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This paper proposes statistical tools adapted to study highly unsteady and
inhomogeneous flows, such as vortex bursting. For this, we use the wavelet
representation in which each coefficient keeps track of both location and scale, in
contrast to Fourier representation which requires keeping the phase of all coefficients
to preserve the spatial structure of the flow. Based on the continuous wavelet
transform, we propose several diagnostics, such as the local spectrum and the local
intermittency measure. We also use the orthogonal wavelet transform to split each
flow realization into coherent and incoherent contributions, which are then analysed
independently and from which we define the coherency measure. We apply these
wavelet tools to analyse the bursting of a three-dimensional stretched vortex immersed
in a steady laminar channel flow. The time evolution of the velocity field is measured
by particle image velocimetry during several successive bursts.

1. Introduction
Classical statistical tools used to analyse turbulence (i.e. correlation function,

structure functions, energy spectrum) assume stationarity and homogeneity of the
flow. In this paper, we propose wavelet-based statistical tools which do not require
such hypotheses and therefore allow us to study unsteady and inhomogeneous flows.
We present several diagnostics to quantify the intermittency of turbulent flows. These
new tools are based upon the wavelet representation whose basis functions are well
localized in both physical and spectral space. Since Fourier modes are delocalized in
physical space, albeit well localized in spectral space, the spatial information cannot
be retrieved from a subset of Fourier coefficients, unless one keeps the phase of all
of them. In contrast, a subset of wavelet coefficients is sufficient to represent spatial
information, since each wavelet coefficient is indexed in scale and also in space.
Therefore, filtering the wavelet coefficients preserves the spatial structure of the flow,
which is not the case for Fourier filtering.

There exists two kinds of wavelet transform: the continuous wavelet transform
(CWT) and the orthogonal wavelet transform (OWT). The first is better suited to
analysis, since it unfolds the flow in both space and scale in a continuous fashion. This
yields a redundancy of information, which presents the advantage of good readability
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of the continuous wavelet coefficients. However, this overcomplete representation
results in a correlation between neighbouring coefficients, which corresponds to the
reproducing kernel of the CWT. The OWT overcomes this problem but at the price
of loosing translation invariance. Indeed, the orthogonal wavelet coefficients are only
defined on a dyadic grid, their scale being sampled by octaves and their position
restricted to discrete intervals whose size varies with scale (Farge 1992).

Wavelets have been used since more than 20 years to analyse turbulent flows
(Farge & Rabreau 1988; Farge 1992). The modulus of the continuous wavelet
coefficients gives the distribution in space and scale of the variance, together with
the local deviation from the mean spectrum. We can thus identify which scales and
which locations in physical space contribute significantly to the nonlinear cascade
and which ones remain inactive. These analyses have also shown that the strongest
wavelet coefficients correspond to the coherent structures observed in both direct
numerical simulations (Farge et al. 1992) and laboratory experiments (Ruppert-Felsot
et al. 2005). We propose in this paper several wavelet-based diagnostics, such as the
local spectrum, local intermittency measure (LIM) and coherency measure (CM), to
analyse highly unsteady and inhomogeneous turbulent flows. In particular, we would
like to quantify the flow intermittency, to understand how the scaling of the energy
spectrum develops and which structures are responsible for it.

In Farge (1992) and Farge et al. (1992) we have shown that the coherent
structures compress well into wavelet or wavelet packet bases, namely they could
be represented by only few strong coefficients. In contrast, the remaining weaker
coefficients correspond to an incoherent background flow which is homogeneous and
does not compress well, neither in a wavelet basis nor in any other basis, and is thus
considered as noise.

Different eduction methods to extract coherent structures out of turbulent flows
have been proposed for many years. They are based on either one of the following:

(i) clipping, also called ‘threshold technique’, since one retains only the regions in
which the modulus of vorticity is larger than a certain proportion (to be tuned) of
the vorticity variance;

(ii) correlation with a template, whose shape (to be adapted) is similar to a typical
structure;

(iii) conditional averaging (Antonia 1981), e.g. phase averaging (Hussain 1986) and
variable integral time averaging (Blackwelder 1977).
For more details, we refer the reader to several review papers (Cantwell 1981; Fiedler
1988; Robinson 1991) which present the different eduction methods commonly in use.
They all require strong hypotheses on the flow, which has to be statistically steady,
but also on the coherent structures themselves, since one needs to adjust parameters,
e.g. threshold value, template and condition, to extract them. They also present the
drawback that the spatial support and intensity of the coherent structures strongly
vary depending on the chosen parameters, which unfortunately cannot be estimated
a priori. Moreover, the smoothness of the coherent structures is not preserved if
discontinuities are introduced, e.g. by clipping, which affect the Fourier spectrum and
hence yield an erroneous scaling.

Since there is not yet an universal definition of the coherent structures observed in
turbulent flows and to overcome the drawbacks of the previous eduction methods,
we change the viewpoint and choose an apophatic approach: instead of defining what
coherent structures are, we only define what they are not. For this we propose the
minimalist, and hopefully consensual, hypothesis: coherent structures are not noise.
Consequently, we get the following definition: coherent structures correspond to what
remains after denoising.
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For the noise we use the mathematical definition of randomness, stating that a
noise is homogeneously distributed in any functional basis. In other words, a noise
by definition cannot be compressed, and its shortest description is itself. Note that
not all experimental noises are random; e.g. the 50 Hz electrical noise from the power
supply is periodic and therefore compresses well in the Fourier basis.

This new way of defining coherent structures presents several advantages:

(i) it does not implicitly assume ensemble averaging, as previous definitions do
(Hussain 1986), and it works for each flow realization independent of the others;

(ii) it does not require adjustment of parameters, such as threshold value, or
template;

(iii) it is quite insensitive to the choice of the wavelet basis, since it is the
multiresolution construction of the basis and not the wavelet shape that matters,
i.e. wavelets are not used as templates but as a way to organize the data in a scale-
dependent fashion;

(iv) it tracks coherent structures even when their shape and amplitude change due
to, e.g., pairing, stretching or tearing;

(v) it allows to process ‘incomplete data’.

Data incompleteness is encountered when the dimensionality of the measured data is
lower than the dimensionality of the flow itself, e.g. a two-dimensional cut measured by
particle image velocimetry (PIV) in a three-dimensional flow. Note that incompleteness
is different from discretization, i.e. sampling (which plays a different role that shall
also be taken into account). If the eduction method needs templates of typical
coherent structures, it cannot treat incomplete data. Indeed, to define the templates,
one should first describe how the probe will see all possible motions and distortion of
the coherent structures passing by. Since ours requires a model of the noise but not
of the coherent structures themselves (no templates needed), it can treat any data,
complete or incomplete, the same way.

Based on the previous principles, we have proposed a new wavelet-based eduction
method in Farge et al. (1992), which we have improved in Farge, Schneider &
Kevlahan (1999) using the denoising theorem demonstrated by Donoho & Johnstone
(1994). It decomposes the vorticity field into an orthogonal wavelet basis and separates
the wavelet coefficients into two classes: those whose modulus is stronger than
a threshold, whose value is automatically adjusted, since it depends only on the
enstrophy and the resolution, and those whose modulus is weaker. The coherent
vorticity field is reconstructed from the strongest wavelet coefficients by an inverse
wavelet transform, while the incoherent vorticity field is obtained by subtracting the
coherent from the total vorticity. Both fields being orthogonal, enstrophy has thus
been split into coherent and incoherent contributions. The coherent and incoherent
velocities are then reconstructed from the coherent and incoherent vorticities by
applying the Biot–Savart’s kernel.

