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For given computational resources, the accuracy of plasma simulations using particles is mainly
held back by the noise due to limited statistical sampling in the reconstruction of the particle dis-
tribution function. A method based on wavelet analysis is proposed and tested to reduce this noise.
The method, known as wavelet based density estimation (WBDE), was previously introduced in
the statistical literature to estimate probability densities given a finite number of independent mea-
surements. Its novel application to plasma simulations can be viewed as a natural extension of the
finite size particles (FSP) approach, with the advantage of estimating more accurately distribution
functions that have localized sharp features. The proposed method preserves the moments of the
particle distribution function to a good level of accuracy, has no constraints on the dimensionality of
the system, does not require an a priori selection of a global smoothing scale, and its able to adapt
locally to the smoothness of the density based on the given discrete particle data. Most importantly,
the computational cost of the denoising stage is of the same order as one time step of a FSP simu-
lation. The method is compared with a recently proposed proper orthogonal decomposition based
method, and it is tested with three particle data sets that involve different levels of collisionality
and interaction with external and self-consistent fields.

I. INTRODUCTION

Particle-based numerical methods are routinely used
in plasma physics calculations [1, 2]. In many cases
these methods are more efficient and simpler to imple-
ment than the corresponding continuum Eulerian meth-
ods. However, particle methods face the well known sta-
tistical sampling limitation of attempting to simulate a
physical system containing N particles using Np � N
computational particles. Particle methods do not seek
to reproduce the exact individual behavior of the parti-
cles, but rather to approximate statistical macroscopic
quantities like density, current, and temperature. These
quantities are determined from the particle distribution
function. Therefore, a problem of relevance for the suc-
cess of particle-based simulations is the reconstruction of
the particle distribution function from discrete particle
data.

The difference between the distribution function re-
constructed from a simulation using Np particles and
the exact distribution function gives rise to a discretiza-
tion error generically known as “particle noise” due to
its random-like character. Understanding and reducing
this error is a complex problem of importance in the val-

idation and verification of particle codes, see for example
Refs. [3, 4, 5] and references therein for a discussion in
the context of gyrokinetic calculations. One obvious way
to reduce particle noise is by increasing the number of
computational particles. However, the unfavorable scal-
ing of the error with the number of particles, ∼ 1/

√
Np

[6, 7], puts a severe limitation on this straightforward ap-
proach. This has motivated the development of various
noise reduction techniques including finite size particles
(FSP) [8, 9], Monte-Carlo methods [7], Fourier-filtering
[10], coarse-graining [11], Krook operators [5], smooth
interpolation [12], low noise collision operators [13], and
Proper Orthogonal Decomposition (POD) methods [14]
among others.

In the present paper we propose a wavelet-based
method for noise reduction in the reconstruction of par-
ticle distribution functions from particle simulation data.
The method, known as Wavelet Based Density Estima-
tion (WBDE), was originally introduced in Ref. [15] in
the context of statistics to estimate probability densi-
ties given a finite number of independent measurements.
However, to our knowledge, this method has not been
applied before to particle-base computations. WBDE, as
used here, is based on truncations of the wavelet repre-
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sentation of the Dirac delta function associated with each
particle. The method yields almost optimal results for
functions with unknown local smoothness without com-
promising computational efficiency, assuming that the
particles’ coordinates are statistically independent. As
a first step in the application of the WBDE method to
plasma particle simulations, we limit attention to “pas-
sive denoising”. That is the WBDE method is treated
as a post-processing technique applied to independently
generated particle data. The problem of “active denois-
ing”, e.g. the application of WBDE methods in the eval-
uation of self-consistent fields in particle in cell simula-
tions, will not be addressed. This simplification will allow
us to assess the efficiency of the proposed noise reduction
method in a simple setting. Another simplification per-
tains the dimensionality. Here, for the sake of simplicity,
we limit attention to the reconstruction and denoising
problem in two dimensions. However, the extension of
the WBDE method to higher dimensions is in principle
straightforward.

Collisions, or the absence of them, play an important
role in plasma transport problems. Particle methods han-
dle the collisional and non-collisional parts of the dynam-
ics differently. Fokker-Planck-type collision operators are
typically introduced in particle methods using Langevin-
type stochastic differential equations. On the other hand,
the non-collisional part of the dynamics is described using
deterministic ordinary differential equations. Collisional
dominated problems tend to washout small scale struc-
tures whereas collisionless problems typically develop fine
scale filamentary structures in phase space. Therefore, it
is important to test the dependence of the efficiency of
denoising reconstruction methods on the level of collision-
ality. Here we test the WBDE method in strongly col-
lisional, weakly collisional and collisionless regimes. For
the strongly collisional regime we consider particle data
of force-free collisional relaxation involving energy and
pinch-angle scattering. The weakly collisional regime is
illustrated using guiding-center particle data of a mag-
netically confined plasma in toroidal geometry. The col-
lisionless regime is studied using particle in cell (PIC)
data corresponding to bump-on-tail and two streams in-
stabilities in the Vlasov-Poisson system.

Beyond the role of collisions, the data sets that we are
considering open the possibility of exploring the role of
external and self-consistent fields in the reconstruction of
the particle density. In the collisional relaxation problem
no forces act on the particles, in the guiding-center prob-
lem particles interact with an external magnetic field,
and in the Vlasov-Poisson problem particle interactions
are incorporated through a self-consistent electrostatic
mean field. One of the goals of this paper is to compare
the WBDE method with the Proper Orthogonal Decom-
position (POD) density reconstruction method proposed
in Ref. [14].

The rest of the paper is organized as follows. In Sect. II
we review the main properties of kernel density estima-
tion (KDE) and show its relationship with finite size par-

ticles (FSP). We then review basic notions on orthogo-
nal wavelet and multiresolution analysis and outline a
step by step algorithm for WBDE. Also, for complete-
ness, in this section we include a brief description of
the POD reconstruction method proposed in Ref. [14].
Section III discusses applications of the WBDE method
and the comparison with the POD method. We start
by post-processing a simulation of plasma relaxation by
random collisions against a background thermostat. We
then turn to a δf Monte-Carlo simulation in toroidal
geometry, whose phase space has been reduced to two
dimensions. Finally, we analyze the results of particle-
in-cell (PIC) simulations of a 1D Vlasov-Poisson plasma.
The conclusions are presented in Sec. IV.

II. METHODS

This section presents the wavelet-based density esti-
mation (WBDE) algorithm. We start by reviewing basic
ideas on kernel density estimation (KDE) which is closely
related to the use of finite size particles (FSP) in PIC sim-
ulations. Following this, we we give a brief introduction
to wavelet analysis and discuss the WBDE algorithm.
For completeness, we also include a brief summary of the
POD approach.

A. Kernel density estimation

Given a sequence of independent and identically dis-
tributed measurements, the nonparametric density esti-
mation problem consists in finding the underlying prob-
ability density function (PDF), with no a priori assump-
tions on its functional form. Here we discuss general ideas
on this difficult problem for which a variety of statisti-
cal methods have been developed. Further details can be
found in the statistics literature, e.g. Ref. [16].

