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The Lighthill–Weis-Fogh ‘clap–fling–sweep’ mechanism for lift generation in insect
flight is re-examined. The novelty of this mechanism lies in the change of topology (the
‘break’) that occurs at a critical instant tc when two wings separate at their ‘hinge’ point
as ‘fling’ gives way to ‘sweep’, and the appearance of equal and opposite circulations
around the wings at this critical instant. Our primary aim is to elucidate the behaviour
near the hinge point as time t passes through tc. First, Lighthill’s inviscid potential flow
theory is reconsidered. It is argued that provided the linear and angular accelerations
of the wings are continuous, the velocity field varies continuously through the break,
although the pressure field jumps instantaneously at t = tc. Then, effects of viscosity
are considered. Near the hinge, the local Reynolds number is very small and local
similarity solutions imply a logarithmic (integrable) singularity of the pressure jump
across the hinge just before separation, in contrast to the ‘negligible pressure jump’
of inviscid theory invoked by Lighthill. We also present numerical simulations of the
flow using a volume penalization technique to represent the motion of the wings.
For Reynolds number equal to unity (based on wing chord), the results are in good
agreement with the analytical solution. At a realistic Reynolds number of about 20,
the flow near the hinge is influenced by leading-edge vortices, but local effects still
persist. The lift coefficient is found to be much greater than that in the corresponding
inviscid flow.
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1. Introduction
Very small insects fly at much lower Reynolds number than larger insects, such

as butterflies or dragonflies, and therefore have to develop different strategies for
the maintenance of lift. One example is the chalcid wasp Encarsia formosa, used as
a biological pesticide for the control of white fly (Aleyrodidae), a common pest of
garden and greenhouse vegetables. The insect’s body is less than 1 mm long and its
wings are about 1.5 mm in span (see Weis-Fogh 1973). It has two pairs of wings,
the front and rear wings being hooked together and moving as one. As common
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(a) (b) (c) (d)

Figure 1. Schematic diagram showing clap (a), fling (b, c) and sweep (d ) of E. formosa.
Figures are adapted from Weis-Fogh (1973).

for small insects, each wing is enlarged along its edge by hairs, which entrain air,
thus increasing the effective area without adding much extra weight. Through these
hairs the insect actually senses the forces exerted by the flow (Chapman 1998) and
probably uses this aerodynamic information to optimize its hovering motion. E.
formosa flaps its wings at about 400 s−1 by vibrating the muscles in its thorax. It
has developed a morphology, for which the wings are mounted on flexible stalks and
work as paddles, allowing for flapping motions that cannot be achieved by larger
insects.

In one distinctive mode of motion, the insect adopts three successive movements
during one downstroke, a ‘clap, fling and sweep’ of its wings, not unlike the human
breaststroke used for swimming (see figure 1). Through this mechanism, the insect
can potentially generate the lift and thrust that it needs to perform flight manoeuvres
or to carry load. The wings first clap together behind the insect’s back, then open in
a fling motion around the lower ‘hinge’, and finally separate at the hinge and sweep
apart. At the end of this downstroke, the insect flips its wings up and translates
them inwards until their leading edges join at the upper hinge. The main difference
as compared with other hovering insects is that the flexible stalks on which its
wings are mounted enable E. formosa to clap its wings together at the end of this
upstroke.

Besides E. formosa, many other tiny insects perform this kind of motion too, e.g.
the greenhouse whitefly Trialeurodes vaporariorum (Weis-Fogh 1975), thrips (Ellington
1984), the parasitoid wasp Muscidifurax raptor and the jewel wasp Nasonia vitripennis
(Miller & Peskin 2009). Larger insects, such as locusts, may also use it (Cooter &
Baker 1977).

This type of hovering motion was discovered by Weis-Fogh (1973) in his extensive
study of insect flight, through the use of an ultra-fast camera (up to 8000 frames per
second). Weis-Fogh observed that some hovering insects, and in particular E. formosa,
generate larger aerodynamic forces – both lift and drag – than can be explained
by traditional steady-state aerodynamics. He conjectured that a contact between
the trailing edges may lead to favourable unsteady aerodynamic interactions. In
collaboration with Lighthill, he described the essentials of this novel clap–fling–sweep
hovering motion.