To demonstrate the advantages of the different wavelet tools presented above, we
will apply them to analyse the time evolution of a bursting vortex, chosen as a typical
unsteady and inhomogeneous flow which may play a key role to explain the turbulent
cascade. We have designed an experimental setting (see figure 1 and movie 1) in
which a vortex tube emerges, is then advected and stretched by a steady laminar flow
and later becomes unstable and bursts while producing vorticity sheets and filaments
which spread all over space. Although the flow rate is maintained steady, the vortex
life cycle reproduces quasi-periodically. Using PIV we measure the time evolution of
the three components of velocity in a vertical plane perpendicular to the vortex axis
and located in the middle of the channel.
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Figure 1. (a) Schematic of the experiment (from Cuypers et al. 2004). The vortex initiated
by the step (11 mm high) is strained by the channel flow Q1 and intensified and stretched
by the axial suction Q2; therefore the total flow rate through the channel is (Q1 + 2Q2). The
values Q1 = 208 cm3 s−1 and Q2 = 125 cm3 s−1 are chosen to produce a vortex life cycle which
quasi-periodically repeats itself. (b) Time evolution of one vortex bursting. Time advances
from left to right and top to bottom. Each picture is separated from the next by about 1 s.
(See also movie 1 showing the experiment running.)

The paper is organized as follows. We first review the CWT and the OWT.
We next describe the wavelet-based statistical tools and techniques for coherent
vortex extraction. We then present the experimental setting to study the bursting of
a stretched vortex advected by a laminar flow. We discuss the results obtained
by applying different wavelet tools. Finally, we draw conclusions and propose
perspectives.
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2. Wavelets
2.1. Continuous wavelet transform

The continuous wavelet transform (CWT) is an integral transform (as is the case of
the Fourier transform) which unfolds a field into space, scale and optionally angular
contributions. In the following, we consider as example a two-dimensional scalar field
of finite energy, i.e. f (x) ∈ L2(R2). The CWT uses analysing functions ψl,x′(x) which
are obtained by continuously translating and dilating a function ψ(x) ∈ L2(R2), the
‘mother wavelet’. By definition a wavelet is an oscillating function of zero mean that
is well localized in both physical space and spectral space. Indeed, to be a wavelet a
function ψ(x) should verify the admissibility condition

Cψ =

∫
R2

|ψ̂(k)|2 d2k
|k|2 < ∞, (2.1)

where

ψ̂(k) =

∫
R2

ψ(x)e−i2πk·x dx. (2.2)

From the mother wavelet ψ(x) we generate the family of translated, rotated and
dilated wavelets

ψl,x′,θ (x) = l−1ψ

[
Ω−1(θ)

x − x ′

l

]
, (2.3)

where l ∈ R+ is the scale of the analysing wavelet, x ′ ∈ R2 its position, and θ ∈ [0, 2π[
its orientation with Ω(θ) ∈ (R2 × R2) the unitary rotation tensor,

Ω(θ) =

(
cos θ − sin θ

sin θ cos θ

)
. (2.4)

We can thus study the flow anisotropy by varying the wavelet orientation, which is
optional but only possible if we choose an anisotropic wavelet, such as the Morlet
wavelet. If we do not want to distinguish directions, there is always the possibility to
average the wavelet coefficients over angles.

Each wavelet coefficient f̃ (l, x ′), indexed by position x ′, direction θ and scale l, is
given by

f̃ (l, x ′, θ) = 〈f (x), ψl,x′,θ〉 =

∫
R2

f (x)ψ∗
l,x′,θ (x) d2x, (2.5)

where 〈 . , .〉 denotes the L2 inner product and ∗ denotes the complex conjugate.
Because the wavelet transform is invertible, the field f (x) can be recovered from

its wavelet coefficients f̃ (l, x ′) according to

f (x) = C−1
ψ

∫
R2

∫
R+

∫ 2π

0

f̃ (l, x ′, θ)ψl,x′,θ (x)
dldΩ(θ) d2x ′

l3
, (2.6)

where Cψ is given by the admissibility condition (2.1), and its finite value insures
invertibility of the wavelet transform.

Since the wavelet transform is integral, it conserves energy (Parseval’s relation) in
the following manner:

E =

∫
R2

|f (x)|2d2x = C−1
ψ

∫
R2

∫
R+

∫ 2π

0

|f̃ (l, x ′, θ)|2 dl dΩ(θ) d2x ′

l3
. (2.7)
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2.2. Choice of the analysing wavelet

The analysing wavelet can be either real valued, e.g. Mexican hat, or complex valued,
e.g. Morlet wavelet. Complex wavelets are preferred for analysis purposes, since, as
is the case for the Fourier transform, one can separately study the modulus and
the phase of the resulting complex-valued coefficients. This is the reason why in the
present paper we will use as analysing wavelet the two-dimensional complex Morlet
wavelet, which is a plane wave modulated by a Gaussian envelope defined as

ψ(x) = eikψ · xe− 1
2 |x|2, (2.8)

where kψ is the centroid wavenumber of the mother wavelet, i.e. the barycenter of its
support in spectral space, defined as

kψ =

∫
R2 |k||ψ̂(k)|d2k∫

R2 |ψ̂(k)|d2k
. (2.9)

The Morlet wavelet is only marginally admissible and kψ should be large enough to
satisfy the zero-mean criterion (2.1). In this paper we choose kψ = 6, which guarantees
that the mean of the wavelet is zero up to machine round-off error.

We sample directions on 12 angles denoted by θ and distributed uniformly from
0 to π/2. We then average the wavelet coefficients over them to recover an isotropic
analysis, since we focus here only on the space and scale contributions of the flow.

For the numerical implementation of the CWT we calculate the coefficients, for a
given scale and orientation, by convolving the field with the corresponding wavelet.
In order to simplify the computation we assume the function to be periodic. We can
then compute the reconstruction formula (2.6) directly in spectral space,

f (x) = C−1
ψ

∫
R2

∫
R+

∫ 2π

0

f̂ (l, k′, θ)ψ̂ l,k,θ (k′)eik′ · x dΩ(θ) dl d2k′

l3
. (2.10)

Using the fast Fourier transform (FFT), the operation count is (3Nx log2Nx +
Nx)NθNl , where Nx is number of space samples, Nl the number of analysed scales and
Nθ the number of analysed directions. This requires more operations than the FFT
itself (Nx log2Nx); however, the operation count is reduced to order-N operations if
one uses compactly supported orthogonal wavelets, as explained below.

2.3. Orthogonal wavelet transform

For the CWT the analysing wavelets are continuously translated, rotated and dilated;
therefore the continuous wavelet representation is redundant, since we started with
a field f (x) ∈ L2(R2) in physical space of two dimensions and obtained coefficients

f̃ (l, x ′, θ) in wavelet space of four dimensions, or three dimensions after averaging
over angles. This results in a correlation between neighbouring wavelet coefficients,
which may bias the interpretation of the correlation inherent to the field itself. It
is possible to overcome this by using an orthogonal wavelet transform (OWT) that
eliminates the correlation between the wavelet coefficients. Such a transform is based
upon a multiresolution analysis (MRA), which gives successive approximations of
the field at different resolutions, from the smallest scale (twice the grid size) to the
largest scale (the domain size). The wavelet coefficients at a given scale contain
the information necessary to go from one approximation to the next, since they
encode the difference between successive scales. An additional function, called the
scaling function, φ(x) ∈ L2(R2), whose average is normalized to one, is introduced to
encode information about the approximations to the field at different scales. Thus the
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Fourier-transformed wavelets ψ̂ act as a set of high-pass filters, and the Fourier-
transformed associated scaling functions φ̂ as a complementary set of low-pass filters.
The scaling and wavelet coefficients give at each scale the mean and fluctuating
components, respectively.

