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Abstract Applications of the wavelet based coherent vortex extoaathethod are
presented for homogeneous isotropic turbulence for @iffeReynolds numbers.
We also summarize the developed adaptive multiresolutiethad for evolutionary
PDEs. Then we show first fully adaptive computations of 3ding¥ayers using
Coherent Vortex Simulation. Features like local scale ddpat time stepping are
also illustrated and examples for one dimensional probkmgiven. Test cases on
complex geometries like the periodic hill flow (with Reynskiumbers up to 37000)
and an annular burner with a swirl numbeiS£ 0.6 have been calculated based on
the developed wavelet decomposition models. The extenssudts presented show
the robustness and good accuracy of the adopted wavelaiagbpfor the various
flows simulated.

1 Introduction

The present paper deals with analysis and simulation of atprbulent flows
and the utilization of the orthonormal wavelet decompoaitior their study and
computation. The first section presents an example of Caoh&tatex Extraction
of three-dimensional isotropic turbulence from a Directiduical Simulation.
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Even more than in the incompressible regime, the numeiiicailation of fully—
developed turbulent flows in the compressible regime is drtheochallenges for
scientific computing. The difficulty comes from the nonlinelynamics of the
Navier-Stokes equations, which excite a very large rangemfporal and spatial
scales. To perform computations in industrial configuratjdurbulence models are
necessary because Direct Numerical Simulation (DNS) dy-fdeveloped turbu-
lent flows is up to now limited to low Reynolds numbers. Howewsost turbulence
models used in industrial codes are based on phenomenalodjihus require tun-
ing of their parameters for each flow configuration. Cohereriex Simulation is a
powerfull method which overcomes this principal difficuttf/classical models and
is demonstrated for the turbulent mixing layer in section 3.

Systems of nonlinear partial differential equations (PDizturally arise from
mathematical modelling of chemical-physical problemsoemtered in many appli-
cations, for instance in chemical industry. In turbuleriaté/e or non-reactive flow,
for example, these PDE solutions usually exhibit a mulgtad active spatial and
temporal scales. However, as typically these scales arenifarmly distributed in
the space—time domain, efficient numerical discretizatioould take advantage of
this property. Introducing some kind of adaptivity in spdicee allows to reduce the
computational complexity with respect to uniform disazations, while controlling
the accuracy of the adaptive discretization. The develapared application of such
an adaptive multiresolution method is shown in section 4.

An important step for the development of each numericalrietdgy is the ap-
plication toward real-life engineering applications. §presumes that the algorithm
can easily be incorporated in existing codes for numericalkations of flows
with complex geometry. This step has been undertaken fopahallelized finite-
volume code LESOCC?2 developed for Large Eddy Simulationsuovilinear grids.
The wavelet decomposition, implemented in this code has bested extensively
against other classical numerical models and experimelatal. For this purpose
test cases with high Reynolds numbers and complex geonaetvgloped within
the present DFG-CNRS cooperation has been utilized. Reshlbwing the robust-
ness and effectiveness of the wavelet algorithm as wellsagdbd accuracy are
presented in the last part of this work.

2 Coherent Vortex Extraction using Wavelets

2.1 Principle

In the fully-developed turbulent regime one observes thergence of coherent
structures out of turbulent fluctuations. Typically, thesectures are well localized
and excited on a wide range of scales. Ten years ago Marie Baid)Kai Schnei-
der have proposed a method, called Coherent Vortex Extra¢@VE), to extract
them [11, 13, 12, 15, 32]. It decomposes turbulent fluctmatimto two classes :
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coherent fluctuations, responsible of convective trarispod incoherent fluctua-
tions, responsible of diffusive transport. For this, thegd the wavelet representa-
tion which presents the advantage, compared to the cl&Esioder representation,
to preserve both spectral and spatial structures. Thehladetlies on two original
choices. The first one consists to represent turbulent fieduhg) wavelets rather than
grid points (physical space representation) or Fourieresqdpectral space repre-
sentation) as it is classically done. The second choiceespaonds to a change of
viewpoint. Since scientists working in turbulence haveyeitagreed on a precise
and operational definition of coherent structures, theyelmeposed the following
minimalist definition : coherent structures are not noisenk agrees on this hypoth-
esis, the problem of extracting coherent structures bes@ameivalent to denoising.
Indeed, one no more needs hypothesis on structures theasélt only on the
noise to eliminate. To get started, they have proposed thelsst hypothesis about
the noise, namely they have supposed the noise to be additite and Gaussian.
This method is based on a wavelet decomposition of the viyrtield, a subsequent
thresholding of the wavelet coefficients and a reconswadtiom those coefficients
whose modulus is above a given threshold. Wavelet basesetsuwited for this
task, because they are made of self-similar functions wedllized in both physical
and spectral spaces leading to an efficient hierarchicaéseptation of intermit-
tent data, as encounted in turbulent flows [11]. The valuéefthreshold is based
on mathematical theorems yielding an optimal min-max estiomfor the denois-
ing of intermittent data [9, 10]. In this section we use thea@nt vortex extraction
(CVE) method and apply it to different realizations of horangous isotropic turbu-
lent flows. They have been computed by direct numerical sitrari (DNS), with a
stochastic forcing at large scales, for a range of Reynaldsher fromRe = 20000
to 400000 by P.K. Yeung and his group, from Georgia Tech (J&Ap have kindly
provided their data.