Lighthill (1973) argued that the clap–fling–sweep process provides a mechanism for
the instantaneous generation of circulation and lift, even in the ‘ideal fluid’ situation
in which the fluid is regarded as strictly inviscid and incompressible, and the flow
irrotational (curl u = 0). This mechanism is associated with the separation of the
wings at the lower hinge-point when fling begins to give way to sweep, as shown in
figures 2 and 3. We shall refer to this instantaneous change of topology as ‘the break’,
since it is at this moment that the wings break apart. Lighthill argued that, since the
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Figure 2. Sketch of a two-dimensional section of the wings during fling (a) and sweep (b).
Note that θ = 0 on the axis y = 0 (x > 0) and that x = r cos θ , y = r sin θ .

jump in pressure across the hinge is relatively small at the moment of separation, the
circulation ±Γ around each wing should be conserved, and close to that required ‘for
generating maximum lift at once in the subsequent horizontal motion’ (our italics).
The lift envisaged here is the Magnus lift ρUΓ on each wing, where U is the
ultimate steady outward wing speed during the sweep phase; of course it will take
time, depending on the initial acceleration, for this speed to build up to its ultimate
value.

As recognized by Lighthill and by subsequent authors (e.g. Maxworthy 1979),
viscous effects associated with vortex shedding from the sharp edges of the wings
during the complete periodic cycle of wing motion are also important in determining
the time variation of the total circulation around each wing and the resulting lift
force. However, the importance of the Lighthill–Weis-Fogh mechanism lies in the
fact that it can operate in a totally inviscid fluid (however unrealistic such a medium
may deem to be), that it provides a mechanism of lift generation associated with
change of boundary topology (rather than with viscosity), and that it is therefore
not subject to the Wagner effect, whereby the generation of lift is delayed until the
process of viscous vortex shedding is accomplished (Wagner 1925). Thus, the key
phenomenon is the apparently instantaneous generation of lift at the instant of wing
separation.

In practice, viscous effects cannot be neglected, no matter how large the Reynolds
number associated with the wing motion may be. As observed above, this is of
course already well recognized in relation to the fundamental process of vortex
shedding at sharp edges: the leading-edge separation during fling was first found
experimentally by Maxworthy (1979), Spedding & Maxworthy (1986), and observed
in numerical simulations by Haussling (1979). A modification of Lighthill’s theory
was then proposed by Edwards & Cheng (1982) to account for the separated
vortices.

We should mention that all hovering insect wings produce leading-edge vortices, but
they become much stronger when the clap–fling–sweep is employed. This is because
proximity of the trailing edges inhibits a counterflow past them. The flow phenomena
at that location are very different from those usually observed near the trailing edges
of conventional aerofoils, and deserve examination.

One can expect important viscous effects during the fling phase near the hinge point,
which is a stagnation point on both sides of the hinge. For E. formosa, the hovering
insect for which Weis-Fogh (1973) first identified the clap–fling–sweep process, the
Reynolds number Re =Ωc2/ν, based on the wing angular velocity Ω , the wing chord
c, and the kinematic viscosity of the surrounding air ν, is approximately 20. Near
the hinge, the local Reynolds number is (r/c)2Re, and is therefore of order unity or
smaller for r < 0.2c, r being distance from the hinge. In this region viscous effects, far
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Figure 3. Two-dimensional idealization of the clap–fling–sweep motion of the wings.
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Figure 4. Kinematic parameters of the clap–fling–sweep motion: (a) half-distance between
the trailing edges, (b) velocity of sweep, (c) angle of incidence and (d ) angular velocity of the
wings.

from being negligible, are in fact dominant, and may be expected to play a critical role
in the local dynamics at the instant of separation. The Stokes flow near such a hinge
point was first studied by Moffatt (1964), and further by Moffatt & Duffy (1980),
where the distinction between contributions to the flow that are either locally or non-
locally determined was recognized. The pressure field has a logarithmic singularity at
the hinge-point (a singularity that can be resolved by taking account of non-sharpness
of the corner), and the jump in pressure across the hinge before separation is infinite
(positive or negative, depending on the angle), in profound contrast to the ‘negligible’
pressure difference identified by Lighthill for the ideal inviscid scenario, and again
indicating a need to closely examine viscous effects near the hinge at the moment of
separation. This is a prime aim of the present contribution.

First, however, it will be useful to consider some aspects of the two-dimensional,
inviscid, irrotational flow scenario, as formulated by Lighthill. This is done in § 2.
Then, in § 3, we proceed to the viscous case, and use Stokes approximation to derive
local solutions for the flow. In § 4, numerical simulations of the flow are presented
and compared with the analytical results. Finally, conclusions are drawn in § 5.