To guarantee orthogonality a particular sampling of the wavelet space is required.
It corresponds to the dyadic grid, i.e. the scale axis is discretized by octaves, while the
space axis is discretized by discrete translation steps whose size varies with the scale.
For a function of support L sampled at N = 2J points, the total number of discrete

scales (or octaves) is J , the number of wavelet coefficients f̃ j i at each scale is 2j−1,
and their spacing on the dyadic grid is 2−j i, where i and j are position and scale
indices, respectively. The scales run from twice the size of the grid, lmin = 2−(J−1)L, to
the entire domain size, lmax = 20L.

Note that usually one uses compactly supported wavelets (as is the case in this
paper), meaning that wavelets are non-zero valued over a finite interval, which
doubles for each successively larger scale. However, each wavelet on the dyadic grid
is orthogonal to the other wavelets, i.e. 〈ψj,i, ψj ′,i′ 〉 = δj,j ′δi,i′ , where j, j ′ and i, i ′ are
scale and position indices, respectively.

The orthogonal wavelets in two dimensions are obtained by tensor product
of two one-dimensional orthogonal wavelets. Therefore there are three wavelets
corresponding to three directions indexed by μ, defined as

ψ
μ
j,ix ,iy

=

⎧⎪⎨⎪⎩
ψj,ix × φj,iy for μ = 1 (horizontal),

φj,ix × ψj,iy for μ = 2 (vertical),

ψj,ix × ψj,iy for μ = 3 (diagonal),

(2.11)

and the associated scaling function

φj,ix ,iy = φj,ix × φj,iy , (2.12)

where ix ∈ [0, 2J−1 − 1] and iy ∈ [0, 2J−1 − 1] are the x and y positions of the index.
The two-dimensional field f (x) is projected on to the orthogonal wavelet basis

[ψμ
j,ix ,iy

] as

f (x) = φ0,0,0f̄ 0,0,0 +

J−1∑
j=0

3∑
μ=1

2j−1−1∑
ix ,iy=0

f̃
μ
j,ix ,iy

ψ
μ
j,ix ,iy

, (2.13)

where the sum is over the scales indexed by j , positions indexed by (ix, iy) and
directions indexed by μ. The scaling coefficient at the largest scale f̄ 0,0,0 corresponds
to the mean of the field. The wavelet coefficients are given by

f̃
μ
j,ix ,iy

=
〈
f (x), ψμ

j,ix ,iy

〉
, (2.14)

where 〈. , .〉 denotes the L2 inner product in two dimensions, defined as

〈fi, fj 〉 =

∫
R2

fi(x) · fj (x) d2x. (2.15)

Due to the orthogonality of the basis, a field sampled on N points is represented
by N wavelet coefficients. The compactly supported wavelets we use in this study are
defined by two quadrature mirror filters of finite length C, and the wavelet coefficients
are computed by convolving the field with the filter coefficients. This corresponds to
the fast wavelet algorithm (Mallat 1989) for the transform and its inverse, whose
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computational cost is CN operations. The OWT is significantly faster to compute
than the CWT and the FFT, whose computational cost is N log2 N operations. Similar
to the FFT, the fast OWT requires the sampling to be a power of 2, i.e. N = 2J . We
choose here the Coifman 12 wavelet which has its first four moments as zero and
corresponds to a filter of length C =12.

For a review of the different wavelet transforms and their applications to
turbulence, see Farge (1992). For turbulence analysis using orthogonal wavelets,
see Meneveau (1991). Related papers can be downloaded from the ‘Publications’
section at http://wavelets.ens.fr.

3. Wavelet tools
3.1. Wavelet spectrum

As explained in Farge (1992), for data analysis it is better to use a complex wavelet,
since the modulus of the complex-valued wavelet coefficients gives the energy density,
in a fashion similar to Fourier analysis. In this paper we analyse a two-dimensional cut
of velocity field v(x) measured by PIV. We consider a window of size N =128 × 128,
which gives J = 7 octaves, and compute the wavelet coefficients for 12 different
directions using a two-dimensional Morlet wavelet. Since we are more interested in
the space–scale properties of the flow than its eventual anisotropy, we then average
the modulus of the wavelet coefficients over the 12 directions to get |ṽ(l, x)|, from
which we compute the space–scale energy density

E(l, x) =
|ṽ(l, x)|2

l2
. (3.1)

Similarly, the square modulus of the CWT coefficients of the vorticity field, i.e. the
curl of velocity, yields the space–scale enstrophy density Z(l, x).

The space–scale energy density (3.1) can then be integrated over all scales to obtain
the local energy density

E(x) = C−2
ψ

∫ ∞

0+

E(l, x)
dl

l
. (3.2)

In an alternative way, the space–scale energy density (3.1) can be integrated over
space to obtain the scalogram E(l), which gives the energy density as a function of
scale:

E(l) =

∫
R2

E(l, x) d2x. (3.3)

Since scale is related to wavenumber by the relation l = kψ/k, where kψ is the
centroid wavenumber of the wavelet as defined in (2.9), the scalogram is related to
the Fourier energy spectrum E(k) = |v̂(k)|2, also called spectrogram, according to

E(l) =

∫
R2

E(k)|ψ̂(k)|2 d2k. (3.4)

The scalogram thus corresponds to the spectrogram E(k) smoothed by the Fourier
transform of the analysing wavelet (Farge 1992). The total energy is recovered by
integrating over all scales:

E = C−2
ψ

∫ ∞

0+

E(l)
dl

l
. (3.5)
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3.2. Intermittency measure

To quantify the flow intermittency we have proposed in Farge et al. (1990) the LIM. It
corresponds to the spatial distribution of the local deviation from the wavelet energy
spectrum at a given scale and is defined as

I (l, x) =
|ṽ(l, x)|2∫

R2 |ṽ(l, x)|2 d2x
. (3.6)

If everywhere I (l, x) ∼ 1, at each scale the energy is distributed evenly in space and
the flow is non-intermittent, as is the case, e.g., for one realization of a Gaussian
white noise. In contrast, if locally I (l, x) 
 1, the flow presents spotty features, such
as coherent structures, and is intermittent.

We can then define the global intermittency measure (GIM) by integrating in space
and scale the squared LIM:

I =

∫
R2

∫ ∞

0+

|I (l, x)|2 dl

l
d2x. (3.7)

3.3. Extraction of coherent structures

Since there is not yet any agreement among specialists of turbulence about what
coherent structures are and which method is the best to extract them, we propose an
apophatic approach in which, rather than stating what the coherent structures are,
we make assumptions about what they are not. We suppose that ‘coherent structures
are different from noise’, and thus we define them as ‘what remains after denoising’. To
get started we choose the simplest hypothesis for the noise, namely that it is additive,
Gaussian and white, i.e. decorrelated.