2.2 Coherent Vortex Extraction (CVE)

The CVE decomposition use an orthogonal three-dimensianéiresolution anal-
ysis (MRA) of L?(R®) obtained through the tensor product of three one-dimeasion
MRAs of L2(R). In this context a functiori € L?(R%) can be developed into a three-
dimensional wavelet basis

fx)=S fuyx),  y=_(iixlyizH) (1)
y; y ¥y y

wherej denotes the scalé= (ix, iy, i) denotes the positiong, = 1,...,7 indicates
the 7 wavelets and the index $et= {y = (j,ix, Iy, iz, ) j=0,...,d—1 x,ly,iz=
0,..,21 =1 p=1,..,7}. Due to orthogonality the wavelet coefficients are given
by ﬂ, = (f ,yy,) where(,-) denotes thé&2 inner product. For more details on this
construction and in wavelets we refer the reader to the atangxtbook [2] and
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also to the article [11] for the 3D case. Here the Coifman 12hmwewavelet is
chosen on the MRA. The reasons for this choise is that it ialmymmetric, it
have compact support and there is a fast wavelet transfanthe total number of
operations iZ(N), where N is the resolution. Another important point is thas t
wavelet hasvl = 4 vanishing moments, and therefore the corresponding qtiadr
mirror filter has a length of @ = 12 [2]. The computational cost of the fast wavelet
transform is of orde€N, whereN is the resolution, an@ is proportional to the fil-
ter length. Therefore the total number of operatior@(is), while it is O(Nlog, N)

for the Fast Fourier Transform (FFT) [14]. Therefore thatoumber of operations
is O(N), and is smaller tha®(Nlog, N), the operation count for the fast Fourier
transform, foN > 212 = 4096.

We consider in the extraction algorithm a 3D vortidity= w(x,y, z) field w= 0O x v,
wherev = v(x,y,2) is the velocity field. The three components @fare devel-
oped into an orthonormal wavelet series, from the largestesgax = 2° to the
smallest scalénin = 2711, The vorticity field is decomposed into coherent vortic-
ity we = we(X,Y,z) and incoherent vorticityy, = wi(X,y,z) by projecting its three
components onto an orthonormal wavelet basis and applyangnear threshold-
ing to the wavelet coefficients. The choice of the threshslidased on theorems
[9, 10] proving optimality of the wavelet representation fienoising signals —
optimality in the sense that wavelet-based estimatorsmiae the maximuni.?-
error for functions with inhomogeneous regularity in thegance of Gaussian white
noise. We have chosen the variance of the total vorticigy, fwice the enstrophy
Z) since we do not knova priori the variance of the noise. The threshold is then
T= (%ZIog N)%, whereZ = %(w, w) is the total enstrophy ard® is the resolution.
Notice that this threshold does not require any adjustadlarpeters.

In summary, we compute the modulus of the wavelet coeffisient

@] = |y - <z wi)é- @

Then, the coherent vorticity is reconstructed from the wet@efficients whose
modulus is larger than the threshdid while the incoherent vorticity is computed
by the difference with the total field. The two fields thus ama, . and w;, are
orthogonal, which ensures the decomposition of the totgtrephy intaZ = Z; + Z;.

The CVE decomposition algorithm consists of three fast \edvieansforms
(WT) for each vorticity component, a thresholding of the elav coefficients and
three inverse fast wavelet transforms (IWT), one for eachmanent of the, i.e.,
all coefficient with| | greater than the threshold, form the coherent vortiaity)(
The incoherent vorticityo; components are in principle computed using the inverse
wavelet transform from the weak coefficients. In order tomify computations
we performed the difference between total and coherenicityrivhich yields the
same result. A flowchart of the CVE algorithm is depicted ig. Bi. The induced co-
herent and incoherent velocity fields are computed using-Biavat’'s kernel (BS),
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Fig. 1 Flowchart of CVE decomposition.

v = [0 x (0~2w), from the coherent and incoherent vorticity fields, respebt

2.3 CVE of Turbulent Flows at Different Reynolds Numbers

In the case oN = 256° we study the vorticity field, for thél = 512° and 2048
dataset, as they are are too large, we will only considensgsof 258.

Table 1 shows the statistical analysis comparing the totéerent and incoherent
flows for Reynolds numbeR. = 20000 and Table 2 shows the same for 4 differ-
ent 256 subcubes extracted from tie= 512 cube data set which correspond
to a flow with Reynolds numbeR, = 60000, and for 4 other different 238ub-
cubes of theN = 2048 cube which correspond to a flow with Reynolds number
Re = 400000. We found that the coherent flow corresponds@8e3of the wavelet
coefficients and retains from %26 to 907% of the total enstrophy and more than
99% of the total energy. The remaining incoherent flow regmesabout 95% of the
wavelet coefficients but retains from5&6 to 92% of the enstrophy and less than
1% of the energy. A visualization of the modulus of vortictyd their coherent and
incoherent contributions are shown in Figure 2. We obsédrae dlmost all struc-
tures are preserved in the coherent vorticity while theynarerganized structures
left in the incoherent vorticity. Indeed, the total and o vorticity fields present
vortex tubes, while the incoherent vorticity looks struetass and noise-like. The
vorticity PDFs and spectra for the total flow and for the ceneflow are similar,
i.e,, non-Gaussian and long-range correlated, while the irestidow is decorre-
lated and has a much reduced variance (Fig. 3). We obsetalthbong the inertial
range the coherent flow presents a similar energy and ehstsgectra compared
to the spectra of the total flow, whereas they differ only ia dlissipative range for
k > 30. The reconstruction of the coherent part of these fieldsires only, for
Re = 60000, 36% of the wavelet coefficients and retam92% of the enstrophy ,
and only= 3.7% of the wavelet coefficients maintains about 91% of therepbi
for Re = 40000. Additionally, there are nonsignificant changes engkewness and
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Table 1 CVE decomposition of a flow field computed at resoluthdr: 256° for Reynolds number
Re = 20000.

