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Summary. Direct numerical simulation of two-dimensional decaying turbulence in
a circular container with no-slip boundary conditions are presented. Starting with
random initial conditions the flow rapidly exhibits self-organisation into coherent
vortices. We study their formation and the role of the viscous boundary layer on
the production and decay of integral quantities. The no-slip wall produces vor-
tices which are injected into the bulk flow and tend to compensate the enstrophy
dissipation.

1 Introduction

In oceanography two-dimensional turbulence plays an important role, e.g.
in the vortex formation in coastal currents. Experiments in rotating tanks,
e.g. in [1], leading to quasi two-dimensional geostrophic flows, have shown
the formation of long-lived coherent vortices. Only few numerical simulations
of two-dimensional turbulence in bounded circular domains have been per-
formed so far. Decaying two-dimensional turbulent flows in circular domains
with no-slip boundary conditions have been computed in [7–9], using a spec-
tral method with Bessel functions of the first kind. This pure spectral scheme
has a prohibitive numerical cost and therefore these simulations were lim-
ited to low Reynolds numbers, Re < 103, where Re is based on the rms
initial velocity and the circle radius. In [3] numerical simulations of forced
two-dimensional turbulent flows in circular geometry for Reynolds numbers
up to 3,500 using a Tchebycheff–Fourier discretisation have been presented.
The aim of the present paper is to present direct numerical simulation (DNS)
of two-dimensional decaying turbulence in a circular geometry with higher
initial Reynolds-number of 5×104 computed at resolution N = 1, 0242 and to
compare the results with low Reynolds number flows, Re = 1,000, computed
at resolution N = 256.
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2 Governing Equations and Numerical Discretisation

The numerical method is based on a Fourier pseudospectral method with
semi-implicit time integration and adaptive time-stepping [11]. The circular
container Ω of radius R = 2.8 is imbedded in a periodic square domain and
the no-slip boundary conditions on the wall ∂Ω are imposed using a volume
penalisation method [2]. The Navier–Stokes equations are then solved in a
square domain of size L = 2π using the vorticity–velocity formulation with
periodic boundary conditions. Numerical validations can be found in [5, 11].
The resulting equation in vorticity–velocity formulation reads,

∂tω + u · ∇ω − ν∇2 ω + ∇×
(

1
η

χu

)
= 0,

where u is the divergence-free velocity field, i.e. ∇ · u = 0, ω = ∇ × u the
vorticity, ν the kinematic viscosity and χ(x) a mask function which is 0 inside
the fluid, i.e. x ∈ Ω, and 1 inside the solid wall. The penalisation parameter
η is chosen to be sufficiently small (η = 10−3) [11].

Different integral quantities of the flow can be derived [6]. The energy E,
enstrophy Z and palinstrophy P are defined as

E =
1
2

∫

Ω

|u|2dx , Z =
1
2

∫

Ω

|ω|2dx , P =
1
2

∫

Ω

|∇ω|2dx, (1)

respectively.
The energy dissipation is given by dtE = −2νZ and the enstrophy dissipation
by

dtZ = −2νP + ν

∮

∂Ω

ω(n · ∇ω)ds, (2)

where n denotes the outer normal vector with respect to ∂Ω. The surface
integral reflects the enstrophy production at the wall involving the vorticity
and its gradients.

3 Numerical Results

The numerical simulations are initialised with a correlated Gaussian noise
with zero angular momentum and an energy spectrum E(k) ∝ k−4. In
the first simulation presented here, the initial Reynolds number is chosen
to be Re = 2R

√
2E/ν = 5 · 104 and the numerical resolution is N = 1,0242.

