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Coherent vortices are extracted from data obtained by direct numerical simulation (DNS) of
three-dimensional homogeneous isotropic turbulence performed for different Taylor microscale
Reynolds numbers, ranging from Re, =167 to 732, in order to study their role with respect to the
flow intermittency. The wavelet-based extraction method assumes that coherent vortices are what
remains after denoising, without requiring any template of their shape. Hypotheses are only made on
the noise that, as the simplest guess, is considered to be additive, Gaussian, and white. The vorticity
vector field is projected onto an orthogonal wavelet basis, and the coefficients whose moduli are
larger than a given threshold are reconstructed in physical space, the threshold value depending on
the enstrophy and the resolution of the field, which are both known a priori. The DNS dataset,
computed with a dealiased pseudospectral method at resolutions N=2563, 5123, 10243, and 20483,
is analyzed. It shows that, as the Reynolds number increases, the percentage of wavelet coefficients
representing the coherent vortices decreases; i.e., flow intermittency increases. Although the number
of degrees of freedom necessary to track the coherent vortices remains small (e.g., 2.6% of N
=2048? for Re,=732), it preserves the nonlinear dynamics of the flow. It is thus conjectured that
using the wavelet representation the number of degrees of freedom to compute fully developed
turbulent flows could be reduced in comparison to the standard estimation based on Kolmogorov’s

theory. © 2007 American Institute of Physics. [DOI: 10.1063/1.2771661]

I. INTRODUCTION

Direct numerical simulation (DNS) of homogeneous iso-
tropic turbulence using Fourier spectral methods has a long
tradition. Starting in the late 1960s with 323 simulations,
the increasing CPU speed and memory of supercomputers
meanwhile allow simulations up to 4096° grid points and
Re,=1201 performed on the Earth Simulator (ES).** The
series of high resolution DNS datasets obtained on the ES
suggests that the normalized mean energy dissipation per
unit mass tends to a constant and hence becomes indepen-
dent of the kinematic viscosity as the viscosity tends to zero.
Furthermore, it has been shown that the scaling of the energy
spectrum is about 0.1 steeper than the Kolmogorov scaling
of —5/3 and presents a bottleneck at high wavenumbers.”
The number of dynamically active (spatial and temporal)
scales involved in the simulations increases strongly with the
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Reynolds number. A dimensional analysis based on the Kol-
mogorov scaling predicts N o« Rei’ 2, where N denotes the to-
tal number of spatial grid points. Since the frontiers of DNS
are limited by the available computational resources, the
computation of high Reynolds number flows, as needed in
most computational fluid dynamics applications, still re-
quires ad hoc turbulence models.

Starting from random initial conditions, a typical feature
of all these flows is their self-organization and the formation
of regions of intense vorticity, as predicted by Taylor5 and
observed in both numerical®™” and laboratory]0 experiments.
For a given flow realization, these coherent structures are not
homogeneously distributed, neither in space nor in time. This
suggests the possibility of flow intermittency, defined as the
lacunarity of the fine scale activity, which means that the
spatial support of the active regions is decreasing with scale.
To be able to benefit from this property, a suitable represen-
tation of the flow should take into account this lacunarity, in
both space and time.

Multiscale decompositions, computed efficiently by fast
wavelet transforms, allow a sparse representation of intermit-
tent data. The wavelet transform decomposes a given flow
field into scale-space contributions from which it is recon-
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structed. If the flow is intermittent, the small scale contribu-
tions have significant values only in active regions and are
nonsignificant in weak regions. Hence, the nonsignificant
contributions can be neglected and the amount of wavelet
coefficients can be significantly reduced before reconstruct-
ing the flow field in physical space.

Wavelet techniques to analyze turbulent flows were pio-
neered at the end of the 1980s."" Since then these techniques
have been further developed and exploited for analyzing ex-
perimental and numerical data, to model turbulent flows and
also for solving the Navier-Stokes equations directly in
wavelet space. A review is beyond the scope of the paper
(see further details in Refs. 12—15).