Consider a number Np of statistically independent
particles with phase space coordinates (Xn)1≤n≤Np dis-
tributed in Rd according to a PDF f . This data can
come from a PIC or a Monte-Carlo, full f or δf simula-
tion. Formally, the sample PDF can be written as

fδ(x) =
1
Np

Np∑
n=1

δ(x−Xn) (1)

where δ is the Dirac distribution. Because of its lack of
smoothness, Eq. (1) is far from the actual distribution
f according to most reasonable definitions of the error.
Moreover, the dependence of fδ on the statistical fluc-
tuations in (Xn) can lead to an artificial increase of the
collisionality of the plasma.

The simplest method to introduce some smoothness in
fδ is to use a histogram. Consider a tiling of the phase
space by a Cartesian grid with Nd

g cells. Let {Bλ}λ∈Λ
denote the set of all cells with characteristic function χλ
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defined as χλ = 1 if x ∈ Bλ and χλ = 0 otherwise. Then
the histogram corresponding to the tiling is

fH(x) =
∑
λ∈Λ

 1
Np

Np∑
n=1

χλ(Xn)

χλ(x) (2)

which can also be viewed as the orthogonal projection of
fδ on the space spanned by the χλ. The main difference
between fδ and fH is that the latter cannot vary at scales
finer than the grid scale which is of order N−1

g . By choos-
ing Ng small enough, it is therefore possible to reduce the
variance of fH to very low levels, but the estimate then
becomes more and more biased towards a piecewise con-
tinuous function, which is not smooth enough to be the
true density. Histograms correspond to the nearest grid
point (NGP) charge assignment scheme used in the early
days of plasma physics computations [8].

One of the most popular methods to achieve higher
level of smoothness is kernel density estimation (KDE)
[17]. Given (Xn)1≤n≤Np , the kernel estimate of f is de-
fined as

fK(x) =
1
Np

Np∑
n=1

K(x−Xn) , (3)

where the smoothing kernel K is a positive definite, nor-
malized,

∫
K = 1, function. Equation (3) corresponds

to the convolution of K with the Dirac delta measure
corresponding to each particle. A typical example is the
Gaussian kernel

Kh(x) =
1

(
√

2πh)d
e−

‖x‖2

2h2 (4)

where the so-called “bandwidth”, or smoothing scale, h,
is a free parameter. The optimal smoothing scale de-
pends on how the error is measured. For example, in
the one dimensional case, to minimize the mean L2-error
between the estimate and the true density, the smooth-
ing volume hd should scale like Np−

1
5 , and the resulting

error scales like N−
2
5

p [16]. As in the case of histograms,
the choice of h relies on a trade-off between variance and
bias. In the context of plasma physics simulations the
kernel K corresponds to the charge assignment function
[2].

A significant effort has been devoted in the choice of
the function K since it has a strong impact on computa-
tional efficiency and on the conservation of global quanti-
ties. Concerning h, it has been shown that it should not
be much larger than the Debye length λD of the plasma
to obtain a realistic and stable simulation [1]. Given a
certain amount of computational resources, the general
tendency has thus been to reduce h as far as possible
in order to fit more Debye lengths inside the simulation
domain, which means that the effort has been concen-
trated on reducing the bias term in the error. Since
the force fields depend on f through integral equations,
like the Poisson equation, that tend to reduce the high

wavenumber noise, we do not expect the disastrous scal-
ing h ∝ Np

− 1
5 , which would mean Np ∝ λ5d

D in d di-
mensions, to hold. Nevertheless, the problem remains
that if we want to preserve high resolution features of
f or of the electromagnetic fields, we need to reduce h,
and therefore greatly increase the number of particles to
prevent the simulation from drowning into noise. Band-
width selection has long been recognized as the central
issue in kernel density estimation [18]. We are not aware
of a theoretical or numerical prediction of the optimal
value of h taking into account the noise term. To bypass
this difficulty, it is possible to use new statistical meth-
ods which do not force us to choose a global smoothing
parameter. Instead, they adapt locally to the behavior
of the density f based on the available data. Wavelet
based-density estimation, which we will introduce in the
next two sections, is one of these methods.

B. Bases of orthogonal wavelets

Wavelets are a standard mathematical tool to analyze
and compute non stationary signals. Here we recall basic
concepts and definitions. Further details can be found
in Ref. [19] and references therein. The construction
takes place in the Hilbert space L2(R) of square inte-
grable functions. An orthonormal family (ψj,i(x))j∈N,i∈Z
is called a wavelet family when its members are dilations
and translations of a fixed function ψ called the mother
wavelet:

ψj,i(x) = 2j/2ψ(2jx− i) (5)

where j indexes the scale of the wavelets and i their po-
sitions, and ψ satisfies

∫
ψ = 0. In the following we shall

always assume that ψ has compact support of length S.
The coefficients 〈f | ψj,i〉 =

∫
fψj,i of a function f for

this family are denoted by (f̃j,i). These coefficients de-
scribe the fluctuations of f at scale 2−j around position
i

2j . Large values of j correspond to fine scales, and small
values to coarse scales. Some members of the commonly
used Daubechies 6 wavelet family are shown in the left
panel of Fig. 1.

It can be shown that the orthogonal complement in
L2(R) of the linear space spanned by the wavelets is itself
orthogonally spanned by the translates of a function ϕ,
called the scaling function. Defining

ϕL,i = 2
L
2 ϕ(2Lx− i) (6)

and the scaling coefficients f̄L,i = 〈f | ϕL,i〉, one thus has
the reconstruction formula:

f =
∞∑

i=−∞
f̄L,iϕL,i +

∞∑
j=L

∞∑
i=−∞

f̃j,iψj,i (7)

The first sum on the right hand side of Eq. (7) is a smooth
approximation of f at the coarse scale, 2−L, and the sec-
ond sum corresponds to the addition of details at succes-
sively finer scales.
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If the wavelet ψ has M vanishing moments:∫
xmψ(x)dx = 0 (8)

for 0 ≤ m < M , and if f is locally m times contin-
uously differentiable around some point x0, then a key
property of the wavelet expansion is that the coefficients
located near x0 decay when j → ∞ like 2−j(m+ 1

2 ) [20].
Hence, localized singularities or sharp features in f affect
only a finite number of wavelet coefficients within each
scale. Another important consequence of (8) of special
relevance to particle methods is that for 0 ≤ m < M , the
moments

∫
xmf(x)dx of the particle distribution func-

tion depend only on its scaling coefficients, and not on
its wavelet coefficients.

If the scaling coefficients fJ,i at a certain scale J
are known, all the wavelet coefficients at coarser scales
(j ≤ J) can be computed using the fast wavelet trans-
form (FWT) algorithm [21]. We shall address the issue of
computing the scaling coefficients themselves in section
II D.

