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Abstract. Intermittency of quasi-static magnetohydrodynamic (MHD) turbulence in an
imposed magnetic field is examined, using three-dimensional orthonormal wavelets. The wavelet
analysis is applied to two turbulent MHD flows computed by direct numerical simulation with
5123 grid points and with different intensities of the imposed magnetic field. It is found that
the imposed magnetic field leads to a substantial amplification of intermittency of the flow,
especially in the direction of the imposed magnetic field.

1. Introduction

Quasi-static magnetohydrodynamic (MHD) turbulence subject to an imposed magnetic field
exhibits multiscale anisotropy and spatial intermittency. Different tools to quantify the
anisotropy of turbulence have been developed so far (see e.g., Knaepen & Moreau, 2008).
Spectral analyses, while capturing the multiscale character, cannot quantify the spatial
intermittency of the flows. However, the wavelet representation can simultaneously examine
information on space, scale and direction, since the representation is based on functions localized
in space, scale and direction. Wavelet techniques have been used to analyze, model and compute
turbulent flows. Readers interested in applications of wavelet techniques to fluid dynamics may
refer to the recent review articles (Farge, 1992; Schneider & Vasilyev, 2010). In this paper we
study the influence of the strength of the magnetic field on the intermittency and the anisotropy
of quasi-static MHD turbulence, using wavelet-based statistics introduced in Bos et al. (2007).
Further details of the study can be found in Okamoto et al. (2011).

2. Direct numerical simulation of quasi-static MHD turbulence

We consider homogeneous MHD turbulence of incompressible fluid in a uniform magnetic field
B0 in a 2π periodic box. In the limit of low magnetic Reynolds number, the motion of the flow
obeys the following equations under the so-called quasi-static MHD approximation (see e.g.,



Knaepen et al., 2004),

∂

∂t
u + (u · ∇)u = −1

ρ
∇p+ ν∆u − σ

ρ
∆−1(B0 · ∇)2u + f , (1)

∇ · u = 0. (2)

Here, u is the velocity field, ρ the fluid density, ν the kinematic viscosity and σ the electrical
conductivity. The term f expresses the solenoidal external force applied to the velocity field.
The constant magnetic field is given by B0 = (0, 0, B0) in the Cartesian coordinate system.

The third term on the right-hand side of equation (1) is the rotational part of the Lorentz
force, and the modified pressure p includes both the fluid pressure and the magnetic pressure.
The symbol ∆−1 represents the inverse Laplace operator. An estimate of the ratio of the
Lorentz force to the nonlinear term in equation (1) is given by the interaction parameter
N = σB2

0L/(ρu
′), where u′ = ⟨|u|2⟩/3 and L is the integral length scale defined by L =

π/(2u′2)
∫
E(k)/k dk. Here, ⟨·⟩ denotes the spatial average and E(k) is the energy spectrum.

We performed DNS computations at two interaction parameters N = 1 and 3. We used a
Fourier pseudo-spectral method at 5123 grid points with a fourth-order Runge-Kutta method
for time marching. The external solenoidal random force f is applied to the velocity field only
in the low wavenumber range for k < 2.5.

3. Wavelet-based statistics

The velocity field u = (u1, u2, u3), sampled at resolution n = 23J , is decomposed into an
orthogonal discrete wavelet series,

u(x) =
∑
λ

ũλψλ(x), (3)

where the multi-index λ = (j, i, d) denotes, for each wavelet ψλ, the scale index j (varying from
0 to J −1), the spatial index i = (i1, i2, i3), having 23j values for each j and d, and the direction
index d = 1, ..., 7. x = (x1, x2, x3). The discrete wavelet basis ψλ(x) consists of continuous
functions, although the index set Λ is discrete. The three-dimensional wavelets ψλ(x) correspond
to products of one-dimensional scaling functions and wavelets in various combinations, as shown
in (Mallat, 2010; Meyer, 1992) and (Meneveau, 1991) for two- and three-dimensional wavelets,
respectively. The spatial average of ψλ(x), denoted by ⟨ψλ(x)⟩, as well as higher order moments
vanish. In the present work, the compactly supported Coiflet wavelets with filter width 12 and
4 vanishing moments are used.