We have introduced a wavelet-based coherent vortex ex-
traction technique for two-dimensional flows using scalar-
valued orthogonal wavelet decompositions.16 The algorithm
is based on an orthogonal wavelet decomposition of the vor-
ticity. A threshold motivated from denoising theory17 and
without any adjustable parameters allows to split the wavelet
coefficients into two sets. A subsequent reconstruction in
physical space from both coefficient sets yields a separation
of the vorticity field into two orthogonal parts. The coherent
vorticity reconstructed from few wavelet coefficients, whose
moduli are above the threshold, contains the coherent vorti-
ces, most of the energy, and exhibits statistics similar to the
total vorticity. The incoherent vorticity reconstructed from
most of the wavelet coefficients, whose moduli are below the
threshold, corresponds to an almost uncorrelated random
background flow with quasi-Gaussian one-point statistics.
This technique has been extended to three-dimensional (3D)
flows using a vector-valued orthogonal wavelet
decomposition.18 We applied it to DNS data computed at
resolution 256° corresponding to a Taylor microscale Rey-
nolds number Re,=150. We showed that only 3% of the
wavelet coefficients, the strongest ones, represent the coher-
ent vortex tubes which retain 99% of the energy and 75% of
the enstrophy of the flow. Coherent vortex extractions using
biorthogonal wavelet decompositions have been presented in
Refs. 19 and 20. In Ref. 21, we proposed a new turbulence
model, called coherent vortex simulation (CVS), which is
based on deterministic computation of the coherent flow evo-
lution, and modeling of the influence of the incoherent back-
ground flow. Applications of CVS to two-dimensional flows
and to three-dimensional turbulent mixing layers can be
found in Refs. 22 and 23, respectively.

The aim of the present paper is to apply the coherent
vortex extraction algorithm to higher resolution DNS data of
homogeneous isotropic turbulence (up to Re,=732) in order
to study the influence of the Reynolds number. The key ques-
tion for the feasibility of the CVS approach is to estimate
how the number of retained coefficients N, representing the
coherent flow, depends on the Reynolds number. As men-
tioned above, the statistical theory of turbulence suggests a
scaling in N<Ref with {=9/2 for DNS, while in a recent
patper24 an even less optimistic exponent of {=6 has been
recommended to guarantee well resolved DNS. If our analy-
ses show a slower increase of N, with Re, than the increase
of N with Re,, i.e., Nx Rei’ 2, CVS may become more inter-
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esting for computing high Reynolds number flows than stan-
dard methods.

The organization of the present paper is as follows. After
a short review of wavelet-based analysis tools and coherent
vortex extraction in Sec. II, we present the parameters of the
DNS data and show some flow visualizations in Sec. III. In
Sec. IV we apply the coherent vortex extraction to a flow for
Re,=732. We analyze the total, coherent, and incoherent
flows in physical space and investigate their statistical be-
havior. We also study the energy transfers and fluxes in spec-
tral space. In Sec. V the dependence of the percentage of
wavelet coefficients representing the coherent vorticity
(compression rate) on the Reynolds number is shown and we
estimate how the number of coefficients representing the co-
herent part of the flow depends on the Reynolds number.
Finally, conclusions are drawn in Sec. VI and some perspec-
tives for the CVS based on the orthogonal wavelet decom-
position are presented. Appendix A discusses technical ques-
tions on the influence of the divergence of the vector-valued
wavelet basis. In Appendix B, the influence of the number of
the iterations in the coherent vortex extraction method is
examined.

Il. WAVELET ANALYSIS AND COHERENT
VORTEX EXTRACTION

For definitions and details on the orthogonal wavelet
transform, its extension to higher dimensions, we refer the
reader to, e.g., Refs. 12 and 25. In this section, we fix the
notation for the orthogonal wavelet decomposition of a
three-dimensional vector-valued field. We define moments of
the wavelet coefficients that allow scale-dependent statistics
and summarize the main ideas of the coherent vortex extrac-
tion method.

A. Vector-valued orthogonal wavelet decomposition

We consider a vector field v e L*(R?) sampled on N
=2% equidistant grid points, J being the number of octaves
in each space direction. The wavelet transform unfolds v into
scale, positions, and directions using a function #, called the
“mother wavelet.” A wavelet is well-localized in space x
e R3 (i.e., it exhibits a fast decay for |x| tending to infinity),
is oscillating (i.e., ¢ has at least a vanishing mean value, or
better, the first m moments of ¢ vanish), and is smooth (i.e.,
its Fourier transform F[](k) exhibits fast decay for wave-
numbers |k| tending to infinity). The mother wavelet then
generates a family of wavelets i (x), by dilation, translation,
and rotation, which yields an orthogonal basis of L?>(R%).

The vector field v can be decomposed into an orthogonal
wavelet series

v(x) = X Bk (x), (1)

NeA

where the multi-index N=(j,i,,i,,i., ) denotes the scale j,
the position i=(i,,i,,i;), and the seven directions u
=1,...,7 of the wavelets. The index set A is
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A={\=(j,ippm), j=0,....0-1,i,=0,...,2/~1,

n=1,23,and u=1,...,7}.