In Farge et al. (1992, 1999) we proposed to extract coherent structures by filtering the
orthogonal wavelet coefficients of the vorticity field: the coefficients whose modulus
is larger than a threshold ε reconstruct the coherent component, while the remaining
coefficients correspond to the incoherent component. It has been demonstrated in
Donoho & Johnstone (1994) that the optimal threshold, in a min–max sense, to
remove an additive Gaussian white noise is

ε =

√
2σ 2

I loge N, (3.8)

where σ 2
I is the variance of the noise and N the resolution at which the field has been

sampled. This value ensures a vanishing probability that the wavelet coefficients of
the noise have a value larger than the threshold.

Since the variance of the noise we would like to remove is not known a priori,
we have developed in Azzalini, Farge & Schneider (2005) a recursive algorithm
to estimate the variance of the noise from the variance of the incoherent wavelet
coefficients.

The algorithm consists of three steps that we describe below.

(a) Initialization
(i) Calculate the OWT of the vorticity field ω to obtain its wavelet coefficients ω̃.
(ii) Take the variance of the total vorticity field, as a first estimate for the variance

of the noise, as follows:

σ 2
0 = 1/N

∑
|ω(x)|2 = 2Z, (3.9)

where Z is the total enstrophy.
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(iii) Compute the threshold ε0 =
√

2σ 2
0 log2 N based upon this first estimate of the

noise variance.
(iv) Set the loop count n= 0.

(b) Iteration loop
(i) Compute a new estimate of the variance σ 2

n+1 = 1/N
∑

|ω̃I |2 of the incoherent
vorticity from the incoherent wavelet coefficients ω̃I whose modulus is smaller
than the threshold εn, where

ω̃
μ,I
j,ix ,iy

=

{
ω̃

μ
j,ix ,iy

if |ω̃μ
j,ix ,iy

| � εn,

0 otherwise.
(3.10)

(ii) Compute the new threshold εn+1 =
√

2σ 2
n+1 loge N .

(iii) Update loop count n= n + 1.
(iv) Count the number of incoherent coefficients Nn

I whose modulus is smaller than
the threshold εn.

(v) If the number of coefficients Nn+1
I is the same as Nn

I , then proceed to
reconstruction, else repeat the loop until the number of incoherent coefficients
converges.

(c) Reconstruction
(i) Reconstruct the coherent vorticity in physical space from the coherent wavelet

coefficients whose modulus is above the threshold using the inverse OWT:

ω̃
μ,C
j,ix ,iy

=

{
ω̃

μ
j,ix ,iy

if |ω̃μ
j,ix ,iy

| � εn,

0 otherwise.
(3.11)

(ii) Compute the incoherent component in physical space by subtracting the
coherent component from the total field ωI (x) = ω(x) − ωC(x).

Due to the orthogonality of the wavelet transform, the variance σ 2 is partitioned
among the components, i.e. σ 2 = σ 2

C + σ 2
I .

The operation count of the algorithm is essentially determined by the two OWTs
(one forward, one inverse), each requiring order-N operations. We have proved in
Azzalini et al. (2005) that this recursive algorithm for automatically estimating the
threshold converges. The convergence rate actually depends upon the signal-to-noise
ratio between the coherent and incoherent components, which we call the coherency
measure (CM), defined as

CM = 10 log10

(
σ 2

C

σ 2
I

)
. (3.12)

As shown in Azzalini et al. (2005), the lower the signal-to-noise ratio (i.e. the
stronger the noise), the faster the convergence. For instance if one considers one
realization of a noise sampled on N points, the algorithm considers the entire signal
as incoherent after only one iteration. Conversely, for a signal uncorrupted by noise
the algorithm retains the entire signal as coherent, but after much more (but less than
N) iterations. In practice, only very few iterations are sufficient.

Note that the method proposed here to extract coherent structures out of turbulent
flows is very different from the eduction method presented in Berkooz, Holmes &
Lumley (1993), which is based on proper orthonormal decomposition (POD). POD,
also called principal component analysis (PCA), empirical orthogonal function
(EOF) and Karhunen–Loève decomposition depending on its domain of application,
computes the two-point correlation tensor of an ensemble of realizations and then
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diagonalizes it and retains only the eigenmodes having the largest eigenvalues. This
yields the best basis for this ensemble of realizations with respect to the L2 norm.
The retained modes are defined a posteriori for all realizations, as those containing,
on average, the most variance. Thus, the eduction procedure based on POD is linear,
as the selection of the retained modes does not depend on the realization itself. In
contrast, the wavelet-based eduction selects the modes a priori, as those having the
strongest amplitudes among all wavelet basis functions. Hence, the selection procedure
is nonlinear, as the retained basis functions depend on each flow realization. It can then
be applied to successive realizations. The POD preserves the second-order statistics,
while the wavelet-based eduction method also respects the higher-order statistics
of the flow, which is not the case for POD. A detailed comparison between POD
and wavelet eduction methods has been performed in Farge, Pellegrino & Schneider
(2003).

4. Vortex bursting
4.1. Flow under study

Recent experimental studies have focused on an isolated bursting vortex as a source
of turbulence, leading to a transient build-up of turbulent energy cascade (Cuypers,
Maurel & Petitjeans 2003, 2004, 2006). The scaling of the energy spectrum was found
to vary from k−1 to k−2 during the bursting, although the k−5/3 scaling is recovered
in the time-averaged spectrum. The vortex was well approximated by a stretched
spiral vortex following the model of Lundgren (1982), which also predicts a k−5/3

time-averaged energy spectrum. However, the time evolution of the energy spectrum
is not well understood, and this is a problem we would like to study in this paper
with the help of the wavelet representation.

Previous studies were conducted using hot-film anemometry (Cuypers et al. 2003,
2004), which has a good time resolution but requires a local Taylor hypothesis
to obtain the spatial information necessary to calculate the energy spectrum. More
recently, PIV was used to measure the spatial distribution of the velocity field directly,
without inferring it from a time series, which would have required Taylor’s hypothesis.
Simultaneous hot-film probe measurements were used to synchronize the phase of
the PIV with the bursting of the vortex. The PIV measurements were then phase
averaged to obtain an ensemble average, from which was computed the average time
record of the bursting.

The scaling of the energy spectrum in the inertial range, obtained from the
PIV measurements, was in good agreement with the previous hot-film measure-
ments (Cuypers et al. 2006). However, the time resolution of the measurements was
too low for a single burst to be properly analysed in time. In the current study we
use higher time-resolution PIV to track the time evolution of each individual bursts.
This allows us to free ourselves from the phase-averaging assumption and to directly
study the transient behaviour of the flow.

4.2. Experimental setting

The experimental test section is a long channel of 12×7 cm rectangular cross-section,
shown in figure 1(a). The walls are translucent Plexiglas in order to easily observe
the flow. The channel is filled with water, and the flow rate Q1 down the channel is
regulated. The mean flow velocity is between 0 and 10 cm s−1, and the initial flow is
laminar. At the bottom of the test section is an 11 mm step that initiates the vortex.
Two holes have been made in the transverse channel walls at the location of the
step at which some water is pumped out at a controlled flow rate Q2. This suction
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produces a stretching of the initial vortex which strongly intensifies and concentrates
its vorticity. This also pins the edges of the vortex to the suction holes in the channel
walls. Thus, a strong stretched vortex is produced in a laminar flow downstream the
step at which the flow separates.

