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Abstract. A wavelet-based method to extract coherent vortices is applied to data of
three-dimensional incompressible homogeneous isotropic turbulence with the Taylor
micro-scale Reynolds number 471 in order to examine contribution of the vortices
to statistics on the turbulent flow. We observe a strong scale-by-scale correlation
between the velocity field induced by them and the total velocity field over the
scales retained by the data. We also find that the vortices almost preserve statistics
of nonlinear interactions of the total flow over the inertial range.
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1 Introduction

Wavelet techniques to analyze turbulence have been pioneered at the end of
1980ies [1, 2]. They have been developed and exploited to reveal nature of
turbulence, to model it and to solve the Navier-Stokes equation directly in
wavelet space [3, 4, 5, 6].

A wavelet-based coherent vortex extraction (CVE) method for two-dimen-
sional flows have been introduced by the use of orthogonal wavelet decompo-
sitions [7]. This has been extended to three-dimensional flows [8, 9]. Coherent
Vortex Simulation (CVS) proposed in [7] is based on deterministic simulation
of the flow due to the coherent vortices by the use of an adaptive wavelet
basis, while influence of incoherent background flow onto the coherent flow is
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neglected or statistically modeled. CVSs of two-dimensional flows and three-
dimensional turbulent mixing layers is presented in [10] and [11], respectively.

In this paper, the wavelet-based CVE algorithm is applied to data ob-
tained by DNS of three-dimensional incompressible homogeneous isotropic
turbulence at resolution 10243 which corresponds to the Taylor micro-scale
Reynolds number of 471 performed on the Earth Simulator [12, 13]. We ex-
amine coherent contribution to statistics of the turbulent flow, especially the
energy transfer, as part of a prior test on a CVS of three-dimensional high
Reynolds number turbulent flow.

2 Wavelet Analysis and CVE

2.1 Vector Valued Orthogonal Wavelet Decomposition

We consider a vector field v(x) = (v1(x), v2(x), v3(x)) in T3 = [0, 2π]3. Three-
dimensional orthonormal wavelet analysis unfolds v into scale, positions and
directions using a mother wavelet Ψm constructed by tensor product of one-
dimensional scaling function ψ0(x) and mother wavelet ψ1(x) as Ψm(x) =
ψξ(x1)ψη(x2)ψζ(x3) (ξ, η, ζ = 0, 1, and m = ξ+2η+4ζ). We use the Coiflet 12,
which is compactly supported, quasi-symmetric, defined with a filter of length
12, and has four vanishing moments. The field sampled on 2J equidistant
grid points in each space direction of the Cartesian coordinates can thus be
decomposed into an orthogonal wavelet series:

v(x) = v +
J∑

α=1

vα(x), and vα(x) =
2α−1−1∑

ι1,ι2,ι3=0

Wα
m,ι [v] Ψα

m,ι(x), (1)

where v =
∫
T

v(x) dx/(2π)3, Ψα
m,ι(x) = 23α/2Ψm(2αx− 2πι), m = 1, 2, · · · , 7

and ι = (ι1, ι2, ι3). The l-th component of Wα
m,ι [v] is given by

∫
T

vl(x)Ψα
m,ι(x)

dx/(2π)3. The summation convention is used for repeated indices but not for
the Greek indices. vα = 0 because Ψα

m,ι = 0. Readers interested in details on
orthogonal wavelet transform may refer to, e.g. [2, 14].

2.2 CVE

A wavelet-based method to extract coherent vortices from two- and three-
dimensional turbulent flows has been proposed [7, 8]. An orthogonal wavelet
decomposition is applied to the vorticity field ω. A threshold based on de-
noising theory [15] splits the wavelet coefficients into two sets. The coherent
vorticity ωC is reconstructed from few wavelet coefficients whose moduli are
larger than a given threshold depending on the enstrophy and resolution of
the field. After applying the method, we obtain two orthogonal fields: the co-
herent vorticity ωC and the incoherent vorticity ωI. We also reconstruct the
coherent and incoherent velocity fields induced by the coherent and incoher-
ent vorticity fields, respectively. Readers interested in the details may refer to
[7, 8, 9, 16, 17].
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Fig. 1. Isosurfaces of total (left), coherent (middle) and incoherent (right) vorticity.
The values of the isosurfaces are |!| = ωm +3σω for the total and coherent vorticity
and 2(ωm +3σω)/5 for the incoherent one. ωm and σω are the mean value of |!| and
the standard deviation of |!|, respectively. Subcubes of size 2563 are visualized.
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Fig. 2. Velocity PDFs (left) and energy spectra of the total, coherent and incoherent
flow (right).