The index set A corresponds to the octree representation of
the orthogonal wavelet coefficients (which is the generaliza-
tion to 3D of the dyadic tree in one dimension). Conse-
quently, there are more coefficients when scale decreases
(i.e., j increases). Due to orthogonality, the wavelet coeffi-
cients are given by ©,=(v, %), where (-,-) denotes the L?
inner product, defined by (f,g)=[r3f(x)g(x)dx. The coeffi-
cients measure the fluctuations of v around scale 27/ and
around position i/2/ in one of the directions. The N wavelet
coefficients v, are efficiently computed from the N grid point
values of v using the fast wavelet transform, which has linear
c:omplexity.25

B. Scale-dependent moments

Scale-dependent statistical analysis tools can be con-
structed from the moments of the wavelet coefficients D)
=(17)1\,17§,17i) of the vector field v=(v',v?,v%). The scale dis-
tribution of energy can be computed by summing up the
square of the wavelet coefficients at scale j, E y
=El.2:;21,i3=021= S (@02 The total energy is the sum of the
energy per scale; i.e., E=X-(F;.

The centered pth-order moment of the vector field v at
scale j can be defined by

2.1 7 3
1 _
M, (v)=———— 5 —-M)], ©
pi0= 3575 23-’51,,§=o El E =M. @

where M j(v):Zflj;;,ifo

mean value at scale j.
The sparsity of the wavelet coefficients at each scale is a

measure of intermittency, and it can be quantified using ra-

tios of moments at different scales

312,03/ (3X7x2%) denotes the

M, 0) 3)

Qp»q»j(v) = [Mq!j(v)]p/q'

Classically, one chooses g=2 to define typical statistical
quantities as a function of scale. For p=4, we obtain the
scale-dependent flatness F;=(Q,, ;. It is equal to 3 at all
scales j for a Gaussian white noise, which proves that the
signal is not intermittent in this case. For intermittent signals,
the flatness increases with j. The scale-dependent skewness
is obtained for p=3. For more details, we refer to Ref. 26.

C. Coherent vortex extraction

We proposed the wavelet-based method coherent vortex
extraction (CVE) to extract coherent vortices out of two- and
three-dimensional turbulent flows.'®'® The CVE method is
based on the following principles:

(1) We consider the vorticity field rather than the velocity
field, since it preserves Galilean invariance and, more-
over, simply connected vortex tubes are preserved by
Euler’s dynamics (Helmholtz’s theorem).

(2) We choose the wavelet representation, where each wave-
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let coefficient is indexed by both its location and scale,
instead of the Fourier representation, where each Fourier
coefficient is indexed by its wavenumber but not its lo-
cation. We prefer to use an orthogonal wavelet basis
rather than a biorthogonal one, since only the former
yields completely decorrelated coefficients. In particular
a Gaussian white noise remains Gaussian and white un-
der orthogonal transformations, while biorthogonal
transformations introduce some correlation between the
coefficients.*

(3) We propose to change our viewpoint concerning coher-
ent structures. Since there has not yet been a universal
definition for them, we consider the following minimal
but hopefully consensual statement about them: coherent
structures are not noise. Using this apophatic method
(on the model of negative theology) we then propose the
definition: coherent structures correspond to what re-
mains after denoising.

(4) For the noise, we use the mathematical definition stating
that a noise cannot be compressed in any functional

basis.
(5) We choose, as a first guess, the simplest possible type of
noise, namely, additive, Gaussian, and white

(uncorrelated) noise.

(6) Since we do not know a priori the variance of the noise,
we have developed an iterative procedure27 to estimate it
from the weakest wavelet coefficients.

(7) Since we consider the case of homogeneous isotropic
turbulence, we suppose that each component of the vec-
tor field has a similar contribution to the modulus, which
is used to compute the variance.

Now we briefly sketch the principle of the CVE algo-
rithm; for more details, we refer the reader to the original
papers.lﬁ’18 The vorticity field w=V X v is first decomposed
into an orthogonal wavelet series. We then split the vorticity
field into its coherent and incoherent contributions, i.e.,
w.(x) and w;(x), by applying a threshold to the wavelet co-
efficients. The threshold value is defined as &
=(2/30” In N)"2, which depends only on the number of grid
points N and on the variance of the incoherent vorticity o*
(which is a priori unknown) without any additional adjust-
able parameters. The choice of this value is based on theo-
rems by Donoho and Johnstone'’ proving optimality of the
wavelet representation to denoise signals in the presence of a
Gaussian white noise of variance o2, since this wavelet-
based estimator minimizes the maximal L? error for func-
tions having inhomogeneous regularity. In a first step, we
overestimate the variance of the incoherent vorticity by tak-
ing the variance of the total vorticity, i.e., 02=27, instead.
Therewith, we compute the threshold and the variance of all
coefficients smaller than this threshold. This yields an im-
proved estimation of the variance of the incoherent vorticity
and thus a new threshold can be computed. In Ref. 23, we
showed that this procedure can be iterated and that, the stron-
ger the noise level is, the faster the convergence. For the
present paper we decided to perform one iteration only to
privilege a good compression rate rather than a perfectly de-
noised contribution.® Finally, the coherent vorticity field w,
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TABLE I. DNS parameters and turbulence characteristics for runs 256°, 5123, 10243, and 2048, N denotes the

number of grid points. k,n=1.