Re=20000

total coherent incoherent
% of coefficients 100 3.59 96.41

Energy 2.955 2.946 0.004
% of Energy 100 99.7 0.14
min value -5.92 -5.93 -0.31
max value 6.16 6.17 0.33
velocity skewness 0.1432 0.1439 0.0016
skewness 0.14317 0.14385 0.15956
velocity flatness 2.7818 2.7802 3.48
flatness 2.7818 2.7802 3.4816
Enstrophy 212.80 196.93 15.87
% of enstrophy 100 92.54 7.46
min value -230.26 -243.29 -34.18
max value 24586 259.24 38.19

vorticity skewness -0.013  -0.016 0.68)°3
vorticity flatness 8.08 8.31 4.92

flatness between the total field and the coherent field foriffereint R.. Moreover
we do not observe significant variations between the dtalgiroperties of the four
different subcubes for each fBe.

The total, coherent and incoherent vorticity fields of thetiedy field is visualized
in Figure 2 forR, = 20000 60000400000. As observed in tH& = 20000, almost
all structures are preserved in the coherent contributimhreone remain in the in-
coherent contribution. However with the increas&gfwe observe the presence of
more structures in the analyzed subcubes.

In [26] the extraction of coherent structures is done for bgamous isotropic turbu-
lent flows. A similar CVE is used for different resolutionss?512,1024, 2048
which correspond t& = 3000Q 70000 200000600000 respectively. The main dif-
ference is that the CVE is applied on all the fields and not ditsbes as we do
here. The authors find that the compression rate increase$wiln our analysis
on the subcubes, the compression rates are nearly consBé% for the different
Re (200006000Q0400000), so that, the Donoho threshold increases RdthThis
could suggest that the compression rate is limited by thaugsn,i.e., the number
of octaves available. Indeed the resolution of all cubes madyaed is constant at
N = 256°. Moreover the decay of wavelet coefficients is smaller fershbcubes,
but the PDFs and spectra are very similar to the ones obtairmd study.

From the present results we conjecture that modelling tfextedf the discarded
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Table 2 Statistical analysis of the CVE filtering of several vottydiields computed at resolution
N = 256°,5122, 2048, which correspond to Reynolds numiigr= 20000 60009400000 respec-
tively.

R.=60000 Re=400000

total coherent incoherent total coherent  incoherent
subcube 1
% of coeff. 100 3.64 96.36 100 3.69 96.31
\orticity
Enstrophy 598.51 550.76 47.75 4669.09 4418.81 450.27
% Enstrophy 100 92.2 7.98 100 90.75 9.25
Skewness -0.046  -0.047 -0.001 0.067 0.076 -0.903
Flatness 10.42 10.88 5.32 13.23 14.17 5.72
subcube 2
% of coeff. 100 3.66 96.34 100 6.62 93.38
Vorticity
Enstrophy 685.12 624.41 60.7 5336.16 4856.18 479.98
% Enstrophy 100 91.14 8.86 100 91.01 8.99
Skewness 0.029 0.027 0.001 -0.483 -0.527-6.33 10796
Flatness 10.305 10.09 5.17 15.77 17.14 5.55
subcube 3
% of coeff. 100 3.69 96.31 100 3.70 96.3
\orticity
Enstrophy 782.48 707.92 74.56 6975.17 6197.89 777.27
% Enstrophy 100 90.47 9.53 100 88.86 11.14
Skewness 0.157  0.164 0.001 0.05 0.544-3.50 109
Flatness 10.77 11.41 5.25 14.08 15.39 5.88
subcube 4
% of coeff. 100 3.66 96.34 100 3.69 96.31
\orticity
Enstrophy 738.75 673.21 65.54 6043.08 5426.71 616.37
% Enstrophy 100 91.13 8.87 100 89.8 10.2
Skewness -0.14 -0.15 —3.0010°%* -0.084  -0.0093 0.00002
Flatness 11.142 11.75 5.41 14.69 16.01 5.64
standard deviation
% of coeff. 100 0.02061 0.02061 0 1.46334 1.46334
\orticity
Enstrophy 79.2048 68.1165 11.1797 987.662 768.802 149.519
% Enstrophy 0 0.71565  0.63597 0 0.97947 0.97947
Skewness 0.12544 0.13206 0.00099 0.25606 0.43885 0.45149
Flatness 0.37773 0.72315 0.10210 1.06849 1.2389 0.14008
mean
% of coeff. 100 3.6625 96.3375 100 4.425 95.575
\orticity
Enstrophy 701.215 639.075 62.1375 5755.875 5224.8975 9B36.
% Enstrophy 100 91.235 8.81 100 90.105 9.895
Skewness 0 -0.0015 0.000175 -0.1125 0.020925 -0.225755333