The generalization to d dimensions involves tensor
products of wavelets and scaling functions at the same
scale. For example, given a wavelet basis on R, a wavelet
basis on R2 can be constructed in the following way:

ψ1
j,i1,i2(x1, x2) = 2jψ(2jx1 − i1)ϕ(2jx2 − i2) (9)

ψ2
j,i1,i2(x1, x2) = 2jϕ(2jx1 − i1)ψ(2jx2 − i2) (10)

ψ3
j,i1,i2(x1, x2) = 2jψ(2jx1 − i1)ψ(2jx2 − i2) , (11)

where we refer to the exponent µ = 1, 2, 3 as the di-
rection of the wavelets. This name is easily understood
by looking at different wavelets shown in Fig. 1 (right).
The corresponding scaling functions are simply given by
2jϕ(2jx1 − i1)ϕ(2jx2 − i2). Wavelets on Rd are con-
structed exactly in the same way, but this time using
2d − 1 directions. To lighten the notation we write the
d-dimensional analog of Eq. (7) as

f =
∑

λ∈Λφ,L

fλφλ +
∑

λ∈Λψ,L

f̃λψλ (12)

where λ = (j, i, µ) is a multi-index, with the integer j
denoting the scale and the integer vector i = (i1, i2, . . .)
denoting the position of the wavelet.

The wavelet multiresolution reconstruction formula in
Eq. (7) involves an infinite sum over the position index i.
One way of dealing with this sum is to determine a priori
the non-zero coefficients in Eq. (7), and work only with
these coefficients, but still retaining the full wavelet basis
on Rd as presented above. Another alternative, which we
have chosen because it is easier to implement, is to peri-
odize the wavelet transform on a bounded domain [21].
Assuming that the coordinates have been rescaled so that
all the particles lie in [0, 1]d, we replace the wavelets and

scaling functions by their periodized counterparts:

ψj,i(x) →
∞∑

l=−∞

ψj,i(x+ l) (13)

ϕj,i(x) →
∞∑

l=−∞

ϕj,i(x+ l) . (14)

Throughout this paper we will consider only periodic
wavelets. For the sake of completeness we mention a
third alternative which is technically more complicated.
It consists in constructing a wavelet basis on a bounded
interval [22]. The advantage of this approach is that it
does not introduce artificially large wavelet coefficients
at the boundaries for functions f that are not periodic.

C. Wavelet based density estimation

The multiscale nature of wavelets allows them to adapt
locally to the smoothness of the analyzed function [21].
This fundamental property has triggered their use in a
variety of problems. One of their most fruitful applica-
tions has been the denoising of intermittent signals [23].
The practical success of wavelet thresholding to reduce
noise relies on the observation that the expansion of sig-
nals in a wavelet basis is typically sparse. Sparsity means
that the interesting features of the signal are well summa-
rized by a small fraction of large wavelet coefficients. On
the contrary, the variance of the noise is spread over all
the coefficients appearing in Eq. (12). Although the few
large coefficients are of course also affected by noise, cur-
ing the noise in the small coefficients is already a very
good improvement. The original setting of this tech-
nique, hereafter referred to as global wavelet shrinkage,
requires the noise to be additive, stationary, Gaussian
and white. It found a first application in plasma physics
in Ref. [24], where coherent bursts were extracted out of
plasma density signals. Since Ref. [23], wavelet denois-
ing has been extended to a number of more general sit-
uations, like non-Gaussian or correlated additive noise,
or to denoise the spectra of locally stationary time se-
ries [25]. In particular, the same ideas were developed
in Ref. [15, 26] to propose a wavelet-based density esti-
mation (WBDE) method based on independent observa-
tions. At this point we would like to stress that WBDE
assumes nothing about the Gaussianity of the noise or
whether or not it is stationary. In fact, under the inde-
pendence hypothesis – which is admittedly quite strong
– the statistical properties of the noise are entirely de-
termined by standard probability theory. We refer to
Ref. [27] for a review on the applications of wavelets in
statistics. In Ref. [28], global wavelet shrinkage was ap-
plied directly to the charge density of a 2D PIC code, in a
case were the statistical fluctuations were quasi Gaussian
and stationary. In particular, an iterative algorithm [29],
which crucially relies on the stationnarity hypothesis, was
used to determine the level of fluctuations. However,in
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the next section we will show an example where the noise
is clearly non-stationary, and this procedure fails.

Let us now describe the WBDE method as we have
generalized it to several dimensions. The first step is to
expand the sample particle distribution function, fδ, in
Eq. (1) in a wavelet basis according to Eq. (12) with the
wavelet coefficients

fλ = 〈fδ | ϕλ〉 =
1
Np

Np∑
n=1

ϕλ(Xn) (15)

f̃λ = 〈fδ | ψλ〉 =
1
Np

Np∑
n=1

ψλ(Xn) . (16)

Since this reconstruction is exact, keeping all the wavelet
coefficients does not improve the smoothness of fδ. The
simple and yet efficient remedy consists in keeping only a
subset of the wavelet coefficients in Eq. (12). A straight-
forward prescription would be to discard all the wavelet
coefficients at scales finer than a cut-off scale L. This ap-
proach corresponds to a generalization of the histogram
method in Eq. (2) with Ng = 2L. Because the char-
acteristic functions χλ of the cells in a dyadic grid are
the scaling functions associated with the Haar wavelet
family, Eqs. (12) and (2) are in fact equivalent for this
wavelet family. Accordingly, like in the histogram case,
we would have to choose L quite low to obtain a sta-
ble estimate, at the risk of losing some sharp features
of f . Better results can be obtained by keeping some
wavelet coefficients down to a much finer scale J > L.
However, to prevent that statistical fluctuations contam-
inate the estimate, only those coefficients whose modu-
lus are above a certain threshold should be kept. We
are thus naturally led to a nonlinear thresholding proce-
dure. In the one dimensional case, values of J , L, and
of the threshold within each scale that yield theoretically
optimal results have been given in Ref. [15]. This ref-
erence discusses the precise smoothness requirements on
f , which can accommodate well localized singularities,
like shocks and filamentary structures known to arise in
collisionless plasma simulations. There remains the ques-
tion of how to compute the f̃j,i based on the positions of
the particles. Although more accurate methods based on
(15) may be developed in the future, our present approx-
imation relies on the computation of a histogram, which
creates errors of order N−1

g . The complete procedure is
described in the following Wavelet-based density es-
timation algorithm:

1. construct a histogram fH of the particle data with
Ng = 2Jg cells in each direction,

2. approximate the scaling coefficients at the finest
scale Jg by :

fJg,i ' 2−Jg/2fH(2−Jg i) (17)

3. compute all the needed wavelet coefficients using
the FWT algorithm,

4. keep all the coefficients for scales coarser than L,

defined by 2dL ∼ N
1

1+2r0
p where r0 is the order of

regularity of the wavelet (1 in our case),

5. discard all the coefficients for scales strictly finer
than J defined by 2dJ ∼ Np

log2Np
,

6. for scales j in between L and J , keep only the
wavelet coefficients f̃λ such that |f̃λ| ≥ Tj =

C
√

j
Np

where C is a constant that must in prin-
ciple depend on the smoothness of f and on the
wavelet family [15].