N Re, Kimax v(X107%) (€) L \ 7(X1073)
Run 256 256° 167 121 7.0 0.0849 1.13 0.203 7.97
Run 5123 5123 257 241 2.8 0.0902 1.02 0.125 3.95
Run 10243 10243 471 483 1.1 0.0683 1.28 0.090 2.10
Run 20483 2048° 732 965 0.44 0.0707 1.23 0.056 1.05

is reconstructed from the wavelet coefficients whose moduli
are larger than &, and the incoherent vorticity field w; from
the wavelet coefficients whose moduli are smaller or equal to
g, or by simple subtraction, i.e., w;=@w—®,, as done in the
present paper. The two fields thus obtained, i.e., @, and wj,
are orthogonal, which insures a separation of the total enstro-
phy into Z=Z_+Z; because the interaction term (., ;) van-
ishes. We use Biot-Savart’s relation v=-V X (V2w) to re-
construct the coherent velocity v, and the incoherent velocity
v; from the coherent and incoherent vorticities, respectively.

The mathematical properties of the above algorithm
have been investigated in Ref. 27 and the influence of the
number of iterations has been studied for two-dimensional
isotropic turbulence in Ref. 23. For three-dimensional homo-
geneous isotropic turbulence, the influence is briefly dis-
cussed in Appendix B.

There is a large collection of possible orthogonal wave-
lets and the choice depends on which properties are pre-
ferred, e.g., compact-support, symmetry, smoothness, num-
ber of cancellations, or computational efﬁciency.25 From our
own experience, we prefer the Coifman 12 wavelet, which is
compactly supported, has four vanishing moments, is quasi-
symmetric, and is defined with a filter of length 12. This
leads to computational cost of the fast wavelet transform in
24N operations since two filters are used. We tested different
wavelets, e.g., the Coifman wavelets of different order, sym-
lets, spline wavelets, and Haar wavelet. The results obtained
by the CVE method are robust to the choice of the wavelet,
except for the Haar wavelet which does not have enough
cancellations (i.e., only one vanishing moment). A compari-
son between orthogonal and biorthogonal wavelet decompo-
sition for CVE applied to three-dimensional isotropic turbu-
lence can be found in Ref. 20.

lll. DNS AT Re, =167, 257, 471, AND 732

We use the DNS data of three-dimensional incompress-
ible turbulence computed on the ES.** The DNS fields obey
the Navier-Stokes equations for incompressible fluid with
periodic boundary conditions. The simulations use a
dealiased pseudospectral method, and a fourth-order Runge-
Kutta method for time marching. The wavenumber incre-
ment is 1 and the minimum wavenumber of the DNS is 1.
The total energy E is maintained at an almost time-
independent constant value (E=0.5) by introducing negative
viscosity in the wavenumber range k<<2.5. Readers inter-
ested in the DNS may refer to Refs. 3, 4, and 28.

For the readers’ convenience, we summarize some key
parameters from Ref. 4 in Table I. In Fig. 1, we present four

different zooms of isosurfaces showing the intense region
where |@|>(w)+40, for the DNS data at resolution N
=20483 and with Re,=732 from Ref. 28. Here, (w) is the
spatial average of |w|, and o, its standard deviation. Table I
presents the parameters of the different simulations of
kmaxm=1, where k,, is the maximum wavenumber of the
retained modes, and 7 is the Kolmogorov length scale de-
fined as 5=(17/(€))""*. Here (e) is the mean rate of energy
dissipation per unit mass. The Taylor-microscale Reynolds
number is defined by Re,=u’\/v, where \=(15vu’?/{e))"?
is the Taylor microscale, 3u’?/2=E, and L the integral length
scale defined as

K 'E(k)dk,

where E(k) is the energy spectrum.

IV. COHERENT VORTEX EXTRACTION FOR Re, =732

Now we apply the coherent vortex extraction algorithm
described in Sec. II to the DNS data for Re, =732 computed
at N=2048.