Flatness 10.65925 11.0325 5.2875 14.4425 15.6775 5.6975
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Fig. 2 Modulus of vorticity for (a), coherent part for (b), and im&ent part for (c).Note that
for Re = 6000GNd400000 subcubes 2&@lata set are visualized to zoom on the structures. The
isosurface ar@ = 56,96,290 for total and coherent parts aod= 14,24, 75.2 for the incoherent
part, forRs = 2000Q 6000Q 400000 respectively.

modes on the resolved modes is easier to perform using ther@ut\Vortex Sim-
ulation (CVS) approach introduced in [14]. CVS computesiatirees of freedom
which contribute to the flow nonlinearitiie., the coherent modes, whatever their
scale, while the remaining degrees of freedam, the incoherent modes, are dis-
carded to model turbulent dissipation. The method actuaiybines an Eulerian
projection of the solution with a Lagrangian procedure far &adaption of the com-
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Fig. 3 PDF (left) of vorticity and entrophy spectrum (right) forethotal field, coherent and inco-
herent parts foR, = 20000 6000Q 400000.
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putational basis: for more details we refer the reader th [li#e next step to demon-
strate the potential of CVS is to develop an adaptive wavsdéter for the 3D
Navier—Stokes equations.

3 Coherent Vortex Simulation of Turbulent Mixing Layers

In this section, we present an extension of the CohereneX@tmulation (CVS)

[14] method to compressible flows. The CVS method is basedhermbservation

that turbulent flows contain both an organized part, the @ftevortices, and a
random part, the incoherent background flow. The separattorcoherent and in-
coherent contributions is done using a non-linear wavadtetifig. The evolution of

the coherent part is computed in physical space using a finitene scheme on
a locally refined grid, while the incoherent part is discard@ring the flow evo-

lution, which models turbulent dissipation. To discretihe convective terms, we
use a 2—4 McCormack scheme [17], while the diffusive ternesdiscretized us-
ing a second-order centered scheme in space. The timedtitegis done by an

explicit second-order Runge-Kutta scheme. The wavelas baed for the filtering

relies on the cell-average multiresolution analysis dgvedl by Harten [19]. Af-

ter the filtering, the discarded coefficients are removethfreemory, so that both
CPU time and memory requirements are significantly reducembmparison with

the DNS computation. The data structure is organized int@degl-tree form to be
able to navigate through it. To perform the CVS computatiartiree-dimensional
adaptive multiresolution algorithm [30], originally ddeped for reaction-diffusion

equations, has been extended to the compressible NawkesSequations. Exten-
sions of the adaptive multiresolution scheme to the congfislesEuler equations
can be found in [6].

Table 3 Comparison between DNS and CVS of a 3D compressible mixiyey,|&a = 0.3, Re=
200. CPU time required on a Pentium IV 2.5 GHz, percentage3Rid time, required memory,
total energyE and total enstrophy in comparison with the DNS computation.

Method CPU time % CPU % Mem| %E % Z
DNS |7 day 09 h 40 min 08{400.0 %4100.0 94100.0 %4100.0 %
CVS |2 day 07 h00 min 03{s29.0 94 30.29% 98.3% 93.4 %

As example, we apply the CVS method here to compute a timelolewng three-
dimensional turbulent mixing layer in the weakly comprbksiegime. CVS com-
putations of incompressible turbulent mixing layers hagerbpresented in [32].
In this test-case, both layers have the same initial velowitm, but opposite di-
rections. An initial three-dimensional sinusoidal pepation is added to the basic
profile. The Reynolds and Mach numbers, based on the iniglalcity norm and
half the initial layer thickness, are set to 200 an8, ®espectively. The results are
compared with the one obtained by DNS performed on the refjnkst grid with
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Fig. 4 CVS of a 3D compressible mixing layévla = 0.3, Re= 200. Top: isosurfaces of vorticity
[|w|| = 0.6 (black), ||w|| = 0.4 (dark gray), and||w|| = 0.2 (light gray) att = 18, (eft) t =37
(cente), andt = 80 (right). Bottom: corresponding adaptive grids.

the same numerical scheme. We find that only2% wavelet coefficients contain
around 983 % of the energy and 98 of the enstrophy. Taking into account all the
nodes of the tree data structure, these wavelet coefficieptesent 3@% of the
128 = 2097152 cells that the fine-grid computation requires. @amiag the CPU
time, it only represents 20% of the one required by the DNS, i.e. CVS is in the
present case three times faster than DNS.

These results show that the CVS method yields accuratetiséautomparison
with DNS, while significantly reducing the CPU time and megnocequirements.
Further work will focus on the CVS of compressible mixingday with larger val-
ues of both Mach and Reynolds numbers, i.e. in a more turbaleh more com-
pressible regime, for which higher compression of memoxy @RU time are ex-
pected, cf. [31].

4 Adaptive Multiresolution Methods for Evolutionary PDEs

Up to now, different approaches have been investigated finedadaptive space
discretizations, some emerge fr@ud hoccriteria, others are based on more elabo-
rateda posteriorierror estimators using control strategies by solving caapnal
expensive adjoint problems.