The total flow rate through the channel is (Q1 +2Q2). If Q1 is sufficiently small, the
vortex remains stable once it appears and persists during the whole experiment with
no change in either size or intensity. As Q1 increases, the vortex is carried further
downstream the step by the mean channel flow. It is then bent as long as it remains
pinned at the sidewalls. Above a critical channel flow rate the vortex detaches from
the suction holes and bursts. Notice that the production of turbulence is only due to
the vortex bursting, since the flow was previously laminar. Turbulence then decays
before being carried out of the observation window by the mean flow Q1. Another
vortex is then produced which exhibits the same dynamics. This new vortex is also
produced in a laminar flow which has recovered from the previous vortex bursting.
The same cycle repeats itself quasi-periodically at intervals of approximately 6–12 s
depending on the flow rate Q1. The values Q1 = 208 cm3 s−1 and Q2 = 125 cm3 s−1 for
the present experiment were chosen to produce the same kind of intense bursting
vortex as used in previous works, e.g. Cuypers et al. (2004). The Reynolds number
based upon the circulation of the vortex is estimated to be about 4000. We visualize
the vortex, either by injecting dye into the channel or by seeding the flow with tracer
particles to perform PIV. Streams of dye injected upstream the step are engulfed into
the vortex, and one can then observe the vortex life cycle as illustrated in figure 1(b)
(see also movies 1a and 1b).

The PIV measurements are taken in a vertical plane perpendicular to the vortex
axis located in the middle of the channel. Digital images are acquired at 15 double
frames per second with a resolution of 1600 × 1200 pixels. We use a pulsed laser to
obtain exposures of successive image frames each 1 ms using frame straddling. We
then apply standard PIV algorithms on image pairs to measure the velocity field at
a rate of 15 Hz in a 6.4 × 4.8 cm observation window. This zone is sampled with
200×150 vectors which correspond to a spatial resolution of a vector every 0.032 cm.
The cross-correlation function is computed by using multi-pass refining on windows
of sizes 64 × 64 pixels to 16 × 16 pixels with 50 % overlap. All these steps have been
performed using Davis 7.2 software.

The size of the PIV observation window results from a compromise between
sufficient spatial resolution and vortex tracking while it bursts and moves downstream
the channel. The vorticity component perpendicular to the plane is calculated from
the measured two-dimensional velocity field. The PIV acquisition is performed
during several vortex life cycles. Each experimental run generates 345 snapshots
corresponding to 23 s of the flow evolution, which is the maximum allowed by the
memory of the camera.

4.3. The measured flow

The time evolution of a single vortex life cycle as seen in the observation plane is
shown in figure 2. The modulus of velocity field and the vorticity perpendicular to
the observation plane are shown in figures 2(a) and 2(c), respectively.

A time trace of the bursting over three vortex life cycles is shown in figure 2(b),
which agrees well with the previous hot-film measurements of velocity. We observe
that the velocity increases when the vortex approaches the observation plane; it then
peaks just before the vortex begins to burst; the velocity then rapidly decreases,
although it remains highly fluctuating. After the vortex has burst, its remnants are
swept down the channel before another vortex is formed, thus repeating the cycle.
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Figure 2. Time evolution of the vortex bursting. (a) Time trace of the modulus of velocity
measured in one location (indicated by a cross on the velocity field below) and averaged
in a 3 × 3 region around that point. The dashed vertical lines indicate the instants
t = {−0.7, 0, 0.4, 1.0} s corresponding to the snapshots below, with t = 0 the beginning of
the bursting. (b) Modulus of velocity with streamlines superimposed. The channel flow moves
from right to left. (c) Modulus of vorticity. Notice that for both fields only the component
perpendicular to the observation plane is shown. (See also movie 2a showing the time evolution
of the velocity modulus, movie 2b showing the time evolution of the vorticity modulus and
movie 2c showing the time evolution of the energy spectrum.)
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However, with the previous hot-film measurements the location at which we took
measurements was fixed in the channel, off the plane chosen for the PIV-measurement
acquisition. Actually, the vortex does not always burst at the same location or appear
with the same intensity. Therefore a peak in the trace of the velocity modulus, either
measured by hot film or at a fixed plane by PIV, does not necessarily indicate that the
vortex has burst at that location and at that instant. Due to the good time resolution
of the PIV data and using a technique presented by Cuypers et al. (2004), we can
determine the precise instant when the vortex starts bursting. It has been shown in
Cuypers et al. (2004) that, for the same experimental parameters as those chosen here,
the time needed to build the energy cascade is approximately 1.5 s. Before bursting the
vortex has a quasi-Gaussian shape, which is consistent with the expected profile along
the mid-plane of the channel. The background flow of the channel, about 1 cm s−1,
is of relatively low intensity compared to that of the largest values measured in the
vortex, up to 40 cm s−1. We observe a slight asymmetry of the velocity field, which is
due to the additional background flow, although until it bursts, the vortex remains
axisymmetric.

The vortex bursting is hard to analyse due to its highly non-stationary behaviour. To
overcome this difficulty, we have selected four characteristic instants t = {t1, t2, t3, t4}
defined as follows:

(i) t1 = −0.7 s, just after the formation of the vortex when it is still stable;
(ii) t2 = 0.0 s, the beginning of the bursting;
(iii) t3 = 0.4 s, after the vortex has broken down into pieces;
(iv) t4 = 1.0 s, when the remaining pieces have dissipated.
Since our observations are in a two-dimensional plane taken from a three-

dimensional field, only the first two stages of the flow, when the vortex is still
stable and quasi-two-dimensional, can be interpreted without too much ambiguity.
This is no more the case for the following stages, t3 and t4, when the flow has become
fully three-dimensional and remnants of the burst vortex appear and disappear from
the observation plane.

5. Results: extraction of coherent structures
5.1. Vorticity evolution

We consider the evolution of the velocity (see movie 2a), and from it we compute
the vorticity field at each time step. (The vorticity evolution is shown in movie 2b.)
In figures 2(a) and 2(b) we focus on the four characteristic instants, t = {t1, t2, t3, t4},
defined in § 4.3 and shown in figure 2. Before bursting, at time t1 = −0.7 s, the vortex
is intense and well localized. At the instant when the bursting starts, time t2 = 0 s, the
spatial support of the vortex spreads, and its intensity is sharply reduced. During the
bursting, at time t3 = 0.4 s, the vortex has been broken into several weaker structures
which continue to spread in space. After the bursting, at time t4 = 1 s, those structures
begin to nonlinearly interact while being swept away from the observation window.
We then use the technique described in § 3.3 to split the vorticity field into two
orthogonal, coherent and incoherent, components. Since the decomposition is based
on orthogonal wavelets we need the sampling to be factorized in a power of two,
and therefore we apply the extraction to a window of N = 1282 grid-point samples
for each vorticity snapshot. The location of the window is shown in figures 2(b) and
2(c). We also compute the evolution of the energy spectrum (see movie 2c), whose
slope varies from −2, before the bursting, to −1, after the bursting. Note that the
k−5/3 scaling, predicted by the statistical theory of homogeneous isotropic turbulence
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in three dimensions (Kolmogorov 1941), is only obtained after time averaging, as
previously observed in Cuypers et al. (2003, 2004, 2006).