In the following, except otherwise indicated, C = 1
2 .

For the wavelet bases we used orthonormal Daubechies
wavelets with 6 vanishing moments and thus support of
size S = 12 [30]. In our case, r0 = 1, which means
that the wavelets have a first derivative but no second
derivative, and the size of the wavelets at scale L for
d = 1 is roughly N−

1
3

p . Since Np � 1, it follows from the
definition at stage 5 of the algorithm that the size of the
wavelets at scale J is orders of magnitude smaller than
that. Using the adaptive properties of wavelets, we are
thus able to detect small scale structures of f without
compromising the stability of the estimate. Note that
the error at stage 2 could be reduced by using Coiflets
[31] instead of Daubechies wavelets, but the gain would
be negligible compared to the error made at stage 1. We
will denote the WBDE estimate of f as fW . In the one-
dimensional case,

fW =
2L∑
i=1

fL,iϕL,i +
J∑
j=L

2j∑
i=1

f̃j,iρj(f̃j,i)ψj,i (18)

where ρj is the thresholding function as defined by stage
6 of the algorithm : ρj(y) = 0 if |y| ≤ Tj and ρj(y) = 1
otherwise.

Finally, let us propose two methods for applying
WBDE to postprocess δf simulations. Recall that the
Lagrangian equations involved in the δf schemes are
identical to their full f counterparts. The only difficulty
introduced by the δf method lies in the evaluation of
phase space integrals of the form δI =

∫
A · (f − f0),

where A is a function on phase space and f0 is a known
reference distribution function. In these integrals, f − f0

should be replaced by δf , which is in turn written as
a product wf , where w is a “weighting” function. Nu-
merically, w is known via its values at particles posi-
tions, w(Xn), and the usual expression for δI is thus
δI =

∑Np
n=1A(Xn)w(Xn). We cannot apply WBDE di-

rectly to δf , since this function is not a density func-
tion.An elegant approach would be to first apply WBDE
to the unweighted distribution fδ to determine the set
of statistically significant wavelet coefficients, and to in-
clude the weights only in the final reconstruction (18)
of fW . A simpler approach, which we will illustrate
in section III B, consists in renormalizing δf , so that∫
|δf | = 1, and treat it like a density.
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D. Further issues related to practical
implementation

In this section we discuss how the WBDE method han-
dles two issues of direct relevance to plasma simulations:
conservation of moments and computational efficiency.
As mentioned before, due to the vanishing moments of
the wavelets in Eq. (8), the moments up to order M of the
particle distribution distribution are solely determined
by its scaling function coefficients. As a consequence,
we expect the thresholding procedure to conserve these
moments, in the sense that

MW
m,k =

∫
xmk f

W (x)dx '
∫
xmk f

δ(x)dx =Mδ
m,k

(19)
for 0 ≤ m ≤ M − 1 and for all i ∈ {1, . . . , d}. This
conservation holds up to round-off error if the wavelet
coefficients can be computed exactly. Due to the type of
wavelets that we have used, we were not able to achieve
this in the results presented here. There remains a small
error related to stages 1 and 2 of the algorithm, namely
the construction of fH and the approximation of the scal-
ing function coefficients by Eq. (17). They are both of
order N−1

g . We will present numerical examples of the
moments of fW in the next section.

Conservation of moments is closely related to a pe-
culiarity of the denoised distribution function resulting
from the WBDE algorithm: it is not necessarily every-
where positive. Indeed, wavelets are oscillating functions
by definition, and removing wavelet coefficients therefore
cannot preserve positivity in general. Further studies
are needed to assess if this creates numerical instabilities
when fW is used in the computation of self-consistent
fields. The same issue was discussed in Ref. [32] where a
kernel with two vanishing moments was used to linearly
smooth the distribution function. The fact that this ker-
nel is not everywhere positive was not considered harmful
in this reference. We acknowledge that it may render the
resampling of new particles from fW , if it is needed in
the future, more difficult. There are ways of forcing fW
to be positive, for example by applying the method to√
f and then taking the square of the resulting estimate,

but this implies the loss of the moment conservation, and
we have not pursued in this direction.

The number of arithmetic operations to perform a fast
wavelet transform from scale 2−J to scale 2−L with the
FWT in d dimensions is 2S2d(J−L), where S is the length
of the wavelet filter (12 for the Daubechies filter that
we are using). The definitions of J and L imply that

2d(J−L) scales like N
2
3
p

logNp
. The cost of the binning stage

of order Np, so that the total cost for computing fW is
O(Np), not larger than the cost of one time step dur-
ing the simulation that produced the data. The amount
of memory needed to store the wavelet coefficients dur-
ing the denoising procedure is proportional to Nd

g , which
should at least scale like 2dJ , and therefore also like Np.
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FIG. 1: Daubechies 6 wavelet family. Left, bold red: scal-
ing function ϕ at scale j = 5. Left, bold blue: wavelet ψ at
scale j = 5. Left, thin black, from left to right: wavelets
at scales 6, 7, 8 and 9. Right : (a) 2D scaling function
ϕ(x1)ϕ(x2). (b) first 2D wavelet ψ(x1)ϕ(x2). (c) second 2D
wavelet ϕ(x1)ψ(x2). (d) third 2D wavelet ψ(x1)ψ(x2).

If one wishes to use a finer grid to ensure high accuracy
conservation of moments, the storage requirements grow
like Nd

g . Thanks to optimized in-place algorithms, the
amount of additional memory needed during the compu-
tation does not exceed 3S. Another consequence of using
the FWT algorithm is that Ng must be an integer multi-
ple of 2J−L. For comparison purposes, let us recall that
most algorithms to compute the POD have a complexity
proportional to N3

g when d = 2.
To conclude this subsection, Fig. 2 presents an example

of the reconstruction of a 1D discontinuous density that
illustrates the difference between the KDE and WBDE
methods. The probability density function is uniform
on the interval

[
1
3 ,

2
3

]
and the estimates were computed

on [0, 1] to include the discontinuities. The sample size
was 214, and the binning used Ng = 216 cells to com-
pute the scaling function coefficients. For this 1D case
the value C = 2 was used to determine the thresh-
olds (step 6 of the algorithm). The KDE estimate is
computed using a Gaussian kernel with smoothing scale
h = 0.0138 [33]. The relative mean squared errors asso-
ciated with the KDE and WBDE estimates are respec-
tively 19.6 × 10−3 and 6.97 × 10−3. The error in the
KDE estimate comes mostly from the smoothing of the
discontinuities. The better performance of WBDE stems
from the much sharper representation of these disconti-
nuities. It is also observed that the WBDE estimate is
not everywhere positive. The approximate conservation
of moments is demonstrated on Table I. Note that the
error on all these moments for fW could be made arbi-
trary low by increasing Ng. The overshoots could also be
mitigated by using nearly shift invariant wavelets [34].