In the framework of the current project we focused on mudtitation based
schemes (MR) for evolutionary PDEs. The multiresolutiotad&presentation is
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Fig. 5 Comparison between DNS and CVS of a 3D compressible mixiyer|&a= 0.3, Re=
200. Left: time evolution of energy. Center: time evolutiminenstrophy. Right: energy spectra at
t = 80.
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Fig. 6 Evolution of the time step depending on the initial CFL vafaethe finite volume scheme
with global time adaptivity using the RKH2) method for the advection equation. Grid containing
256 points Jgesired= 1072, .5 = 0.01.

the main idea of the MR method. The decay of the MR coefficigntss infor-
mation on local regularity of the solution. Therewith thartcation error can be
estimated and coarser grids can be used in regions wherrtords small and the
solution is smooth. An adaptive grid can be introduced btablg thresholding of
the multiresolution representation where only significaugfficients are retained.

Hence a given discretization on a uniform mesh can be aatetbas the number
of costly flux evaluations is significantly reduced, whileintaining the accuracy
of the discretization. The memory requirement could alsodoleiced, for example
using a dynamic tree data structure.

A main bottleneck of most of these space—adaptive metholdigshwypically
employ explicit or semi—explicit time discretizations tiet the finest spatial grid
size imposes a small time step in order to fulfill the stapitititerion of the time
scheme. Hence, for extensive grid refinement with a huge pumbrefinement
levels, a very small size of the time step is implied.
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Fig. 7 CPU time vs. initial CFL value for the advection equationeTdrid contains 256 points.
The parameters a®esieq= 103, .Zmin = 0.01, and.p = 0.10 .

The aim in the present project was to develop local scalerdgp@ time step-
ping for the space adaptive multiresolution scheme intcedun [30]. The idea is
to obtain additional speed up of this efficient space adagoheme by introduc-
ing at large scales larger time steps without violating tiadiity condition of the
explicit time scheme and less flux evaluation due to largee tsteps. The original-
ity of our work is to combine, in the framework of the cell-aage multiresolution
analysis, a local time stepping together with multi-stagade-Kutta methods. The
synchronization we propose differs from the one introducdg@5], where single-
stage methods were used.

Starting point of our work is the fully adaptive numericaheme for evolutionary
PDEs in Cartesian geometry which based on a second ordenfalitme discretiza-
tion. A multiresolution strategy allows local grid refinemevhile controlling the
approximation error in space. The number of costly flux estaduns is significantly
reduced. For details we refer the reader to [30]. For timerdiization we use an
explicit Runge-Kutta scheme of second order with a scaledagent time step. On
the finest scale the size of the time step is imposed by théistatondition of the
explicit scheme. On large scales the time step can be irenlesishout severe vio-
lation of the stability requirement of the explicit scherfibe implementation uses
a dynamic tree data structure which allows memory comprassind CPU time
reduction. In [6] we present numerical validations for tegiblems in one space
dimension which demonstrate the efficiency and accuradyedfical time stepping
scheme with respect to both the multiresolution scheme glidbal time stepping
and the finite volume scheme on a regular grid. Fully adativee-dimensional
computations for reaction-diffusion equations illustchthe memory reduction and
the CPU speed-up for a flame instability. For details we agefier the interested
reader to [6].

In[7, 6] we extended the above scheme and developed anagltipte stepping
scheme with automatic error control. The adaptive timegirggon method is based
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Fig. 8 Errors vs. initial CFL value for the advection equation. Tr&l contains 256 points. The
parameters argjesired= 103, .-%min = 0.01, and.% = 0.10.
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Fig. 9 Number of time steps vs. initial CFL value for the advectiquation. The grid contains
256 points. The parameters a¥@sireg= 102, .min = 0.01, and.% = 0.10.

on a Runge—Kutta—Fehlberg method, which allows an estimaiif the local error

in time. An original limiting technique is also proposed ta# non admissible

choices for the time step. The adaptivity in space is dormutin a multiresolution

method, which automatically detects the local regularftthe solution and hence
guarantees automatic grid adaption in space. The costlericahfluxes are evalu-
ated on this locally refined, while ensuring strict consgvitg. The implementation

uses graded tree data structures which allows an efficiprésentation of the solu-
tion on adaptive grids with reduced memory requirementglisations are shown
for the compressible Euler equations [6].
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4.1 Advection Equation in 1D

As example (see [7]) we consider the linear advection eqnati

du ou

U, o0u_y
ot " Cax

whereu = u(x,t), t > 0, (x,y) € [~3, 3], andc > 0 is the constant velocity. The
boundary conditions are periodic and the initial condii®n

u(x,0) = exp(—50x?).

The elapsed time is sette= 1, so that the final solution is equal to the initial one.
In Figure 6, we show the time evolution of the time step fofedtént initial CFL
values, i.e., for different initial time step sizes, usihg finite volume scheme on
a regular grid with global time adaptivity and the RKF32 method. We observe

that the time steps tend to converge in all cases to a timeastemd 52 x 103, To
avoid a “bad choice” of the initial CFL values, the code alkmbigger limiter in the
beginning time steps. These “bad choices” of initial CFLIddwowever increase the
global error, as presented in Table 4. The automatic stepcsiatrol of the solution
reduces the number of time steps and hence the computatiosia(cf. Table 4).
We can also observe that the final error with respect to thé/@cea solution is
reduced for the time adaptive schemes, compared to the Vivlitene scheme with
fixed time stepping, except for the initial CFL = 1 using ttffenorm.