The computations presented in this paper are performed for an idealized motion
of the wings designed to simplify the analysis of the flow shortly before and after
the break. This motion is illustrated schematically in figure 3, and a time history
of the kinematic parameters is shown in figure 4 (this refers to the left wing with
unit chord length, c = 1). Most of our discussion will concern only the stages of fling
and sweep. Clap is only considered in § 4.4 to provide an initial condition different
from the state of rest. We adopt the convention that t =0 marks the beginning of
the fling phase. During the clap (for t < 0), the trailing edges move with horizontal
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velocity U = −1 − cos t , and the wings rotate with angular velocity Ω = 1. At t = 0,

the wings are vertical and fully clapped. Then fling begins, and the wings start
rotating with an increasing angular velocity Ω = 100(0.2t − t2). At time ti = 0.1, the
angular velocity reaches its maximum, Ωmax = 1, and then remains constant. The angle
of incidence mounts to α = 60◦ at tc = (π + 0.1)/3 ≈ 1.0805, and the wings break and
sweep apart with an increasing velocity U = 2.4(t − tc)

2, so that the distance d between
the trailing edges increases like (t − tc)

3. The angular velocity is kept constant through
the initiation of sweep for the sake of simplicity. It is essential that Ω and U are
continuous through the break together with their derivatives, in order to guarantee
no impulsive forces which the wings cannot sustain. Of course, the motion of real
insect wings is much more complex. Numerical simulations of the flow past trailing
edges of the wings with somewhat more realistic kinematics were reported recently
by Kolomenskiy et al. (2010).

2. Inviscid fluid theory
We first review the potential flow theory for the fling phase, starting with a simple

local analysis near the hinge point. Then we discuss the initiation of sweep.

2.1. Local analysis near the hinge

We use polar coordinates (r, θ), the wings AB and CD (see figure 2a) being at
θ = α and θ = −α, 0 < r < c, and we shall suppose that α < π/2; the points A and
C coincide during the fling phase. The wings fling open with angular velocities ±Ω ,
where Ω = dα/dt . Because of the symmetry about θ = 0, we may focus attention
throughout on the left-hand wing AB , and the flow in the region 0 <θ < π. The
velocity field driven by the motion of the wings is assumed irrotational:

(u, v) = ∇φ =

(
∂φ

∂r
,
1

r

∂φ

∂θ

)
, with ∇2φ = 0. (2.1)

Near the hinge A, we may suppose that the flow should be determined solely by α

and Ω , and on dimensional grounds, then the potential must take the form

φ1 = A1Ωr2f (θ), (2.2)

where A1 is a dimensionless constant dependent only on α. Symmetry about θ = 0
and the boundary condition

1

r

∂φ1

∂θ
= Ωr on θ = α, (2.3)

then determine φ1 in the form

φ1 = − Ω

2 sin 2α
r2 cos 2θ. (2.4)

This is a (local) similarity solution of the first kind, in the terminology of Barenblatt
(1979), and it is a uniform straining flow with hyperbolic streamlines whose asymptotes
are parallel and perpendicular to the bisector of the hinge angle. This is in fact the
correct asymptotic form for the flow on the upper side of the wings |θ | <α, but not
on the lower side |θ | >α, as will now be explained.

We may add to φ1 any solution φ2 of the homogeneous problem

∇2φ2 = 0,
1

r

∂φ2

∂θ
= 0, on θ = α, (2.5)
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and on the upper side of the wings, one such solution with the appropriate symmetry
is

φ2 = A2r
q cos qθ, with q = π/α. (2.6)

Here A2 is a constant with dimensions (length)2−q , which cannot be determined by
local considerations alone. It is influenced by conditions remote from the hinge, and
is, again in Barenblatt’s terminology, a similarity solution of the second kind. However,
since q > 2, the velocity field u2 = ∇φ2 is negligible compared with the field u1 = ∇φ1

sufficiently near the corner and (2.4) does therefore provide the dominant contribution
to the flow in this region.

The situation is different on the lower side |θ | >α. Here, the solution analogous to
(2.6) and with the appropriate symmetry is

φ′
2 = A′

2r
q cos q(π − θ), where now q = π/(π − α) < 2. (2.7)

This term dominates over φ1 sufficiently near the hinge and provides the dominant
contribution to the flow on the lower side. The only problem is that the coefficient A′

2

is influenced by remote conditions and cannot be determined by local analysis alone.
The difference between φ1 and φ′

2, and the corresponding jump in tangential velocity
∂φ/∂r across either wing, provides a contribution to the ‘bound vorticity’, equal and
opposite in sign, within the two wings. The distribution of bound vorticity over the
whole wings may be expected to provide a flow which, at a large distance from the
wings, should have dipole form; this is confirmed below.