E. Proper Orthogonal Decomposition Method

For completeness, in this subsection we present a brief
review of the POD density reconstruction method. For
the sake of comparison with the WBDE method, we limit
attention to the time independent case. Further details,
including the reconstruction of time dependent densities
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FIG. 2: Estimation of the density of a sample of size 214

drawn uniformly in [1/3, 2/3], using Gaussian kernels (left)
or wavelets (right). The discontinuous analytical density is
plotted with a dashed line in the two cases.

using POD methods can be found in Ref. [14].
The first step in the POD method is to construct the

histogram fH from the particle data. This density is
represented by an Nx × Ny matrix f̂ij containing the
fraction of particles with coordinates (x, y) such that
Xi ≤ x < Xi+1 and Yi ≤ y < Yi+1. In two dimen-
sions, the POD method is based on the singular value
decomposition of the histogram. According to the SVD
theorem [36], the matrix f̂ can always be factorized as
f̂ = UWV t where U and V are Nx × Nx and Ny × Ny
orthogonal matrices, UU t = V V t = I, and W is a
diagonal matrix, W = diag (w1, w2, . . . wN ), such that
w1 ≥ w2 ≥ . . . ≥ wN ≥ 0. with N = min(Nx, Ny).

In vector form, the decomposition can be expressed as

f̂ij =
N∑
k=1

wk u
(k)
i v

(k)
j , (20)

where the Nx-dimensional vectors, u(k)
i , and the Ny-

dimensional vectors, v
(k)
j , are the orthonormal POD

modes and correspond to the columns of the matrices U
and V respectively. Given the decomposition in Eq. (20),
we define the rank-r approximation of f̂ as

f̂
(r)
ij =

r∑
k=1

wk u
(k)
i v

(k)
j , (21)

where 1 ≤ r < N , and define the corresponding rank-r
reconstruction error as

e(r) = ||f̂ − f̂ (r)||2 =
N∑

i=r+1

w2
i , (22)

where ||A|| =
√∑

ij A
2
ij is the Frobenius norm. Since

f̂ (r=N) = f̂ , we define e(N) = 0. The key property of
the POD is that the approximation in Eq. (21) is optimal
in the sense that

e(r) = min
{
||f̂ − g||2 |rank(g) = r

}
. (23)

That is, of all the possible rank-r Cartesian product ap-
proximations of f̂ , f̂ (r) is the closest to f̂ in the Frobenius
norm.

m = 0 m = 1 m = 2 m = 4

fK 1.81 · 10−5 1.70 · 10−5 7.52 · 10−4 3.90 · 10−3

fW 1.08 · 10−11 1.52 · 10−5 2.93 · 10−5 5.52 · 10−5

TABLE I: Relative absolute difference between the moments
of fδ and those of fK and fW , for the distribution function
corresponding to Fig. 2.

The SVD spectrum, {wk}, of noise free coherent sig-
nals decays very rapidly after a few modes, but the spec-
trum of noise dominated signals is relatively flat and de-
cays very slowly. When a coherent signal is contaminated
with low level noise, the SVD spectrum exhibits an ini-
tial rapid decay followed by a weakly decaying spectrum
known as the noisy plateau. In the POD method the
denoised density is defined as the truncation fP = f̂ (rc),
where rc corresponds to the rank where the noisy plateau
starts. In general it is difficult to provide a precise a priori
estimate of rc, and this is one of the potential limitations
of the POD method. One possible quantitative criterion
used in Ref. [14] is to consider the relative decay of the
spectrum, ∆(k) = (wk+1 − wk)/(w2 − w1), for k > 1,
and define rc by the condition ∆(rc) ≤ ∆c where ∆c is a
predetermined threshold.

III. APPLICATIONS

In this section, we apply the WBDE method to re-
construct and denoise the particle distribution function
starting from discrete particle data. The data corre-
sponds to three different groups of simulations: colli-
sional thermalization with a background plasma, guid-
ing center transport in toroidal geometry, and Vlasov-
Poisson electrostatic instabilities. The first two groups
of simulations were analyzed using POD methods in
Ref. [14]. One of the goals of this section is to com-
pare the POD method with the WBDE method in these
cases and in a new Vlasov-Poisson data set. This data set
allows the testing of the reconstruction algorithms in a
collisionless system that incorporates the self-consistent
evaluation of the forces acting on the particles, as op-
posed to the collisional, test particle problems analyzed
before. When comparing the two methods it is impor-
tant to keep in mind that POD has one free parameter,
namely the number r of singular vectors that are retained
to reconstruct the denoised distribution function. In the
cases studied here we used a best guess for r based on
the properties of the reconstruction. In Ref. [14] the POD
method was developed and applied to time independent
and time dependent data sets. However, in the com-
parison with the WBDE method, we limit attention to
2-dimensional time independent data sets.

The accuracy of the reconstruction of the density at a
fixed time t will be monitored using the absolute mean
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square error

e =
∑
i,j

|fest(xi, yj ; t)− fref (xi, yj ; t)|2 , (24)

where (xi, yj) are the coordinates of the nodes of a pre-
scribed Ng ×Ng grid in the space, and fest denotes the
estimated density computed from a sample with Np par-
ticles. For the WBDE method fest = fW , and for the
POD method fest = fP . In principle, the reference den-
sity, fref , in Eq. (24) should be the density function
obtained from the exact solution of the corresponding
continuum model, e.g. the Fokker-Planck or the Vlasov-
Poisson system. However, when no explicit solution is
available, we will set fref = fH where fH is the his-
togram corresponding to a simulation with a maximum
number of particles available which in the cases reported
here correspond to Np = 106. We will also use the nor-
malized error

e0 =
e∑

i,j |fref (xi, yj ; t)|2
. (25)

A. Collisional thermalization with a background
plasma

This first example models the relaxation of a non equi-
librium plasma by collisional damping and pitch angle
scattering on a thermal background. The plasma is spa-
tially homogeneous and is represented by an ensemble of
Np particles in a three-dimensional velocity space. As-
suming a strong magnetic field, the dynamics can be re-
duced to two degrees of freedom: the magnitude of the
particle velocity, v, and the particle pitch, λ = cos θ,
where θ is the angle between the particle velocity and
the magnetic field. In the continuum limit the particle
distribution function is governed by the Fokker-Planck
equation which in the particle description corresponds to
the stochastic differential equations

dλ = −λνD dt−
√
νD (1− λ2) dηλ , (26)

dv = −
[
ανs v −

1
2v2

d

dv

(
ν||v

4
)]

dt+
√
v2 ν|| dηv , (27)

describing the evolution of v ∈ (0,∞) and λ ∈ [−1, 1] for
each particle, where dηλ and dηv are independent Wiener
stochastic processes and νD, νs and ν‖ are functions of
v. For further details on the model see Ref. [14] and
references therein.