In Figure 8, we compare?, L, L° norms for the RK 3 method with CF=
0.5 and the RKF 23) method. The results show that the choice of the initial time
step does not influence the final error, since all computatyéeld a similar result.
Figure 7 shows the CPU time spent for different choices oitthial CFL. The CPU
time decreases as the initial CFL increases. This is dyreekhted to the number of
time steps needed to compute the solutioh-atl, as could be observed in Fig. 9.
For this test case, we can thus conclude that RK¥ & more efficient than the
conventional RK 3 method with a fixed time step.

Table 4 Initial CFL, number of time steps, CPU time, initial and fitighe steps, and errors for
the advection equation. Mesh containing 256 poidgss 103, .%min = 0.01,.% = 0.10. The first
line corresponds to the constant time step with CEb=0

Init. [# step$ % CPU | Initial | Final |[L®-error] L?>-error|L -error

CFL compressioftime steptime stey

0.50| 513 100 3.91e-033.91e-038.61e-021.68e-026.84e-03
1.00, 367 90 7.64e-035.27e-038.80e-021.65e-026.27e-03
0.75 381 96 5.73e-035.18e-038.52e-021.58e-025.97e-03
0.50/ 388 93 3.90e-035.15e-038.52e-021.58e-025.97e-03

0.25 452 105 2.00e-034.88e-038.58e-021.64e-026.57e-03
0.10] 587 133 7.98e-044.94e-038.56e-021.60e-026.23e-03
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5 Wavelet Decomposition for LES - Implementation in the
LESOCC2 Code

All simulations of the test cases presented further have Ipeeformed with the

block-structured finite volume code LESOCC2 [20]. In thigledhe wavelet de-
composition was implemented and used to derive subgrig-snadels for LES.

Details are given in [4, 5]. Performing this work in the code3OCC2 had the ad-
vantage of employing an already parallelized code whicls rfficiently on a large
number of processors with disrtibuted memory access [3].

5.1 Wavelet subgrid-scale modelling

The wavelet decomposition used here is based on Harterthdjgmmal approach
[18, 29]. It is applied here to generate a two-level decoritiposto obtain the
wavelet details . The details from this wavelet decompamsitire then used to de-
rive an eddy-viscosity subgrid-scale model in the framéwadrLES according to
the following equation:

w = C(Voly) /3 \/ [detail(u)]2+ [detail(v)]2 + [detail(w)]2. (3)

Here,C denotes a model constant which was set equalG2 Based on calibration
for turbulent channel flow. The quantiyol,, is the volume of the computational
cell on the finer grid, whiley, v andw denote the instantaneous values of the ve-
locity components. The above equation was derived basedhoendional reason-
ing. Alternatively, this model can be obtained in analogyhte structure-function
model [23] by substituting the structure functions with thavelet-details. Further
exploitation of the idea of wavelet decompositions and Hosy tcan be used in the
framework of LES with mixing of passive scalars is given ih [4

5.2 Numerical Detailsfor the Simulated Cases

The finite-volume code LESOCC2 developed at the UniversitiKarlsruhe for
Large Eddy Simulations of incompressible flows uses seavddr central schemes
for the spatial discretization of all terms. The time-mangfis explicit and is based
on a second-order Runge-Kutta scheme. The time step idl@damputed with a
CFL number equal to.6. The grid is block-structured, hexahedral, collocated an
curvilinear.

Whenever possible a wall-resolving grid was applied forftbe regions close
to rigid walls. The Smagorinsky model was used with modektamCs = 0.1 and
a van Driest damping function. With the above wavelet mauiyall damping was
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Fig. 10 Resolved turbulent stressé&g = 180. Left: Present subgrid-scale model compared to the
DNS data from [22]. Right: The Smagorinsky model compareith¢oDNS data from [22].

used. For the cases where the grid near the wall was too dogvsevall-resolving,
the Werner-Wengle wall function was employed for the Smixgéy model, while
for the wavelet-based model the no-slip boundary conditias applied.

6 Complex Flows Simulation: Presentation of Test Case Redsl

In the framework of the DFG-CNRS cooperation of FOR 507, s@viest cases
were defined to assess LES model development for complex.flwesfollowing
cases were computed in the present project and will be disduselow:

e Plane turbulent channel flow with Reynolds numtiRes= 180, 395 and 590;
e Periodic hill flow,Re= 10 600 andre= 37 000;
e Flow in a model combustor with swirRe= 50 500, swirl numbe= 0.6.

In all subsequent Figures the wavelet model (3) is labeletpresent”. Com-
putations with the Smagorinsky model were undertaken witbther parameters
unchanged in order to provide sound reference data for takiaion of the per-
formance of the new model. For the hill flow at the lower Regisohumber, the
fine-grid LES solution of Breuer [1] obtained on a grid withM® cells is used as
an additional reference data set (REF-MB).