We introduce a dimensionless time τ = t/te based on the initial eddy turn-
over time te = 1/

√
2Z(0) = 0.061. The flow has been integrated for 650 te

corresponding to more than 105 time steps. Figure 1 shows a snap shot of the
vorticity field (left) at τ = 320 together with the corresponding stream func-
tion (right). We observe the formation of vorticity sheets at the wall which roll
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Fig. 1. Vorticity field (left) and streamfunction (right) at τ = 320

up into coherent vortices. This active unstable strong boundary layer persists
throughout the simulation. The resulting continuous injection of vorticity and
vorticity gradients into the flow leads to a concomitant increase of the energy
dissipation. Where the boundary layer detaches from the wall we observe the
formation of dipolar vortices, which then move into the bulk flow and interact
with other vortices as observed in rotating tanks [1].

Figure 2 shows vertical cuts of the vorticity, the velocity components at τ =
320, together with the mask function. The cuts illustrate the spiky behaviour
of the vorticity and the stiffness of the problem due to the strong gradients
to be resolved.

In Fig. 3 we plot the time evolution of energy, enstrophy and palinstrophy.
We observe that the kinetic energy slowly decays. At the final instant the
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Fig. 2. Vertical cuts of vorticity, velocity components at τ = 320
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Fig. 3. Time evolution of energy E, enstrophy Z and palinstrophy P in log–log
coordinates

energy has lost 71% of its initial value, while the enstrophy has decreased to
only 5.1% and the palinstrophy to only 1.5% of their initial values. The enstro-
phy exhibits a self-similar decay over one decade (from τ = 10 to about 100),
proportional to t−2/3. Note that this is much slower than in double periodic
simulations [10] where typically a slope of −1 is observed for the enstrophy
decay. At later times, for τ > 150, we also observe a non monotonous behav-
iour for Z and P which is due to the generation of vorticity and its gradients
at the no-slip wall.

The time evolution of the different terms in (3) for the enstrophy dissi-
pation are shown in Fig. 4. We observe a monotonous decay of all terms up
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Fig. 4. Time evolution dtZ, 2νP and ν
∮

∂Ω
ω(n · ∇ω)ds = dtZ + 2νP
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Fig. 5. Vorticity fields at τ = 5, 10, 30 and 200. Resolution N = 2562 and Re = 800

to τ = 100. The enstrophy production term at the wall yields a power-law
behaviour with slope −2/3, and for later times oscillations can be observed.
Furthermore, the enstrophy production at the wall (ν

∮
∂Ω

ω(n · ∇ω)ds) coin-
cides with the term νP for τ > 100. This implies that the enstrophy dissipation
dtZ becomes negligible and oscillates around zero.

In the second simulation we compute a flow at initial Reynolds number
Re = 1,000 with resolution N = 2562. Four snapshots of the vorticity field
at τ = 5, 10, 30 and 200 are shown in Fig. 5. We also observe the formation
of coherent vorticites and vortex sheets. However, the boundary layer is less
pronounced and the flow rapidly decays. At τ = 200 we observe already a
quasisteady state, a negative circular vortex surrounded by a vortex ring of
positive vorticity, which corresponds to theoretical predictions.

The evolutions of the integral quantities shown in Fig. 6 confirm the rapid
decay of the flow, which in contrast to the high Reynolds number simulation
is monotonuous.

4 Conclusion

In conclusion, we have shown, by means of DNS performed in circular geom-
etry, that no-slip boundaries play a crucial role for decaying turbulent flows.
At early times we observe a decay of the flow which leads to self-organisation
and the emergence of vortices in the bulk flow, similarly to flows in double
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Fig. 6. Time evolution of energy, enstrophy and palinstrophy for Re = 1,000. The
values have been normalised with the corresponding values at τ = 0

periodic boxes. In the high Reynolds number case, the production of coherent
vortices at the boundary compensates the enstrophy dissipation and the flow
decay is drastically reduced. This is reflected in the time evolution of enstro-
phy and palinstrophy which decay in a non monotonous way, while for the
low Reynolds number simulation both quantities decay monotonously. More
details on the high Reynolds number simulation can be found in [12].
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