A. Total, coherent, and incoherent vorticity

Figure 2 shows the modulus of vorticity of the total flow
(green) for the case Re, =732, after zooming on a 256> sub-
cube to enhance structural details. The flow exhibits elon-
gated, distorted, and folded vortex tubes, as observed in
lab01rat0rylO and numerical®™”’ experiments. We then decom-
pose the flow into its coherent and incoherent contributions
and plot isosurfaces of the coherent (red) and incoherent
(blue) vorticity for |w|=50, and 50/3, respectively, with the
root mean square o=(2Z)"2. We observe that the coherent
vorticity, represented by 2.6%N wavelet coefficients, retains
99.8% of the energy and 79.8% of the enstrophy. Moreover,
the coherent vorticity exhibits the same vortex tubes as those
present in the total vorticity; we have checked that both
fields plotted with the same isosurfaces |w|=50 well super-
impose. In contrast, the incoherent vorticity is structureless;
we have checked this by zooming in that there are no vortex
tubes left. Note that the value of the isosurface chosen for
visualization is the same for the total and coherent vorticity,
but it has been reduced by a factor of 3 for the incoherent
vorticity, whose fluctuations are much smaller.
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FIG. 1. (Color) Different zooms of isosurfaces of vorticity for Re, =732 at resolution N=20483 (from Ref. 28). Isosurfaces of vorticity for |w|>(w)+40,,. (a)
The size of the display domain is (59847 X 1496) 7°, periodic in the vertical and horizontal directions. (b) Close-up view of the central region of (a) bounded
by the white rectangular line; size of the display domain is (29922 X 1496) 7. (c) Close-up view of the central region of (b): 1496 7. (d) Close-up view of

the central region of (c): (748%X 1496) 1.

B. Velocity and vorticity probability density
functions (PDFs)

The PDFs of velocity and vorticity of the total, coherent,
and incoherent flows estimated by histograms using 200 bins
are depicted in Fig. 3. The comparison of the total and co-
herent velocity PDFs (two wide PDFs in the top figure)
shows that they coincide well. The two narrow PDFs show
that the incoherent velocity PDF is quasi-Gaussian with a
strongly reduced variance compared to that of the total ve-
locity. Likewise the PDFs of the total and coherent vorticity
almost superimpose and show a stretched exponential behav-
ior which reflects the flow intermittency due to the presence

of coherent vortices. The PDF of the incoherent vorticity has
an exponential shape with a reduced variance compared to
that of the total vorticity.

C. Energy spectra

For the case Re, =732, Fig. 4 shows that the spectrum of
the coherent energy is identical to that of the total energy all
along the inertial range. This implies that coherent vortices
33-0.1 energy scaling shown in Ref.
4. In the dissipative range, i.e., for k»p=0.3, the spectrum of
the coherent energy differs from that of the total energy,

are responsible for the k™
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FIG. 2. (Color) Isosurfaces of total (top), coherent (bottom left), and incoherent (bottom right) vorticity for Re, =732 at resolution N=20483. The values of
the isosurfaces are |w|=50 for the total and coherent vorticities, and only |ew|=(5/3)0 for the incoherent vorticity. Only subcubes of size 256° are visualized,

although computation has been performed at resolution N=2048°.

although there is still a significant contribution of the coher-
ent vortices at scales smaller than k7==0.3. Concerning the
incoherent flow, we observe that the scaling of the incoherent
energy spectrum is close to k>, which corresponds to an eq-
uipartition of incoherent energy between all wavenumbers k,
since the isotropic spectrum is obtained by integrating energy
in 3D k-space over spherical shells k=|k|. The incoherent
velocity is therefore spatially decorrelated, which is consis-
tent with the observation that incoherent vorticity is struc-
tureless (Fig. 2). We also observe for the total flow that there
is some energy piling up around kn=1, which corresponds
to the cutoff wavenumber. This spike is retained by the in-
coherent contribution but not by the coherent contribution.

D. Velocity skewness and flathess

The scale-dependent skewness and flatness for the total,
coherent, and incoherent velocities at Re, =732 are shown in
Figs. 5 and 6 as a function of the dimensionless wavenumber
k;m, respectively. Here, kj=21/ 1.3 where 1/1.3 is the cen-
troid wavenumber of the Coifman 12. In both figures, we

only show the five smallest scales. At low wavenumbers, the

statistical quantities of the incoherent contribution yield er-
roneous results, since too few wavelet coefficients of the
incoherent vorticity field represent its contribution at large
scales. Therefore they have been omitted. The skewness
shown in Fig. 5 tends to zero for the incoherent flow as the
wavenumber increases, while those of the coherent and total
flow become slightly negative. Figure 6 shows that the flat-
ness of the total and coherent flow increases with the wave-
number. For the coherent flow we even find a stronger in-
crease than for the total one, which illustrates that the
coherent vortices are responsible for the flow intermittency.
The flatness of the incoherent flow has much smaller values,
but are not equal to 3, the value for a Gaussian noise.

E. Energy transfers and fluxes

Studying the energy transfer in Fourier space enables us
to check the contributions of the coherent and incoherent
flows to the nonlinear dynamics. For this the total, coherent
and incoherent velocity fields are transformed into Fourier
space:
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FIG. 3. PDFs of velocity (top) and vorticity (bottom) for the case Re,
=732 at resolution N=20483. The Gaussian distribution in the top figure is
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of the incoherent velocity.
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FIG. 4. Energy spectra of the total, coherent, and incoherent flow for the
case Re, =732 computed at resolution N=2048>.
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0.03
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0.02 coherent —6— |
incoherent - Disisi

0.1 1
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FIG. 5. Scale-dependent skewness of velocity vs wavenumber for Re,
=732.

