parameters and  (x) is a
spatially localized function called ‘‘analyzing wave-
let’’ or ‘‘mother wavelet.’’ Wavelet analysis gives a
decomposition of a function into a linear combina-
tion of those wavelets, where a perfect reconstruc-
tion requires the analyzing wavelet to satisfy some
mathematical conditions.

For the continuous wavelet transform (CWT),
where the parameters (a, b) are continuous, the
analyzing wavelet  (x)L2(R) has to satisfy the
admissibility condition
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