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Abstract. We present direct numerical simulation of two-dimensional decaying tur-
bulence in wall bounded domains. The Navier–Stokes equations are solved in a pe-
riodic square domain using the vorticity–velocity formulation. The bounded domain
is imbedded in the periodic domain and the no–slip boundary conditions on the
wall are imposed using a volume penalisation technique. The numerical integration
is done with a Fourier pseudo–spectral method combined to a semi–implicit time
discretization with adaptive time stepping. We study the influence of the geometry
of the domain on the flow dynamics and in particular on the long time behaviour of
the flow. We consider different geometries, a circle, a square, a triangle and a torus
and we show that the geometry plays a crucial role for the decay scenario.
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1 Introduction

Two–dimensional turbulence in wall bounded domains has many applications
in geophysical flows, e.g. in oceanography and in planetary flows. Direct nu-
merical simulations of two–dimensional turbulence in circular and square do-
mains can be found, e.g. in [1, 2, 3]. The aim of the present paper is to study
the influence of the geometry of the domain on the flow dynamics and in
particular on the long time behaviour of the flow. Typically one observes the
formation of stable large scale structures which persist for a long time before
they are finally dissipated. Viscous dissipation is the dominant mechanism of
these final states, as the nonlinear term in the Navier–Stokes equations is de-
pleted when there is a functional relationship between the streamfunction and
the vorticity. Late states of decaying two–dimensional flows in periodic boxes
have for instance been investigted in [4]. Here we study the final states of wall
bounded flows considering different geometries, a circle, a square, a triangle
and a torus. Several theoretical predictions of the long time behaviour of two–
dimensional flows can be found, e.g. in the book of Davidson [5]. Variational
principles for predicting the final state are based on conservation of energy
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E and the decay of enstrophy Z. In this heuristic approach Z is minimized
under constraint of conservation of E [6]. Another variational hypothesis is
motivated by statistical mechanics. A measure of mixing can be introduced
which leads to the definition of an entropy. The final states correspond to a
maximum of entropy as turbulence maximizes mixing [7, 8, 9]. Another ap-
proach based on viscous eigenmodes of the Stokes flow has been used in [10]
to predit the self-organisation of two-dimensional flows in a slip-free box, and
for the no-slip case in [11].

2 Numerical Scheme

The Navier-Stokes equations are solved in a double periodic square domain of
size L = 2π using the vorticity–velocity formulation. The bounded domain is
thus imbedded in the periodic domain and the no-slip boundary conditions on
the wall ∂Ω are imposed using a volume penalisation method. The physical
idea is to model the solid wall as a porous medium and to compute the flow
in a larger domain with two regions of different permeability. A mathematical
analysis of the method is given in [12], proving its convergence towards the
Navier–Stokes equations with no–slip boundary conditions. The governing
equations in vorticity-velocity formulation are,

∂tω + u · ∇ω − ν ∇2 ω + ∇× (
1
η

χu) = 0 (1)

where u = (u, v) is the divergence-free velocity field, i.e. ∇·u = ∂xu+∂yv = 0,
ω = ∂xv − ∂yu the vorticity, ν the kinematic viscosity and χ(x) a mask
function which is 0 inside the fluid, i.e. for x ∈ Ω, and 1 inside the solid wall.
The penalisation parameter η is chosen to be sufficiently small (η = 10−3)
[13]. The numerical technique we use here is based on a dealiased Fourier
pseudospectral method with semi-implicit time discretization and adaptive
time-stepping using a CFL condition for the maximum velocity. Details on
the code together with its numerical validation can be found in [13].

The energy E, enstrophy Z and palinstrophy P of the flow can be defined
as [14]

E =
1
2

∫
Ω

|u|2dx , Z =
1
2

∫
Ω

|ω|2dx , P =
1
2

∫
Ω

|∇ω|2dx, (2)

respectively.
The energy dissipation is given by dtE = −2νZ and the enstrophy dissipation
by

dtZ = −2νP + ν

∮
∂Ω

ω(n · ∇ω)ds, (3)

where n denotes the outer normal vector with respect to the boundary of the
domain ∂Ω. The surface integral in (3) reflects the enstrophy production at
the wall involving the vorticity and its gradients which is not present in the
periodic case.
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3 Numerical Results

Starting with the same random initial conditions, i.e. a correlated Gaussian
noise with an energy spectrum E(k) ∝ k4, we compute the flow evolution
in four different geometries for initial Reynolds numbers, Re = 2D

√
2E/ν,

of about 1000 (where D denotes corresponds to the domain size). Figure 1
shows the vorticity fields at early, intermediate and late times for a circular,
a square, a triangle and a torus geometry. All flows organize into large scale
structures before more or less quasi–steady states form. For the circlular ge-
ometry (Fig. 1, top) we observe the transition via a tripole structure, before
the final state, a negative circular vortex surrounded by a vortex ring of posi-
tive vorticty, forms. The final state of the toroidal geometry (Fig. 1, bottom)
corresponds to two vortex rings, a positive one enclosed by a negative one. The
transition phase shows a triangularly shaped vortical structure surrounded by
three positive vortices. For the triangle and the square domain we see that the
final state is note yet completely reached. However, we find also a negative
circular vortex in the center which is encircled by a positive vorticity ring,
which seems not yet be completely relaxed.

Figure 2 presents the decay of different integral quantities, energy (left),
enstrophy (middle) and palinstrophy (right) for the four geometries. All quan-
tities exhibit at early times a rapid monotonuous decay, except for the square
and triangular geometry where we observe an oscillatory behaviour in the
palinstrophy decay, however less pronouned for the latter case. These oscil-
lations come from the enstrophy production at the boundary. At later times
we find for all geometries and all quantities an exponential decay behaviour
with slopes depending on the geometry. The square domain shows the slowest
decay of all quantities. The decay is increasing in the following order: torus,
triangle and the circle exhibits the fastest decay. The fact that the circular case
decays fastest results from the smooth boundary, i.e. no corners are present
and hence the enstrophy production at the wall is much less pronounced than
for the other cases.
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Fig. 1. 2d decaying turbulence in bounded domains. Vorticity fields at early (left),
intermediate (middle) and late times (right). From top to bottom: circle, square,
triangle and torus.
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Fig. 2. 2d decaying turbulence in bounded domains. Decay of energy (left), enstro-
phy (middle) and palinstrophy (right) for the different geometries: circle, square,
triangle and torus.

4 Conclusion

In conclusion, we have shown, by means of DNS of wall bounded flows in
different domains, that no–slip boundaries play a crucial role for decaying
turbulent flows. At early times we observe a decay of the flow which leads
to self–organisation and the emergence of vortices in the bulk flow, similarly
to flows in double periodic boxes. At later times larger scale structures form
which depend on the domain geometry, and which finally relax to quasi-steady
states. More details on the high Reynolds number simulation for shorter times
can be found in [3]. Current work deals with comparison of the final states
computed here with predictions of the viscous eigenmodes of the Stokes flow
for the different geometries.
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