Flulk) = J v(x)exp(—i27k - x)dx. (4)
R3

The energy transfer function T(k) of the total flow is then
defined by

> HAvll-p)- Aw-Vvlp),

k=1/2<|p|<k+1/2

T(k) = (5)

where we sum over spherical shells in k-space, and the cor-
responding energy flux I1(k) is defined by

k
(k) = - J T(k)dk. (6)

0

According to the above formulae, the energy fluxes of the
different velocity contributions can be computed. Using the
decomposition v=v_.+v,, we obtain eight transfer terms for
all possible combinations between coherent and incoherent
contributions. We introduce

120 | total ---EF-- )
coherent —6—
100 | incoherent - .

FIG. 6. Scale-dependent flatness of velocity vs wavenumber for Re,=732.
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Iopy (K)/(€)

FIG. 7. Energy fluxes Il 4. (k)/(e) vs wavenumber of the different flow

aBy
contributions for the case Re,=732.

Taﬁy(k) = E

k=1/2<|p|<k+1/2

Flol=p) - Flvg- V)v,lp),
()

and obtain the corresponding energy flux; i.e., Il,z,(k)
=—f’5Taﬁy(k)dk, for (a, B,y) € {c,i}. Thus, we can define the
eight fluxes: Hcccv Hcci’ Hcic’ Hcii’ Hicc’ Hici’ Hiic’ and Hiii'

In Fig. 7 we plot the eight energy fluxes normalized by
the dissipation rate I1(k)/{€) vs k7, together with the total
flux denoted by II;;. As expected, we find that IT . coincides
with II all along the inertial range, which confirms that the
nonlinear dynamics is fully captured by the coherent flow.
All along the inertial range the other fluxes are almost zero.
In the dissipative range we observe that the coherent flux
[T, still dominates, though it begins to depart from the total
flux Il since II.;, and Il begin to build up for scales
smaller than k7=0.1. The flux I is positive while the flux
IT;.. is negative and they tend to compensate each other since
they have almost the same magnitude for k»p— 1. We also
find that II_ and II;,, become more important for k7np— 1.
The remaining terms are negligible.

V. INFLUENCE OF THE REYNOLDS NUMBER
FROM Re,=167 TO 732

We apply the coherent vortex extraction algorithm to
four different DNS datasets to study the influence of the
Reynolds number from Re, =167 to 732.

A. Compression rate

The compression rate C is defined as C=100N./N,
where N, denotes the number of retained coefficients and N
the total number of coefficients. The compression rate corre-
sponds to the percentage of coherent coefficients that are
kept. We observe in Fig. 8 (top) that C decreases from 3.6%
for Rey=167 to 2.6% for Re,=732, according to C
OCRe;O'zl. The exponents in Figs. 8 and 9 are estimated by a
least-squares fit of the four available data points. This Rey
dependence shows that the flow intermittency increases with
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FIG. 8. Compression rate (top) and number of coefficients (bottom) vs Re,.

Re,, which is consistent with the previous experimental re-
sults presented in Fig. 6 of Ref. 29. From this observation,
we conjecture that the higher the Reynolds number, the more
efficient the wavelet representation is.

Figure 8 (bottom) depicts the number of retained coeffi-
cients for the total and the coherent parts versus the Rey-
nolds number. As the compression rate decreases with the
Reynolds number, we observe that the number of coefficients
of the coherent part grows more slowly than that of the total
flow. For the case Re, =732, the coherent part corresponds to
about 2.3 X 108 coefficients, while the total flow corresponds
to about 8.6 X 10° coefficients. The number N of modes in
the DNS presented here (computed up to resolution 20483)
increases with Rei'“. Kolmogorov’s theory predicts the scal-
ing N Rei’ 2, which is confirmed in Ref. 28 using one more
data point, corresponding to a DNS at resolution 4096°. For
the number of coherent modes, we find the Re, dependence,
ie., NCOCRef\'%, which shows the number of degrees of free-
dom increases more slowly than the one for DNS.