We considered simulations with Np = 103, 104, 105

and 106 particles. The initial conditions of the ensemble
of particles were obtained by sampling a distribution of
the form

f(v, λ, t = 0) = Cv2 exp
{
−1

2

[
(λ− λ0)2

σ2
λ

+
(v − v0)2

σ2
v

]}
,

(28)
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FIG. 3: Wavelet and POD analyses of collisional relaxation
particle data at different fixed times, with Np = 105. Top left:
absolute values of the wavelet coefficients sorted by decreasing
order (full lines), and thresholds given by the Waveshrink
algorithm (dashed lines). Top right: singular values of the
histogram used to construct fP . Bottom left: error estimate
e1/2

N2
g

with respect to the run for Np = 106 as a function of

the number of retained wavelet coefficients (full lines), error
obtained when using the Waveshrink threshold (dashed lines),
and error obtained using the WBDE method (dash-dotted

lines). Bottom right: error estimate e1/2

N2
g

for fP as a function

of the number l of retained singular values.

where a v2 factor has been included in the definition of
the initial condition so that the volume element is simply
dvdµ, C is a normalization constant, λ0 = 0.25, v0 = 5,
σλ = 0.25 and σv = 0.75. This relatively simple problem
is particularly well suited for the WBDE method because
the simulated particles do not interact and therefore sta-
tistical correlations can not build-up between them.

Before applying the WBDE method, we analyze the
sparsity of the wavelet expansion of fδ, and compare the
number of modes kept and the reconstruction error for
different thresholding rules. The plot in the upper left
panel of Fig. 3 shows the absolute values of the wavelet
coefficients in decreasing order at different fixed times.
The wavelet coefficients exhibit a clear rapid decay be-
yond the few significant modes corresponding to the gross
shape of the Maxwellian distribution. A similar trend is
observed in the coefficients of the POD expansion shown
in the upper right panel of Fig. 3. However, in the wavelet
case the exponential decay starts after more than 100
modes, whereas in the POD case the exponential decay
starts after only one mode.

The two panels at the bottom of Fig. 3 show the
square root of the reconstruction error normalized by
Ng,
√
e/N2

g , in the WBDE and POD methods. Because
in this case we do not have access to the exact solu-
tion of the corresponding Fokker-Planck equation at the
prescribed time, we used fH computed using Np = 106
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FIG. 4: Contour-plots of estimates of f for the collisional
relaxation particle data. First row: Histogram method es-
timated using Np = 105 particles. Second row: Histogram
method estimated using Np = 106 particles. Third row: POD
method estimated using Np = 105 particles. Fourth row:
WBDE method estimated using Np = 105 particles. The
three columns correspond to t = 28, t = 44 and t = 72 re-
spectively. The plots show twenty isolines, equally spaced in
the interval [0, 0.4].

particles as the reference density fref in Eq. (24). The
error observed when applying a global threshold to the
wavelet coefficients (bottom left panel in Fig. 3) is min-
imal when around 100 modes are kept whereas in the
POD case (bottom right panel in Fig. 3) the minimal
error is reached with about two or three modes. Fig. 3
also shows the wavelet threshold obtained by applying
the iterative algorithm based on the stationary Gaussian
white noise hypothesis [24, 29]. The error corresponding
to this threshold is larger than the optimal error because
the noise in this problem is very non-stationary due to
the lack of statistical fluctuations in the regions were par-
ticles are absent. In contrast, the error corresponding
to the WBDE procedure (dash-dotted line) is typically
smaller than the optimal error obtained by global thresh-
olding.This is not a contradiction, because the WBDE
procedure is not a global threshold, but a level depen-
dent threshold.

Figure 4 compares at different times the densities es-
timated with the WBDE and the POD (retaining only
three modes) methods using Np = 105 particles with the
histograms computed using Np = 105 and 106 particles.

t = 28 t = 44 t = 72

fH 0.14 0.17 0.12

fP 0.068 0.090 0.094

fW 0.064 0.094 0.088

TABLE II: Normalized root mean squared error e0 (25) for
the histogram, POD and WBDE estimates of the particle
distribution function for Np = 105 at three different times of
the Maxwellian relaxation problem.

The key future to observe is that the level of smoothness
of fW and fP corresponding to Np = 105 is similar, if
not greater, than the level of smoothness in fH computed
using ten times more particles, i.e. Np = 106 particles.
Table II summarizes the normalized reconstruction errors
for Np = 105 according Eq. (24) using fH with Np = 106

as fref . The WBDE and POD denoising methods offer
a significant improvement, approximately by a factor 2,
over the raw histogram method.

A more detailed comparison of the estimates can be
achieved by focusing on the Maxwellian final equilibrium
state

fM (v) =
2√
π
v2e−v

2
, (29)

where, as in Eq. (28), the v2 metric factor has been in-
cluded in the definition of the distribution. For this cal-
culations we considered sets of particles sampled from
Eq. (29) in the compact domain [−1, 1] × [0, 4]. Since
fM is an exact equilibrium solution of the Fokker-Plack
equation, the ensemble of particles will be in statistical
equilibrium but it will exhibit fluctuations due to the fi-
nite number of particles. Figure 5 shows the dependence
of the square root of the reconstruction error, e (normal-
ized by N2

g ) on the number of particles Np and the grid
resolution Ng for the WBDE and POD methods. The
main advantage of this example is that the exact den-
sity fM can be used as the reference density fref in the
evaluation of the error.

B. Collisional guiding center transport in toroidal
geometry

The previous example focused on collisional dynamics.
However, in addition to collisions, plasma transport in-
volves external and self-consistent electromagnetic fields
and it is of interest to test the particle density recon-
struction algorithms in these more complicated settings.
As a first step on this challenging problem we consider
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method.

a plasma subject to collisions and an externally applied
fixed magnetic field in toroidal geometry. The choice of
the field geometry and structure was motivated by prob-
lems of interest to magnetically confined fusion plasmas.
The data was presented and analyzed using POD method
in Ref. [14]. The phase space of the simulation is five
dimensional. However, as in Ref. [14], we limit atten-
tion to the denoising of the particles distribution function
along two coordinates corresponding to the poloidal angle
θ ∈ [0, 2π] and the cosine of the pitch angle µ ∈ [−1, 1].
The remaining three coordinates have been averaged out
for the purpose of this study. The θ coordinate is peri-
odic, but the pitch coordinate µ is not.

An important issue to consider is that the data was
generated using a δf code (DELTA5D). Based on an ex-
pansion on ρ/L� 1 (where ρ is the characteristic Larmor
radius and L a typical equilibrium length scale) the dis-
tribution function is decomposed into a Maxwellian part
fM and a first-order perturbation δf represented as a
collection of particles (markers)

δf(x) =
∑
n

Wnδ(x−Xn) , (30)

like in Eq. (1) except that each marker is assigned a time
dependent weight Wn whose time evolution depends on
the Maxwellian background [37]. The direct use of δf(x)
is problematic in the WBDE method because δf is not
a probability density. To circumvent this problem the
WBDE method was applied after normalizing the δf dis-
tribution so that

∫
|δf |H = 1, on a 128× 128 grid.