We then split the vorticity field into coherent and incoherent contributions at each
instant, as shown in figure 3. We observe that the coherent vorticity evolution in
figure 3(b) is very similar to the total vorticity evolution in figure 3(a), both being
highly non-stationary and presenting the same coherent structures (see movies 2a
and 2b). In contrast to the coherent vorticity, the incoherent component, as observed
in figure 3(c), remains stationary and homogeneous all along the bursting process.
Looking at the time evolution of the incoherent vorticity (see movie 3c), we notice a
small region, located where the coherent vortex is, whose level of fluctuation is slightly
higher than the experimental noise level. This is also observed in the evolution of
the vorticity cuts, as shown in figure 3(d ), and may correspond to some incoherent
enstrophy associated with the turbulent dissipation produced in the shear layer which
develops around the vortex, as proposed in Farge, Pellegrino & Schneider (2001).
This dissipation is due to the fact that the vortex is continuously stretched by the
axial suction applied at the outlets, which acts as an external forcing. This forcing is
then balanced by the dissipation due to the strong velocity gradients which develop
in the shear layer around the vortex. This three-dimensional shear layer can be
decomposed in the three directions of a referential attached to the vortex: an axial
direction parallel to the stretching, a radial direction associated with the straining
produced by the radial dependence of the stretching and an azimuthal direction. The
slight augmentation of the incoherent vorticity fluctuations we have noticed (in the
observation plane perpendicular to the vortex axis) may be due to both axial and
radial dissipation. Note that there is no dissipation in the azimuthal direction, since
the vortex is axisymmetric.

In order to quantify the level of turbulent dissipation due to the vortex, we subtract
the experimental noise from the incoherent vorticity. For this we estimate the level
of experimental noise by averaging the value of the incoherent enstrophy far from
the vortex. We then consider a window tracking the vortex, and we subtract the
experimental noise level from the incoherent enstrophy. The difference corresponds
to the turbulent dissipation, which is actually very weak. It results from the straining
of the incoherent background flow by the vortex.

5.2. Vorticity statistics

The time evolution of the vorticity variance (second moment of vorticity that is twice
the enstrophy) of the total, coherent and incoherent flows, together with the ratio of
the vorticity moments such as skewness and flatness, are shown in figures 4(a), 4(b)
and 4(c), respectively (see also movies 4a and 4b). At the beginning, the vorticity
field contains a single vortex and is characterized by large values of enstrophy,
skewness and flatness. During the bursting these quantities strongly decrease as the
vortex loses its coherence and breaks up. Later the vorticity moments return to large
values when a new vortex appears in the observation window. Note that the abrupt
increase in vorticity skewness and flatness is an artefact due to the entrance of a new
vortex into the observation domain (when only a portion of it is in view). For the
three diagnostics, we observe that the coherent flow exhibits the same non-stationary
behaviour as the total flow, while the incoherent background flow remains stationary.
This confirms the observations made in the previous paragraph.

5.3. Compression ratio

In figure 4(d ) we show that only a small percentage of the wavelet coefficients is
sufficient to extract the coherent vorticity, corresponding to the vortex before it bursts
and to the remaining structures resulting from its bursting. This percentage varies
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Figure 3. Time evolution of the (a) total, (b) coherent and (c) incoherent vorticities at instants
t = {−0.7, 0, 0.4, 1.0} s, with t = 0 the beginning of the bursting. The number of coefficients
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indicated below the snapshots. (d ) One-dimensional cuts along the vorticity at the locations
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coherent and incoherent fields respectively. (See also movie 3a showing the time evolution of
the total vorticity field, movie 3b showing the time evolution of coherent vorticity field and
movie 3c showing the time evolution of incoherent vorticity field.)
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from 1.3 % N , when the vortex is stable, to 2.7 % N just after bursting and falls to
0.7 % N , when there is no longer any remnant of the vortex in the field of view.
Figure 4(e) gives the variation of the percentage of coherent enstrophy, which is a
good measure of the dynamical evolution: before the bursting it remains constant
around 98 % Z (Z being the total enstrophy as defined in (3.9)), while just after the
bursting it falls down to about 60 % Z, and finally below 4 % Z when there is only
an incoherent background flow left. The percentage of coherent enstrophy remains
approximately constant before the bursting, despite the existence of large variations in
the intensity of the successive vortices, as shown in figure 4(e). Likewise, the relative
percentage of incoherent enstrophy varies greatly throughout the bursting and is
also a good indicator of the dynamical evolution. Indeed, before the vortex bursts it
remains negligible, after which it rises to about 40 %Z, and later, when there is no
longer any vortex or remnant of vortex in view, the incoherent enstrophy contributes
a larger percentage to the total enstrophy, up to 70% Z, than the coherent enstrophy.

5.4. Coherency measure (CM)

We define the CM as the signal-to-noise ratio (3.12) between the coherent and
incoherent enstrophies. Its time evolution, shown in figure 4(f ), exhibits a behaviour
similar to the variation in the percentage of enstrophy.

Following several bursts, we observe a typical evolution of CM which allows us to
decompose the vortex bursting into three stages:

(i) during the first stage the vortex remains stable and CM has a constant value
about 15;

(ii) as soon as the vortex destabilizes, it abruptly drops to values below two, which
corresponds to the second stage when vortex bursts and incoherent enstrophy is
produced;

(iii) later we observe a progressive increase of CM up to five which measures the
roll-up of vorticity filaments or merging of same-sign vortex structures, characteristic
of the third stage.

Finally, the CM becomes negative when the remnants of the vortex bursting are swept
out of the observation window and and remains so until the next vortex enters. Thus
the CM gives a precise and quantitative way to characterize and analyse the vortex
bursting.

5.5. Cross-PDF between vorticity and streamfunction

The spatial coherence of the flow can be revealed by the scatter plot of vorticity
versus streamfunction that estimates the cross-probability distribution function (cross-
PDF) between these fields, as shown in figure 5(a) (see also movie 5a showing its
time evolution). For a flow that contains coherent structures, such as vortices, the
distribution is organized along branches, each approximating a sinh function, as
predicted by Joyce & Montgomery (1973). The long arm observed in the scatter
plot of the total and coherent flows prior to the vortex bursting is similar to a
distribution observed for a single Burger’s vortex. This is another a posteriori proof
that the wavelet method has well extracted the coherent vortex out of the flow. As the
bursting proceeds, vorticity extrema are reduced by a factor 100, and the scatter plot
distribution contracts near the origin. The scatter plot of the coherent flow exactly
follows the evolution of the scatter plot of the total flow. In contrast, the scatter plot
of the incoherent flow remains stationary and localized around the origin throughout
the bursting, with a maximum value of 25. After the bursting there remains for a while
some coherence due to vortex remnants until the next vortex enters the observation
window.
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5.6. Vorticity PDF

Until here we have studied the time evolution of three successive bursting events. We
now focus on a single burst and analyse four characteristic instants, as previously
defined in § 4.3. We first consider the time evolution of the PDF of vorticity, shown in
figure 5(b) (see also movie 5b). The PDF of the coherent vorticity follows closely that
of the total vorticity, which is far from Gaussian. Before the bursting the vorticity
PDFs are highly skewed, with a stretched positive tail as shown in figures 5(a) and
5(b) that corresponds to the isolated vortex of positive sign. After the bursting we
observe that the stretched exponential tail is intensified for the positive values, while
a weaker tail also develops for negative values, indicating a production of enstrophy
during the bursting. By time t4 at the end of the bursting, the PDFs of both the total
and coherent vorticities have become more symmetric and less narrow than before
the bursting. In contrast, the PDF of the incoherent vorticity has remained symmetric
and close to Gaussian throughout the bursting process, as seen in figure 5(b) (see also
movie 5b).