Figure 9 shows energy and enstrophy versus Re, for the
total, coherent, and incoherent flows. The energy of the total
and coherent flows coincide (Fig. 9, top). The energy of the
total flow is maintained at an almost time-independent con-
stant value (E=0.5) by introducing negative viscosity in the
DNS data we analyzed (see Sec. III). We also find that the
energy of the incoherent flow decreases with Re, approxi-
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FIG. 9. Energy (top) and enstrophy (bottom) for the total, coherent, and
incoherent flow vs Re,.

mately as E;*Re;"™. For the enstrophy (Fig. 9, bottom) we
find that both, the total and the coherent enstrophy, increase;
i.e., Z,xRe,® and Z, % Re,®. We also observe that the inco-
herent enstrophy is increasing with ZiOCRe;\'Gg. The Re, de-
pendence of the different enstrophies are all very similar.

The energy and enstrophy of the coherent/incoherent
flows are listed in Table II.

B. Scale-dependent compression rate

Figure 10 shows the scale-dependent compression rate
C; defined by C;=100N_ ;/Nj; i.e., the percentage of coeffi-
cients corresponding to the retained coherent part at scale j,
plotted versus the normalized wavenumber k;7 for the dif-
ferent cases. Here, N, ; is the number of the retained wavelet
coefficients at scale j, N j-=7 X 23 the total number of coeffi-
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FIG. 10. Scale-dependent compression rate C; vs k;» for runs 256°, 5123,
10243, and 20483.
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cients at scale j, and kj is the centroid wavenumber of the
Coifman 12 wavelet. For all Reynolds numbers, we observe
that the compression rate C; decreases with increasing k;7.
For k;7=0.1, almost all coefficients are retained by the co-
herent part, while the percentage of the retained coefficients
decreases for kjnzO.l; i.e., the compression rate is im-
proved. Note that due to the octree representation of the
wavelet coefficients, the number N; is very large for small
scales (i.e., for large j), so that the overall compression rate
C is dominated by C; at small scales. We also observe that,
for increasing values of Re,, the compression rate per scale
decreases faster as scale becomes smaller; i.e., the rate is
reduced at larger Re, for k;#=0.1. This reflects that the
larger the Reynolds number, the better the wavelet-based
extraction.

C. Energy spectra

The compensated energy spectra [k”2E(k)/{€)*?] plotted
versus the normalized wavenumber k7 illustrate that the
slope of the inertial range is —0.1 below the Kolmogorov
slope of —5/3 for both, the total (Fig. 11, upper curves) and
coherent flows (Fig. 11, lower curves). The shoulders of the
energy spectrum with a maximum around k%~ 0.13 are also
well retained in the coherent flows.

However, in the dissipative range, we also observe that
the spectra of the coherent flow decay faster than that of the
total flow and that the energy does not pile up.

The compensated energy spectra [E(k)/(k*5''3(€)*3)]
of the incoherent flows, plotted in Fig. 12, show that the

TABLE II. The percentages and absolute values of coherent/incoherent energy and enstropy for runs 2563, 5123,

10243, and 20483,

El%)  El%  E E - zlwl  zlw)  z z

Run 256° 99.1 0.45 0.4955 0.0023 81.2 18.8 49.3 114
Run 5123 99.3 0.34 0.4966 0.0017 79.7 20.3 128.3 32.7
Run 10243 99.7 0.17 0.4983 0.0008 81.0 19.0 251.5 59.0
Run 20483 99.8 0.14 0.4988 0.0007 79.8 20.2 641.0 162.3
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range of a k? slope is increasing with Re,. The shoulders,
similar to that observed in the spectra of the total and the
coherent flows, are also present in the spectra of the incoher-
ent flows.

D. Velocity flatness

The scale-dependent flatness for the total, coherent and
incoherent velocity from Re,=167 to 732 is shown in Fig.
13. As done in Sec. IV D, we only plot the five smallest
scales. We observe that the flatness of the total and coherent
flows increases with Re, for each scale, while the flatness of
the incoherent flows is almost independent of Re,. The in-
crease for the total flows with Re, at each scale leads to an
improvement of the scale-dependent compression rate C;
when increasing Re, (Fig. 10). We also find that the flatness
of the total and coherent flows increases with k;7 for all Re,,
which is consistent with the improvement of C; as k;7 in-
creases. At each Re,, we find that the flatness increases faster
with k;» for the coherent flow than for the total flow.

VI. CONCLUSION AND PERSPECTIVES

We have introduced a wavelet-based denoising method
that splits each flow realization into two orthogonal
components—one coherent and organized, and the other in-
coherent and random—both being active all along the iner-
tial range. We have proposed this as a way to circumvent the
fact that there is no spectral gap to facilitate the modeling of
turbulence, in contrast to other situations where classical sta-
tistical physics can be successfully used (e.g., solid state
physics). Another advantage of this method, called CVE (co-
herent vortex extraction), is to propose a constructive defini-
tion of coherent structures which is based on the minimalist
assumption that coherent structures are not noise. It there-
fore does not require a template of the shape or any more
precise definition of coherent structures.