The wavelet coefficients measure the fluctuations of u at scale 2−j and around position i/2j

for each of the seven directions d. The contribution of u at scale 2−j and in direction d, denoted
by uj,d, is obtained by fixing (j, d) and summing only over i in Eq. (3). By construction we have

u(x) =
J−1∑
j=0

7∑
d=1

uj,d(x). (4)

Relating scale 2−j with wavenumber kj as kj = kψ2j , where kψ is the centroid wavenumber of
the chosen wavelet, the following wavelet-based statistics were introduced in (Bos et al., 2007).
We define the directional wavelet energy spectrum for the velocity component uℓ by

Ẽℓ(kj , d) =
⟨{uℓj,d(x)}2⟩

2∆kj
, (5)



where ∆kj = kj ln 2. Summing Ẽℓ(kj , d) from d = 1 to 7 yields the spectrum Ẽℓ(kj) =∑7
d=1 Ẽ

ℓ(kj , d). To study higher order statistics, we define the flatness of uℓ at scale 2−j and
direction d by

F ℓj,d =

⟨
{uℓj,d(x)}4

⟩⟨
{uℓj,d(x)}2

⟩2 , (6)

noting that ⟨uℓj,d(x)⟩ = 0.
The wavelet analysis is applied to the DNS fields at two interaction parameters N = 1 and 3.

The fields are axisymmetric with respect to the x3-axis, which is parallel to the imposed magnetic
field B0. Hence, we consider the directional statistics only for three principle directions, i.e.,
d = 1, 2 and 3.

4. Numerical Results

To obtain an intuitive idea on the flow structures at N = 1 and 3, we visualize the modulus of
the vorticity field |ω| in Figure 1. For N = 3, in Figure 1(left), one can see sheet-like structures
and tube-like structures. Many of the structures are aligned parallel with the imposed magnetic
field B0. The alignment of the structures shows the strong anisotropy of the flow. In contrast,
the structures at N = 1 in Figure 1 (right) exhibit entangled vortex tubes, which do not seem
to be aligned with any specific direction. Thus, the field at N = 1 is less anisotropic than that
at N = 3.

To examine the directional anisotropy of the velocity component u1 which is perpendicular to
B0, we plot directional wavelet energy spectra Ẽ1(kj , d) in Fig. 2. For N = 3, the largest energy
contribution in Ẽ1(kj) is made by Ẽ1(kj , 2), followed by the remaining spectra, Ẽ1(kj , 1) and
Ẽ1(kj , 3). The statistics for the field at N = 1 confirm the weaker anisotropy compared to the

 0
B

Figure 1. Visualization of intense vorticity regions of the DNS fields for N = 3 (left) and
N = 1 (right) at t = 9T . Isosurfaces of |ω| = ⟨|ω|⟩ + 4σ are shown, where σ denotes the
standard deviation of |ω|. The vertical arrow indicates the direction of the imposed magnetic
field.
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Figure 2. Directional wavelet energy spectra Ẽ1(kj , d) vs. kjη for the DNS field with N = 3
(left), the DNS field with N = 1 (right), where η is the Kolmogorov dissipation scale. The solid
black lines with + show the corresponding wavelet energy spectra Ẽ1(kj).
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Figure 3. Scale-dependent flatness F 1
j vs. kjη for the DNS fields with N = 1 (left) and N = 3

(right).

case N = 3. The spectra show that Ẽ1(kj , 2) ∼ Ẽ1(kj , 3) for kjη & 0.03, while the contribution
of Ẽ1(kj , 1) is smaller.

To get insight into the anisotropy of intermittency, we plot in Fig. 3 the directional scale-
dependent flatness F 1

j,d, (d = 1, 2, 3). For N = 3 we find that F 1
j,3 > F 1

j,1 and F 1
j,3 > F 1

j,2 at each
scale satisfying kjη & 0.3. For N = 3, the flatness values F 1

j,d(d = 1, 2, 3) are larger than those
for N = 1. In particular, the flatness in the x3-direction, F 1

j,3, for the case N = 3 is significantly
larger than that for N = 1. These results for the flatness F 1

j,d show that the imposed magnetic
field B0 plays a significant role on the amplification of small-scale intermittency, especially the
intermittency in the x3-direction, which is parallel to B0.

5. Conclusion and discussion

Our results have shown that the imposed magnetic field B0 plays a significant role, not only
for the anisotropy, but also for the amplification of small-scale intermittency, especially in the
direction parallel to B0. This is in contrast to the case of incompressible rotating hydrodynamic
(HD) turbulence. The rotational effect does not play a major role on the amplification of
small-scale intermittency Bos et al. (2007). Nevertheless, both rotational HD turbulence and
quasi-static MHD turbulence show structures which are aligned with the rotational axis and the
imposed magnetic field, respectively.
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