6.1 Plane Channel Flow

The numerical grid consists of about 2800 control volumes, and is the same
for all three Reynolds numbers. As a result, the first noddl @mmter) in the
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Fig. 11 Resolved turbulent stressé¥g = 395. Left: Present subgrid-scale model compared to the
DNS data from [24]. Right: The Smagorinsky model compareith¢oDNS data from [24].
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Fig. 12 Resolved turbulent stressé&g = 590. Left: Present subgrid-scale model compared to the
DNS data from [24]. Right: The Smagorinsky model compareith¢oDNS data from [24].

wall-normal direction is positioned gt" = 1.34 for Re; = 180, atyt = 2.94 for
Re = 395, and aly™ = 4.40 for Re; = 590. For the two higher Reynolds num-
bers, computations with the present model were carriedleatveith a finer, wall-
resolving grid with about 40@00 control volumes. This finer grid resulted in only
very minor improvement so that they are not reproduced lugrtdé sake of brevity.

Results for the resolved Reynolds stresses from the presaael and from the
Smagorinsky model are compared with DNS data from [22, 24] @esented in
Figures 10 to 12. For the lowest Reynolds number the presedehis clearly su-
perior to the Smagorinsky model for all turbulence quaaditiForRe, = 395 and
Re = 590 the present model overpredicts the streamwise stréssés while the
Smagorinsky model predicts them with a good accuracy. Hewehe position of
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Fig. 13 Streamlines of the averaged flowfield and time-averagedilemb viscosity, Re=37000.
Left: Smagorinsky, Right: Present. Broken vertical linedi¢ate positions of profiles discussed
below. Double lines identify block boundaries of the bl@tkictured grid employed.

the peak with respect to thg'h coordinate is well predicted by both models. For
all other quantities (and especially for the shear stregse$) the present model is
superior to the Smagorinsky model.

6.2 Periodic Hill Flow

The periodic hill flow test case was calculated for two dif@rReynolds numbers.
Comparison is performed with data from other groups of BeG — CNRScol-
laboration, both numerical [1] and experimental [28]. Fi§.shows the geometry
and computed streamlines. Configuration and physical $sefi¢his test case are
discussed in [16]. In [34], SGS and wall-modelling issueseniavestigated. The
numerical grid employed consists of aboiib control volumes. Details are pro-
vided in Table 5.

Table 5 Summary of the numerical simulations of the periodic hiliMldndex "s” - separation
point, index "r" - reattachment point, is averaging time ant} is flow-trough time, LR stands for
Re=10595 and HR - for Re=37000

Case Grid AtUp/h ta/tx (x/h)s (x/h)r
REF-MB (DSM) LR 281x 222x 200 0.0018 141 0.190 4.69
Smagorinsky LR 166 100x 60 0.0084 72 0.211 4.56
Present LR 166 100x 60 0.0085 72 0.209 4.86
Smagorinsky HR 16@ 100x 60 0.0083 73 0.234 4.62
Present HR 166 100x 60 0.0079 73 0.294 4.33

Figure 14 shows the dimensionless streamwise velocity [fanadels and the
experiments at the lower Reynolds number 10595. Comparex texperiments of
[28], all numerical simulations overpredict the maximakamwise velocity by a
small amount with the deviation being largest for the preseodel. In the same
Figure data for the resolved turbulent stresses are compiese, the new simu-
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lations show good agreement with the experimental and nuoeleeference data.
The observed deviations are substantially smaller thagetbetween different SGS
models in [34].

We now turn to the positior/h = 0.5 located at the beginning of the recirculation
zone, with corresponding data shown in Fig. 15. As aboventimaerical solutions
slightly underpredict the mean streamwise velocity in thedr part of the domain
(y/h < 1.8), while yielding somewhat larger values in the upper padncerning
the vertical velocity componerit), it is to be observed that its value is substantially
smaller than{u), so that differences should not be over-interpreted. Glogethe
experiments are the data obtained with the Smagorinsky inatide the present
model yields larger values. The resolved Reynolds strésgég lower pictures of
the figure agree very well with the reference data. Hére,) exhibits the largest
visual differences, with the present model and the Smagkyimodel being similar
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Fig. 15 Comparison of results fdRe= 10595 aix/h = 0.5. For additional explanations see caption
of Fig. 14

in the upper part and the present model better in the lower Pat again absolute
value of(V'V/) is small.

In the following Fig. 16 we present results for the hill flowttwviRe= 37000.
It is the first time that this case is computed since the erpartal data have been
obtained only recently. Hence, only the experimental d&{2&] are available for
comparison. Since the Reynolds number is higher than fopthaeious case it is
expected that the contribution of the SGS-modelling isdartn order to be able to
assess this, a solution without a SGS-model was carriedrefgrénced aPDNS
with P standing for "Pseudo”). For the mean streamwise velodiig,RDN Ssolu-
tion yields results which are closer to the experimenta daan obtained with the
other simulations. For the resolved Reynolds stressesVewand in particular for
(U'U’), the results are worse than those from the other cases. Ciogplae results
with the new model and the Smagorinsky model shows that tlyadtés stresses
are largely the same in both cases. This is even more obsknvéiee mean flow.
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Fig. 16 Comparison of results foRe= 37000. Left:x/h = 2. Right: x/h = 6. For additional
explanation see caption of Fig. 14