Here we applied the CVE method to DNS data of statis-
tically stationary homogeneous isotropic turbulent flows
forced at large scales and computed at resolutions
2563, 5123, 10243, and 20483, corresponding to Taylor mi-
croscale Reynolds numbers of Re, =167, 257, 471, and 732,
respectively. The flow fields are characterized by a large

120
100

FIG. 13. Scale-dependent flatness of (left) total, (right) coherent, and incoherent velocity for runs N=2563, 5123, 10243, and 2048°.
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range of active scales, which increases with the Reynolds
number. The wavelet representation detects the flow intermit-
tency, which is characterized by the fact that only few coef-
ficients have significant values in the small scales.

We have shown that few wavelet coefficients are suffi-
cient to represent the coherent vortices, while the large ma-
jority of the coefficients corresponds to an incoherent back-
ground flow, which is structureless and contains no vortex
tubes. The statistics of the coherent flow is similar to that of
the total flow since the coherent flow contains most of the
energy and enstrophy of the total flow. Their energy spec-
trum coincides all along the inertial range and differs only in
the dissipative range. The velocity and vorticity PDFs are in
good agreement with those of the total flow. In contrast, the
statistics of the incoherent flow, which contains much less
energy and enstrophy, differ: the energy tends to be equidis-
tributed among the incoherent modes, while the velocity
PDF is quasi-Gaussian with a strongly reduced variance.
These results confirm for much higher Reynolds numbers, at
least up to Rey =732, the conclusions we obtained for lower
Reynolds numbers Re, =150 and 1681830

Checking the influence of the Reynolds number, we con-
firmed that the above results hold for all Reynolds numbers
we investigated and that the percentage of wavelet coeffi-
cients corresponding to the coherent vortices decreases from
3.6% to 2.6% as Re, increases from 167 to 732. The im-
provement of the compression rate implies that the Re, de-
pendence of N, which is the number of degrees of freedom
necessary to represent the coherent flow, is weaker than the
estimation based on the statistical theory of Kolmogorov
which is typically used for DNS, i.e., N Rei’z, where N is
the number of the degrees of freedom in DNS. The flow
intermittency increases with the Reynolds number at least up
to Re, =732, since the wavelet representation of the coherent
vortices becomes sparser, and hence more efficient, as the
Reynolds number increases. For the four Reynolds numbers
considered here, by the use of a least-square method, we
found that N, increases with Re, approximately as N,
o Rei'g.

The analyses of the nonlinear dynamics we have made
by computing the energy transfer and flux of the different
flow contributions in terms of the wavenumber have shown
that the coherent contribution captures the nonlinear dynam-
ics all along the inertial range. In contrast, the incoherent
contribution becomes non-negligible only in the dissipative
range.

The above results motivate further developments of the
coherent vortex simulation (CVS) method. It is based on a
deterministic computation of the time evolution of the coher-
ent flow using an adaptive wavelet basis, while the influence
of the incoherent flow onto the coherent flow is neglected or
statistically modeled. First results of CVS for a three-
dimensional turbulent mixing layer are promising,23 and the
new estimation presented in this paper shows that it might
become more efficient as the Reynolds number increases,
since the percentage of retained coherent modes decreases.
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APPENDIX A: DIVERGENCE PROBLEM

As the orthogonal wavelet transform does not commute
with the divergence operator and the vector-valued wavelet
basis is not divergence-free, the coherent vortex extraction
does not yield coherent and incoherent vorticity fields that
are divergence-free. However, this is not a key issue in prac-
tice, since the divergent component of the decomposed vor-
ticity field remains less than 2.17% of the total enstrophy (for
Re\=732) and appears mostly in the dissipative range as
shown in the following.

In Fig. 14 we plot the enstrophy spectra of the coherent
and incoherent vorticities together with the divergence-free
counterparts, denoted by w_, |, and the divergent part V¢.
We observe that the divergent part actually contributes little
to the enstrophy, and this only in the dissipative range. This
is even less than what we have already observed for Rey
=150 computed at N= 256> Therefore, we think that this
lack of having not perfectly divergence-free vorticity fields
does not pose a problem for CVS.

APPENDIX B: INFLUENCE OF THE NUMBER
OF ITERATIONS IN THE CVE METHOD

We briefly discuss how the compression rate C is influ-
enced by the number of iterations Z in the CVE algorithm.
Figure 15 shows that compression rate C monotonically in-
creases with Z and converges after about ten iterations what-
ever Re,. Moreover, C decreases when Re, increases, irre-
spective of Z, e.g., C=8.7% for Re, =167, and only 6.0% for
Re,=732. The Re, dependence of C after convergence (Fig.
16) is similar to what we have obtained for one iteration only
(Fig. 8, top). Figures 17 and 18 show that the statistics are
similar to those obtained using one iteration only (compare
Figs. 3 and 4).
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