3 CVE from Homogeneous Isotropic Turbulence

We apply the CVE method to data obtained by DNS of three-dimensional
homogeneous isotropic turbulence performed on the Earth Simulator [12, 13].
The DNS fields obey the Navier-Stokes equations for incompressible fluid in
a periodic box with sides 2π. We use data for kmaxη ≃ 1 at resolution N =
10243 and the Taylor miroscale Reynolds number Rλ = 471. Here kmax is the
maximum wavenumber retained in the DNS, and η is the Kolmogorov length
scale.

We find that the coherent vortices are represented by the 2.9%N wavelet
coefficients of the total vorticity field. The flow induced by the vortices retains
99.7% of the energy and 81.0% of the enstrophy. Figure 1 shows that the
coherent vorticity well retains the vortex tubes observed in the total vorticity.
In contrast, we observe no vortex tube in the incoherent vorticity field.

The probability density functions (PDFs) and energy spectra of velocity of
the total, coherent and incoherent flows are shown in Fig. 2 (left). All velocity
PDFs exhibit quasi-Gaussian distributions. The total and coherent velocity
PDFs well coincide, while the incoherent one has a strongly reduced variance.
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Fig. 3. Cα(vT,vC) and Cα(IT, IC) vs. kαη.

The spectrum of the coherent energy is identical to that of the total velocity
all along the inertial range, presenting a k−5/3 scaling, and that the spectrum
of the coherent energy only differs from the one of the total energy in the
dissipative range, where k is the wavenumber. For the incoherent velocity, we
observe that E(k) scales as k2, which corresponds to energy equipartition.

4 Contribution of Coherent Vortices to Energy Transfer

In order to examine contributions of the coherent vortices to energy transfer
of the total flow, we consider scale-by-scale correlation between the vector
fields due to the total flow and induced by the coherent vortices, and also the
net energy transfer to scale α (α = 1, 2, · · · , log2 N1/3) at location indexed by
ι proposed in [18].

The scale-by-scale correlation between vector fields A(x) and B(x) is de-
fined by

Cα(A,B) =
Aα · Bα√

|Aα|2
√

|Bα|2
. (2)

Figure 3 shows the correlation Cα(vT,vC) and Cα(IT, IC) vs. kαη, where vT

(vC) is the total (coherent) velocity field, Iβ = (vβ ·∇)vβ +∇pβ/ρ, β ∈ (T, C),
pβ the pressure obtained from pβ = −ρ∇−2[∇ · {(vβ · ∇)vβ}], ρ fluid density.
kα = 2α−1/1.3. 1/1.3 for kα is the centroid wavenumber of the Coifman 12. We
find that the correlations are strong over all inertial scales. In the dissipation
range, the latter is weaker than the former, and both of them decrease with
increasing kα.

The net energy transfer is given by tα,β [ι] = −Wα
m,ι [vβ ] · Wα

m,ι [Iβ ]. Fig-
ure 4 shows mean and standard deviation wavelet spectra of the net en-
ergy transfers for the total and coherent flows. The spectra are normalized
by (⟨ϵ⟩ν)3/4. Here ⟨ϵ⟩ is the mean energy dissipation rate per unit mass of
the total flow and ν is the kinematic viscosity. The mean wavelet spectrum
τβ(kα) is defined by τβ(kα) = Nα ⟨tα,β [ι]⟩ /∆kα. Here, Nα = 23(α−1) and
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Fig. 4. Mean spectra (left) and standard deviation spectra (right) of the net energy
transfer of the total and coherent flow. The standard deviation spectra are shown
for α ≥ 2.

∆kα = (kα+1−kα) ln 2. ⟨·⟩ denotes the mean value of · at each scale. The spa-
tial variability of the energy transfer at each scale is measured by the standard
deviation wavelet spectrum defined by

σβ(kα) = Nα

√
⟨{tα,β [ι]}2⟩ − ⟨tα,β [ι]⟩2/∆kα. (3)

In Fig. 4 we find that τC(kα) and σC(kα) well coincides with τT(kα) and
σT(kα) in the inertial range, while, for kη & 0.1, we observe a small discrep-
ancy between τC(kα) (σC(kα)) and τT(kα) (σT(kα)).

5 Conclusions

The wavelet-based method to extract coherent vortices has been applied to
the data of three-dimensional incompressible homogeneous isotropic turbu-
lence at resolution 10243 grid points and Rλ = 471. The energy spectrum of
the coherent flow is in good agreement with that of the total flow all along
the inertial range. We observe a strong scale-by-scale correlation between the
velocity field induced by the coherent vortices and the total velocity field at all
scales. The statistics of nonlinear interactions are almost preserved by the co-
herent flow all along the inertial range. The present results encourage further
development of the CVS of high Reynolds number turbulent flows. Depen-
dence of contribution of coherent vortices to total fields on Reynolds number
will be reported in another paper.
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