The overall analysis carried out so far shows that the ageaebetween the nu-
merical simulations and the experiments is better for tineetoReynolds number
than for the higher one. In order to investigate the effedhefReynolds number,
results for bottRe= 10595 andRe= 37000 are presented in Fig. 17x¢h=4.0-a
position at which the recirculation zone approximatelysrniche mean streamwise
velocity (u) in the experiment becomes more uniform with increasing Rk
number. The same trend is observed with the present modi, f@ehthe Smagorin-
sky model the curves are almost identical between the twesca&3oncerning the
Reynolds stresses it is observed that these, when scaledﬁvidecay with increas-
ing Reynolds number in the experiment. The results of thelkitions, all obtained
on the same grid, are very much alike. Only fafu’) slight deviations are observed
showing a small trend in opposite direction, i.e. incregsicaled fluctuations with
Re In particular, the results of the new model are close todtudshe Smagorinsky
model. These observations can be related to the mean edmbsitisdisplayed in
Fig. 13. The change of this quantity wike(not displayed here) is very small. The
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Fig. 17 Comparison of results for the two Reynolds numbers consitlefh = 4. For additional
explanations see caption of Fig. 14

difference between the two models can be appreciated iffigluae forRe= 37000
and is about 10-15%.

One time step with the present wavelet model was about 5%rfésan the
Smagorinsky model with respect to the CPU-time for the caggsReynolds num-
ber 37000. Additional information about the computatioad@rmed as well as for
the separation and reattachment points is given in Table 5.

6.3 Flowin a Model Combustor with Swirl

The annular swirl combustor experimentally investigatei@a Technical University
of Darmstadt [27, 33] was another testcase in the DFG-CNR&bayation. In the
following we focus on the burner geometry and compute the fider to the outlet
into the combustion chamber, as it was done in [27].
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Fig. 18 Numerical blocks with the section= —0.04, where comparison with measurements are
presented (left). Inflow section at= —0.165 with the averaged streamlines and instantaneous
pressure fluctuation (right).
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Fig. 19 Comparison of different numerical simulations with expegnts atx = —0.04[m]. DSM
and experimental data courtesySari¢ and Jakirli¢ [33]

This annular swirler as depicted in Fig. 18 has an inner wadl an outer wall
and no blades. Its dimensions are the following: lengt80m|, radius at the inflow
section 0085m), inner radius of the annulus = 0.020m| and outer radius, =
0.050/m]. The Reynolds number based on the hydraulic diameter ofrthalas is
Re= 50500 with a bulk velocityJ, = 10.94/m/s] used as characteristic velocity.
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The swirl number in the plane of comparison waste 0.6 and is visualized by
the streamlines of the mean flow in the right graph of Fig. 1dsTwas achieved
with the following values at the inflow boundary of the domagudial component
4.51jm/s| and tangential componeni®[m/s|.

The computational grid employed contain® Mio computational nodes de-
composed into 40 blocks as depicted in Fig. 18. The comutatas performed
over 125 flow-through times and averaging was accumulated ovérfl@v-trough
times. Using 20 processors on an HP XC4000 this simulatiok &pproximately
72 hours wall-clock time.

The contour plot in Fig. 18 provides instantaneous data®fptiessure fluctua-
tions convey an impression of the structure and the sizerbtitent fluctuations at
this position.

Figure 19 presents a comparison between numerical andieeal results in
the annular swirler, at = —0.040m|. This section had been selected for measure-
ments in the experiments [27]. From the different simulaicarried out in [33],
the one with the Dynamic Smagorinsky model and a boundargiton set de-
noted as "simplified swirler” has been used here for comparés it corresponds
most closely to the present set of boundary conditions antpatational domain.
In the figures these results are denoted "DSM” and the cooreipg experimental
data from [33] have been used for comparison, too. The presewlation were
undertaken using the Smagorinsky model as well as the newlatanodel.

Figure 19 shows that the DSM simulation of [33] agrees wethwvthe exper-
imental data. The simulations performed in the present pajta the two SGS
models considered produced virtually identical data. Tyield a mean streamwise
velocity profile which is close to the reference data. Theia@n for the mean
circumferential velocityw) between the present models and the DSM is larger, in
particular near the inner wall. The reason for this behasitite substantially lower
level of fluctuations compared to the reference simulatimhtae experiment. This,
in turn, may be due to the use of stationary inflow conditiang§3] this issue
is not discussed). Computations with different boundaryditions and numerical
parameters are under way to elucidate this issue.

7 Conclusions

The present paper gives examples of analysis and simulafi@@mplex turbu-
lent flows with a particular emphasis on the utilization o thrthogonal and bi-
orthogonal wavelet decomposition for their study and cotafion.

Theoretical background and applications of the waveleetba®herent vortex
extraction method are presented for homogeneous isottaialence at different
Reynolds numbers.

A summary of the developed adaptive multiresolution metfowcevolutionary
PDEs is presented. First fully adaptive computations of 8dng layers using Co-
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herent Vortex Simulation are shown. Features like locdksdapendent time step-
ping are also illustrated and examples for one dimensiowdllpms are given.
Computations with the developed wavelet models have bedorpeed on com-
plex geometries and flows with high Reynolds numbers applict engineering
problems. For this purpose three test cases selected ingdbera DFG-CNRS coop-
eration were simulated comprising non-orthogonal gridsswirl. The simulations
with the finite-volume code LESOCC?2 show that the waveleteldanodels are ro-
bust and efficient for the purpose of parallel computatiesheywing a good accuracy
when compared to classical subgrid-scale models like teeobSmagorinsky.
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