5.7. Enstrophy spectrum

The time evolution of the enstrophy spectrum is presented in figure 5(c). At early
time t1 = −0.7 s, before the vortex bursts, we observe a k+1 scaling at large scales
and an exponential decay at intermediate scales that corresponds to the Gaussian
profile of the isolated vortex, as shown in figure 3(d ). At time t2 = 0 s, we observe that
intermediate scales are depleted of their enstrophy to the benefit of smaller scales.
At time t3 = 0.4 s, the enstrophy transfers from large to intermediate scales filling the
gap at intermediate scales, and the enstrophy spectrum tends towards a k−2 scaling.
At time t4 = 1 s, the transfer of enstrophy towards smaller scales goes on and results
in a flat spectrum at large scales and a k−2 scaling at intermediate scales. All along
this evolution, the small scales exhibit a k−3 scaling which has probably to do with a
noise resulting from the PIV measurements and algorithm.

The spectrum of the coherent enstrophy matches that of the total enstrophy and
follows its time evolution at large and intermediate scales. In contrast the incoherent
enstrophy spectrum remains stationary and exhibits a k+1 scaling, which corresponds
to an enstrophy equipartition (since to compute the spectrum we have integrated the
two-dimensional spectrum over directions). The incoherent enstrophy remains very
low and takes over the coherent enstrophy only at small scales, where we observe a
k−3 scaling, very probably due to the PIV noise.

We have found that at low wavenumbers the enstrophy spectrum strongly varies
in time, exhibiting a scaling between k+1 (at the beginning) and k0 (at the end of the
vortex bursting). If we assume the relation Z(k) = k2E(k) (which cannot strictly hold
here, since the measurements are made only in a two-dimensional plane), these results
seem to confirm the observations we have previously made for the vortex bursting,
where we showed that the slope of the energy spectrum varies in time from k−1 to
k−2 and that the k−5/3 scaling predicted by Kolmogorov is only obtained for time
averages (Cuypers et al. 2003, 2004, 2006).

6. Results: wavelet analysis and intermittency measures
6.1. Continuous wavelet analysis

We present the results of the continuous wavelet analysis, in particular the local
intermittency measure. After splitting each turbulent flow realization into coherent
and incoherent components, we analyse their contribution independently.
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Figure 6. Modulus of the CWT coefficients of the vorticity field at instants t =
{−0.7, 0, 0.4, 1.0} s, with t = 0 the beginning of the bursting. The isosurfaces correspond
to 50 % and 10 % of the maximum values indicated on the colour scales. The horizontal
axes give the position and the vertical axes the scale, with the smallest scales at the top. The
plane cut slices the position–scale plane at the maximum value of the CWT coefficients. (See
also movie 6a showing the time evolution of the modulus of the CWT coefficients in the
whole wavelet space and movie 6a showing the time evolution of the modulus of the CWT
coefficients in a two-dimensional cut which tracks the vortex.)

We calculate the CWT of the coherent vorticity field, shown in figure 6 (and in
movies 6a and 6b), using a complex-valued Morlet wavelet. Due to Parseval’s relation
(2.7), the square modulus of the wavelet coefficients gives the local enstrophy density
in both space and scale, from which we compute the LIM, i.e. the spatial variability of
the enstrophy at each scale or likewise the spatial deviation from the mean enstrophy
spectrum (Farge 1992). We can thus identify which space–scale regions actively
contribute to the nonlinear cascade and which space–scale regions are dominated by
viscous dissipation, as seen in figure 7 (and in movies 7a and 7b).

As a complement to the PIV measurements, we also study the time evolution of a
dye injected into the flow to analyse the vortex bursting using a much faster camera
which captures 1000 frames per second instead of 15 double frames per second.
(Movie 8a shows 6 s of the flow evolution which has been slowed down to the last
13 s in order to better understand the bursting process.)

6.2. Modulus of the continuous wavelet coefficients

The modulus of the CWT coefficients of vorticity are shown in figure 6 for the four
time snapshots defined in § 4.3 (see also movies 6a and 6b). Before the bursting,
the largest values of the CWT coefficients are located at the vortex core (see t1 in
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Figure 7. The LIM of the vorticity field at instants t = {−0.7, 0, 0.4, 1.0} s, with t = 0 the
beginning of the bursting. The isosurfaces correspond to 50 % and 10 % of the maximum
values indicated on the colour scales. The horizontal axes give the position and the vertical
axis the scale, with the smallest scales at the top. The plane cut slices the position-scale plane
at the maximum value of the LIM. (See also movie 7a showing the time evolution of the
LIM in the whole wavelet space and movie 7b showing the time evolution of the LIM after
averaging the LIM in scale.)

figure 6). This confirms that the large values in the enstrophy spectrum at large scales
are due to the spatially localized contribution which corresponds to the support
of the vortex. At time t2, the very beginning of the bursting, the modulus of the
CWT coefficients starts decreasing and its maximal values, around 70, shift towards
smaller wavenumbers, which indicates an enstrophy transfer towards smaller scales.
We simultaneously observe the vortex spatially expanding while keeping its shape. By
time t3, as the enstrophy cascade is developing, the vortex core begins to break up
into several pieces, which is denoted by the emergence of several local maxima of the
modulus of the CWT coefficients. Finally, by the end of the bursting, the values of the
large-scale wavelet coefficients continue to decrease, since the enstrophy is transferred
towards smaller scales (figure 5c), while their support spreads out in both space and
scale (figure 6). By time t4 the magnitude of the wavelets coefficients is now below
20, and a significant portion of enstrophy has reached the small scales.

The continuous wavelet analysis of the vorticity field, measured by PIV using a
standard camera, has revealed that the bursting process starts in the vortex core. The
time evolution of a dye advected by the vortex and recorded (in a two-dimensional
plane perpendicular to the vortex axis) with a camera, 66 times faster than the camera
used for PIV, confirms that the destabilization of the vortex starts from the core. In
movie 8(a) we observe that the dye is advected by the vortex and exhibits a stable
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structure spiralling around its centre. Later the vortex centre begins to describe a
circular motion in the clockwise direction, and very locally the dye starts to unwrap
but without affecting the rest of the dye. Soon after, a dislocation appears in the
spiral pattern of the dye, and several vortical structures emerge that unwrap the dye
in the counterclockwise direction, which then mixes it all over the place. We have also
performed a continuous wavelet analysis of the dye concentration field as recorded
at 1000 frames per second (see movies 8a and 8b), which confirms that the bursting
process starts from the vortex core.

Since we observe the flow only in a plane perpendicular to the vortex axis, it is
impossible at this stage to obtain a more complete description of the bursting process
using PIV. We tried to perform PIV measurements in a horizontal plane parallel to
the vortex axis, but we did not succeeded, since the vortex does not remain in this
plane and the velocity gradients are much too large to guarantee enough precision
of the velocity measurement in the horizontal plane. By observing the time evolution
of dyes, having four different colours, injected into the vortex at four locations and
recorded from above in a horizontal plane parallel to the vortex axis (see movie 1)
using a standard camera, we get the feeling that the vortex is made of several vortex
tubes nested within each others which alternate opposite-sign helicities. The bursting
seems to happen when the connection with at least one suction hole is lost. Since
the PIV measurements are performed in the central plane, as shown in figure 1(a),
far away from the suction holes, it is very difficult to propose a precise scenario, i.e.
to decide if the bursting is due to the bending of the vortex tube while it is pushed
downstream by the laminar flow, due to the stretching imposed by the suction at the
sidewalls or due to the competition between both mechanisms.