Figure 6 shows contour plots of the histogram fH cor-
responding to Np = 32 × 103, 64 × 103, and 1024 × 103

along with the WBDE and POD reconstructed densities.
The POD reconstructions were done using r = 3 modes,
as in Ref. [14]. It is observed that comparatively high
levels of smoothness can be achieved with considerably
less particles by using either the WBDE or POD recon-
struction methods. The WBDE method provides better
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FIG. 6: Contour plots of estimates of f for the collisional
guiding center transport particle data: Histogram method
(first row), POD method (second row), and WBDE method
(third row). The left, center and right columns correspond to
Np = 32·103 (left), Np = 128·103 (middle) andNp = 1024·103

(right) respectively. The plots show seventeen isolines equally
spaced within the interval [−0.5, 0.5].

results for the δf ∼ 0 contours. This is because POD
modes are tensor product functions, that have difficulties
in approximating the triangular shape of these contour
lines. Note that the boundary artifacts due to periodiza-
tion of the Daubechies wavelets do not seem to be very
critical. The large wavelet coefficients associated with
the discontinuity between the values of δf at µ = ±1 are
not thresholded, so that the discontinuity is preserved in
the denoised function. Figure 7 compares the reconstruc-
tion errors in the WBDE, POD, and histogram methods
as functions of the number of particles. To evaluate the
error we used fH computed using Np = 1024 × 103 as
the reference density fref . As in the collisional trans-
port problem, the error is reduced roughly by a factor 2
for both methods compared to the raw histogram. Note
that the scaling with Np is slightly better for WBDE than
for POD.

C. Collisionless electrostatic instabilities

In this section we apply the WBDE and POD meth-
ods to reconstruct the single particle distribution func-
tion from discrete particle data obtained from PIC sim-
ulations of a Vlasov-Poisson plasma. We consider a one-
dimensional, electrostatic, collisionless electron plasma
with an ion neutralizing background in a finite size do-
main with periodic boundary conditions. In the contin-
uum limit the dynamics of the distribution function is



11

10
4

10
5

10
6

10
−1

10
0

N
p

ε

 

 

Histogram

POD−Smoothed

Wavelet−Smoothed

FIG. 7: Error estimate, e1/2

N2
g

, for collisional guiding center

transport particle data according to the histogram, the POD,
and the wavelet methods.

governed by the system of equations

∂tf + v∂xf + ∂xφ∂vf = 0 (31)

∂2
xφ = ζ

∫
f(x, v, t)dv − 1 , (32)

where the variables have been non-dimensionalized us-
ing the Debye length as length scale and the plasma fre-
quency as time scale, and L is the length of the system
normalized with the Debye length. Following the stan-
dard PIC methodology [1], we solve the Poisson equation
on a grid and solve the particle equations using a leap-
frog method. The reconstruction of the charge density
uses a triangular shape function. We consider two initial
conditions: the first one leads to a bump on tail instabil-
ity, and the second one to a two streams instability.

1. Bump on tail instability

For the bump on tail instability we initialized ensem-
bles of particles by sampling the distribution function

f0(x, v) =
2

3πζ
1− 2qv + 2v2

(1 + v2)2 . (33)

using a pseudo-random number generator. This equilib-
rium is stable for q ≤ 1 and unstable for q > 1. The
dispersion relation and linear stability analysis for this
equilibrium studied in Ref. [35] was used to benchmark
the PIC code as shown in Fig. 8. In all the computa-
tions presented here q = 1.25 and Np = 104, 105 and
106. The spatial domain size was set to ζ = 16.52 to fit
the wavelength of the most unstable mode.

Since the value of q is relatively close to the marginal
value, the instability grows weakly and is concentrated
in a narrow band in phase space centered around the
point where the bump is located, v ≈ 1 in this case.
In order to unveil the nontrivial dynamics we focus the
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FIG. 8: Electrostatic energy as a function of time in the
Vlasov-Poisson PIC simulations of the bump on tail instability
for different numbers of particles. The straight lines denote
the growth rate predicted by linear stability theory [35].

analysis in the band v ∈ (−3, 3), and plot the depar-
ture of the particle distribution function from the initial
background equilibrium. The POD method is applied
directly to δfH = fH(x, v, t) − f0(x, v), but the WBDE
method is applied to the full fH(x, v, t), and f0(x, v) is
subtracted only for visualization. Note that because we
are considering only a subset of phase space, the effec-
tive numbers of particles, Np = 7318, Np = 73143 and
Np = 731472, are smaller than the nominal numbers of
particles, Np = 104, Np = 105 and Np = 106 respectively.

Figure 9 shows contour plots of δf , for different num-
ber of particles. Since the instability is seeded only by
the random fluctuations in the initial condition, increas-
ing Np delays the onset of the linear stability and this
leads to a phase shift of the nonlinear saturated regime.
To aid the comparison of the saturated regime for differ-
ent numbers of particles we have eliminated this phase
shift by centering the peak of the particle distributions
in the middle of the computational domain. A 256× 256
grid was used in the WBDE method, and a 50× 50 grid
was used for the histogram and the POD methods. The
thresholds for the POD method where r = 1, r = 2, and
r = 3 for Np = 104, Np = 105 and Np = 106, respec-
tively. Except for the case where Np = 104, both the
POD and WBDE estimates are very smooth, in agree-
ment with the expected behavior of f for this instability.
It is observed that the level of smoothness of the his-
togram estimated using 106 particles is comparable to
the level of smoothness achieved after denoising using
only 105 particles. One should mention that for scales
between L and J occurring in the WBDE algorithm we
find that none of the wavelet coefficients are above the
thresholds at each scale. In fact, a simple KDE estimate
with a large enough smoothing scale would probably do
the job pretty well for this kind of instabilities which do
not induce abrupt variations in f . Table III shows the
POD and WBDE reconstruction errors for Np = 104 and
Np = 105. The error is computed using formula (25),
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FIG. 9: Contour plots of estimates of δf for the bump-on-
tail instability PIC data at t = 149: Histogram method (first
row), POD method (second row), and WBDE method (third
row), The left, center and right columns correspond to Np =
104, Np = 105 and Np = 106 particles respectively. The plots
show thirteen contour lines equally spaced within the interval
[−0.0120.012].

taking for fref the histogram obtained from the simula-
tion with Np = 106.

Figure 10 shows the relative error on the second order
moment :

|MW
v,2 −Mδ

v,2|
Mδ

v,2

whereMW
v,2 is defined by (19). A similar quantity is also

represented for fH and fP . The time and number of
particles are kept fixed at t = 149 and Np = 106, and the
grid resolution is varied. As expected, fH and fW con-
serve the second order moment with accuracy O(N−1

g ).
The errors corresponding to fP is of the same order of
magnitude but seems to reach a plateau for Ng ' 1024.
This may be due to the fact that for Ng ≥ 1024, there
is less than one particle per cell of the histogram used to
compute fP .