6.3. Local intermittency measure

The local intermittency measure (LIM) of vorticity corresponds to the modulus of the
CWT coefficients of vorticity renormalized at each scale by the enstrophy content at
that scale. The LIM is thus more appropriate than the wavelet coefficients to display
scale-dependent data over a wide range of scales, since it is simpler to visualize being
a relative (renormalized) quantity whose range of variation in intensity is reduced.
The LIM also better detects intermittent features because it enhances them more
than the wavelet coefficients themselves. In regions in which wavelet coefficients are
possibly large but their small-scale contribution is homogenenously spread in space,
there is no intermittency and the LIM remains close to one everywhere. In regions
in which the spatial distribution of the wavelet coefficients becomes sparser towards
small scales, the LIM reaches high values, which quantify how much the variance
locally exceeds the mean variance at a given scale. The LIM thus gives a quantitative
estimation of intermittency.

The LIM of vorticity is shown in figure 7. We observe that at early time, before
the vortex bursting, the LIM presents large values in a wide range of scales that are
concentrated in a small region around the vortex core. This confirms that an isolated
stable vortex is an intermittent structure, which is smooth, since the maximum of
the LIM, which is above 100, remains at large scales. When the vortex bursts,
the maximum LIM value decreases to about 40, and we observe a spreading at
small scales indicating the turbulent cascade and the concomitant production of
more singular features. From there on the maximum value of the LIM continues to
decrease, reaching a maximum of 30 by t3 = 0.4 s and 10 around t4 = 1.0 s, while the
small-scale activity is spreading out in space, e.g. we observe that the LIM isosurface
I = 2 then fills most of the space at small scales.
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Figure 8. The LIM before (left) and after (right) the bursting for the (a) total, (b) coherent
and (c) incoherent vorticities. The isosurfaces correspond to 50 % and 10 % of the maximum
values indicated on the colour scales. The horizontal axes give the position and the vertical
axis the scale, with the smallest scales at the top.

In figure 8 we show the evolution of the LIM before and after the bursting for the
total, coherent and incoherent vorticities. When the vortex is isolated and stable, the
LIM is maximal in the vortex core, where it reaches values up to 187 for the coherent
flow (figure 8b, left) but only up to 112 for the total flow (figure 8a, left) whose
intermittency is reduced due to the presence of experimental PIV noise (figure 8c,
left). When the vortex bursts, the LIM suddenly falls down, with its maximal value
reduced to 20 for the coherent flow (figure 8b, right) and to 12 for the total flow
(figure 8a, right), which is weaker than for the coherent flow, since the total flow
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also contains the incoherent flow produced by the vortex bursting, together with
experimental PIV noise (figure 8c, right).

7. Conclusion
We have proposed several diagnostics to statistically analyse highly unsteady and

inhomogeneous turbulent flows. To illustrate the potential of these wavelet methods,
we have chosen to study the bursting of a three-dimensional vortex, advected by a
laminar flow and subjected to stretching, measured by PIV.

We have first applied a wavelet-based eduction method to extract coherent
structures out of turbulent flows. We have thus found that very few orthogonal
wavelet coefficients are sufficient to track the vortex bursting and its nonlinear
evolution, preserving in particular the vorticity PDF, the enstrophy spectrum in the
inertial range and the cross-PDF between vorticity and streamfunction (which is a
good diagnostic for coherence). The number of strong wavelet coefficients, which
correspond to the coherent structures, varies during the flow evolution between 1.3 %
and 2.7 % of N (N being the resolution of the PIV image). The remaining weakest
wavelet coefficients, whose number varies between 97.3 % and 98.7 % of N , take care
of the experimental noise and of the incoherent background flow. This method is
simple, since there is no parameter to adjust besides the choice of the orthogonal
wavelet basis, and more universal than other eduction methods, since it does not
depend on the flow configuration. Note that if the flow is not turbulent enough,
all modes are coherent. We have proposed in this paper the use of the incoherent
enstrophy as a good estimate of the turbulence level.

We have also proposed a new diagnostic, the coherency measure (CM), which is
defined as the signal-to-noise ratio between the coherent and incoherent enstrophies.
It is used to quantitatively characterize the different stages of the vortex bursting.
Following its evolution, we have identified three characteristic ranges of values that
the CM takes before, during and after the vortex bursting. At first, when the vortex
evolves as a stable isolated structure, the CM has a large positive value. Then it
abruptly drops to small positive values at the instant of bursting, and later it slightly
increases when the vorticity filaments and the vorticity sheets produced by the bursting
begin to reorganize themselves by nonlinear interaction. Finally, the CM becomes
negative when the remnants of the vortex bursting are swept out of the field of view,
and it remains so until a new vortex enters the observation window. The vortex life
cycle then reproduces itself.

To complement the CM, we have designed other diagnostics based on the
continuous wavelet transform. Our aim is to better understand the build-up of
the turbulent cascade and to find with them when and where, in both space and scale,
the nonlinear activity is dominant. Using the local intermittency measure (LIM), we
found that the incoherent flow is non-intermittent (the LIM always remains below
5), exhibits an enstrophy equipartition spectrum and has a quasi-Gaussian p.d.f. of
vorticity. In contrast, the coherent flow is intermittent (the LIM reachs values up to
160) and sustains the turbulent cascade, with a correlated enstrophy spectrum in the
inertial range and a non-Gaussian vorticity PDF.

The continuous wavelet coefficients show that the bursting starts as an excitation
of the small scales of the vortex core and then spreads in space and scale. The
wavelet representation is optimal to reveal such a localized scaling phenomenon,
and the LIM is the appropriate diagnostic to study it. This result has been
confirmed by dye visualization recorded with a very fast camera to decompose
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the motion just before the instant of bursting. We have also observed that before
the vortex bursts, its coherent component retains 98 % of the total enstrophy Z, a
proportion which suddenly drops to about 60 % of Z when the vortex bursts and later
becomes negligible as the remnants of the vortex are swept out of the observation
window.

We found that the coherent enstrophy spectrum is highly non-stationary and follows
the total enstrophy evolution. In contrast the incoherent enstrophy remains steady,
with a k+1 scaling all along the inertial range that corresponds to an enstrophy
equipartition. We have thus managed to disentangle a steady, homogeneous and
decorrelated background flow from an unsteady, inhomogeneous and correlated flow.
The former corresponds to the vortex nonlinear dynamics, while the latter is a good
indicator of the turbulence level.

In conclusion, we think that the definition of coherent structures and the wavelet-
based eduction method we have proposed overcome the problems encountered by
previous methods used to extract coherent structures. Using them, we have shown that
coherent and incoherent flows are active all along the inertial range, i.e. at both large
and small scales, but exhibit different scaling laws, namely long-range correlation for
the former and decorrelation for the latter. The results presented in this paper thus
confirm the conjecture proposed in Hussain (1986) that ‘incoherent turbulence does
not consist of only fine-scale turbulence, as is generally presumed, but may contain
large-scale irrotational (perhaps even vortical but irrelevant) motions.’ We also fully
agree with Hussain (1986) when he adds, ‘The interaction between coherent structures
and incoherent turbulence is the most critical and least understood aspect of turbulent
shear flows. This coupling appears to be rather different from the classical notion
of cascade; even considering the large and fine scales, they are not decoupled as
widely presumed.’ This lack of scale separation is the central difficulty encountered
in modelling turbulence. The wavelet-based tools presented here offer new ways to
handle that problem, and hopefully overcome it.
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