2. Two-streams instability

As a second example we consider the standard two-
streams instability with an initial condition consisting of
two counter-propagating cold electron beams initially lo-
cated at v = −1 and v = 1. This case is conceptually
different to the previous one because the initial condition
depends trivially on the velocity. Therefore, there is no
statistical error in the sampling of the distribution and
the noise builds up only due to the self-consistent interac-
tions between particles. In other words, there is initially
a strong correlation between particles’ coordinates, which
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FIG. 10: Relative error on the second order moment as a
function of the grid resolution, Ng, in the POD, WBDE, and
histogram methods for the bump on tail instability particle
data at t = 149, with Np = 106 particles.

Np = 104 Np = 105

fH 0.443 0.140

fP 0.163 0.090

fW 0.173 0.086

TABLE III: Comparison of normalized root mean squared
errors e0 (25) for the raw histogram and for the WBDE and
POD methods, for the bump-on-tail instability at t = 149,
depending on the number of particles. The simulation with
Np = 106 is used as a reference to compute the error.

will eventually almost vanish. This situation offers a way
to test robustness of the WBDE method with respect to
the underlying decorrelation hypothesis.

The analysis is focused on four stages of the instabil-
ity corresponding to t = 40, 60, 100, and 400. Fig. 11
shows a comparison of the raw histogram, the POD and
the WBDE reconstructed particle distribution functions
at these four instants. Grid sizes were Ng = 1024 for
the WBDE estimate, and Ng = 128 for the two others.
For t = 40, no noise seems to have affected the particle
distribution yet, therefore a perfect denoising procedure
should conserve the full information about the particle
positions. Although WBDE introduces some artifacts in
regions of phase space that should contain no particles
at all, it remarkably preserves the global structure of the
two streams. This is possible thanks to the numerous
wavelet coefficients close to the sharp features in f that
are above the thresholds, in contrast to the bump-on-tail
case. On the next snapshot at t = 60, the filaments have
overlapped and the system is beginning to loose its mem-
ory due to numerical round-off errors. The fastest fila-
ments still visible on the histogram are not preserved by
WBDE, but the most active regions are well reproduced.
At t = 100, the closeness between the histogram and the
WBDE estimate is striking. To put it somewhat subjec-
tively, one may say that WBDE did not consider most of
the rough features present at this stage as ’noise’, since
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they are not removed. Only with the last snapshot at
t = 400 does the WBDE estimate begin to be smoother
than the histogram, suggesting that the nonlinear inter-
action between particles has introduced randomization in
the system.

The POD method is able to track very well the small
and large scale structures of the particle density using a
significantly smaller number of modes. In particular, for
t = 40, 60, 100, and 400 only r = 28, r = 27, r = 18, and
r = 5 modes were kept. The decrease of the number of
modes with time is a result of the lost of fine scale features
in the distribution function. Despite this, a limitation of
the POD method is the lack of a thresholding algorithm
to determine the optimal number of modes a priori.

IV. SUMMARY AND CONCLUSION

Wavelet based density estimation was investigated as
a post-processing tool to reduce the noise in the recon-
struction of particle distribution functions starting from
discrete particle data. This is a problem of direct rele-
vance to particle-based transport calculations in plasma
physics and related fields. In particular, particle meth-
ods present many advantages over continuum methods,
but have the potential drawback of introducing noise due
to statistical sampling.

In the context of particle in cell methods this prob-
lem is typically approached using finite size particles.
However, this approach, which is closely related to the
kernel density estimation method in statistics, requires
the choice of a smoothing scale, h, (e.g., the standard
deviation for Gaussian shape functions) whose optimal
value is not known a priori. A small h is desirable to fit
as many Debye wavelengths as possible, whereas a large
h would lead to smoother distributions. This situation
results from the compromise between bias and variance
in statistical estimation. To address this problem we
proposed a wavelet based density estimation (WBDE)
method that does not require an a priori selection of a
global smoothing scale and that its able to adapt locally
to the smoothness of the density based on the given dis-
crete data. The WBDE was introduced in statistics [15].
In this paper we extended the method to higher dimen-
sion and applied it for the first time to particle-based
calculations. The resulting method exploits the multires-
olution properties of wavelets, has very weak dependence
on adjustable parameters, and relies mostly on the raw
data to separate the relevant information from the noise.

As a first example, we analyzed a plasma collisional re-
laxation problem modeled by stochastic differential equa-
tions. Thanks to the sparsity of the wavelet expansion
of the distribution function, we have been able to ex-
tract the information out of the statistical fluctuations
by nonlinear thresholding of the wavelet coefficients. At
late times, when the particle distribution approaches a
Maxwellian state, we have been able to quantify the dif-
ference between the denoised particle distribution func-

tion and its analytical counterpart, thus demonstrating
the improvement with respect to the raw histogram. The
POD-smoothed and wavelet-smoothed particle distribu-
tion functions were shown to be roughly equivalent in this
respect. These results were then extended to a more com-
plex situation simulated with a δf code. Finally, we have
turned to the Vlasov-Poisson problem, which includes in-
teractions between particles via the self-consistent elec-
tric field. The POD and WBDE methods were shown
to yield quantitatively close results in terms of mean
squared error for a particle distribution function resulting
from nonlinear saturation after occurrence of a bump-on-
tail instability. We have then studied the denoising al-
gorithm during nonlinear evolution after the two-streams
instability starting from two counter-streaming cold elec-
tron beams. This initial condition violates the decorre-
lation hypothesis underlying the WBDE algorithm, and
thus offers a good way to test its robustness regarding
this aspect. The WBDE method was shown to yield
qualitatively good results without changing the threshold
values.

One limitation of the present work comes from the way
denoising quality is measured. We have considered the
quadratic error on the distribution function f as a first
indicator of the quality of our denoising methods. How-
ever, it may be more relevant to compute the error on the
force fields, which determine the evolution of the simu-
lated plasma. These forces depend on f through inte-
grals, and statistical analysis of the estimation of f using
weak norms, like was done in [38] in the deterministic
case, could therefore be of great help to obtain thresh-
old parameters more efficient than those considered in
this study. The computational cost of our method scales
linearly with the number of particles and with the grid
resolution. Therefore, WBDE is an excellent candidate
to be performed at each time step during the course of a
simulation. Once the wavelet expansion of the denoised
particle distribution function is known, it is possible to
continue using the wavelet representation to solve the
Poisson equation [39] and to compute the forces. The mo-
ment conservation properties that we have demonstrated
in this paper should mitigate the unavoidable dissipative
effects implied by the smoothing stage. In Ref. [5], a
dissipative term was introduced in a global PIC code to
avoid unlimited growth of particle weights in δf codes,
and this was shown to improve long time convergence of
the simulations. It would be of interest to assess if the
nonlinear dissipation operator corresponding to WBDE
has the same effect.
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