2.2. Some aspects of Lighthill’s fling solution

Guided by the above discussion, let us now consider some properties of Lighthill’s
solution for the irrotational flow during the fling phase (for notation, see figure 3
and also Lighthill 1973). We note a misprint in Lighthill’s equation (2) defining the
Schwarz–Christoffel transformation between the upper half of his cut z-plane and the
upper half of the Z-plane, which should correctly read as

dz

dZ
= K

(
Z − 1

Z + 1

)α/π
Z − a

Z − 1
, (2.8)

with a = 1 − 2α/π. As pointed out by Edwards & Cheng (1982), this transformation,
which has singularities at Z = −1, a and 1, can be integrated explicitly to give

z = K(1 + Z)1−λ(Z − 1)λ, where λ = α/π < 1/2. (2.9)

The validity of (2.9) may be easily verified by direct differentiation (note that there
are errors and/or misprints in (1) of Edwards & Cheng (1982), but (4) is correct
therein). The constant K is fixed by the requirement that the point Z = a maps to the
point z = c eiα , i.e.

K =
c

2
(1 − λ)λ−1λ−λ, (2.10)

where c is the chord of the wing. Note that Z(= X + iY ) is a dimensionless complex
variable, whereas z(= x + iy = r eiθ ) has the same dimension as K and c, i.e. length.

The instantaneous complex potential w = φ + iψ corresponding to angular velocity
Ω = dα/dt is then given by

w(z) =
ΩK2

2π

∫ 1

−1

(1 + t)2−2λ(1 − t)2λ(Z − t)−1dt, (2.11)
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where Z is given in terms of z by the inverse mapping associated with (2.9). Edwards &
Cheng (1982) gave an explicit expression for this integral in the form

w =
ΩK2

2 sin 2α
(−(Z + 1)2−2λ(Z − 1)2λ + Z2 + 2Z(1 − 2λ) + const.), (2.12)

where the integration constant equals 2a2−1 if we require w to vanish at infinity. From
(2.12), it is straightforward to obtain formulae for the complex velocity, u−iv = dw/dz,
and for the pressure,

p = −ρ

(
∂φ

∂t
+

|u − iv|2

2

)
, (2.13)

where ρ stands for the density of the fluid, and the ambient pressure is zero.
Alternatively, the complex potential w can be expressed in terms of the Gauss

hypergeometric function F (Gradshteyn & Ryzhik 1980, p. 290, 3.228, equation 3):

w = −8ΩK2λ(1 − λ)(1 − 2λ)

3 sin 2α(1 − Z)
F

(
1, 2λ + 1; 4;

2

1 − Z

)
. (2.14)

This function is analytic in the complex Z-plane cut along the real axis from −1 to
1. Note that for |Z| � 1, z =KZ +O(1) and (2.14) gives

w =
8ΩK3λ(1 − λ)(1 − 2λ)

3 sin 2α

1

z
+ O(z−2), (2.15)

in which the leading term is the complex potential of a dipole directed towards the
origin along the line θ =0, as anticipated from the discussion of § 2.1. This can be
thought of either as a vortex dipole associated with the equal and opposite bound
vorticity distributions in the two wings, or as a source–sink dipole, the source being
on the lower side of the wings and the sink on the upper side while the angle α

is increasing. Lighthill recognized the sink character of the flow into the opening
angle when it is small, but his sketch of the flow structure in his figure 5 is seriously
misleading. In fact, each streamline of the flow in the half-plane 0<θ < π starts from
a point z = r eiα (0 < r < c) on the lower side of the wing θ = α and, by virtue of
incompressibility, ends at the same point reiα on the upper side. This can be seen in
figure 5, which displays the streamlines and the iso-potential lines corresponding to
(2.12). One can also observe the dipolar character of the flow far-field.

We may use (2.12) to determine the asymptotic nature of the flow near the hinge
point A. Thus, near Z = −1, it gives

w ≈ − ΩK2

2 sin 2α
((−2)2λ(Z + 1)2−2λ + 4λ(Z + 1) + (Z + 1)2 + const.′), (2.16)

and (2.9) gives

z ≈ K(−2)λ(Z + 1)1−λ. (2.17)

Hence, approaching the hinge point z = 0 from the lower side, we have

w(z) ≈ − ΩK2

2 sin 2α

{
4λ

(
z

K(−2)λ

)q

+
( z

K

)2

+ · · ·
}

, with q =
1

1 − λ
, (2.18)

which simplifies to

w(z) ≈ 2aq ΩK2λ

sin 2α

(
−(ze−iα)q

Kq

)
− Ω

2 sin 2α
z2 + · · · . (2.19)
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Figure 5. Streamlines (left half of the figure) and iso-potential lines (right half) of Lighthill’s
solution. The values are normalized by Ωc2. The axis of symmetry is the x-axis, for consistency
with (2.9).

This is in total agreement with the asymptotics described in § 2.1, the coefficient A′
2

being now determined as

A′
2 = 2aq ΩK2−q

sin 2α
λ. (2.20)

The fact that A′
2 > 0 implies that the dominant streaming flow described by the

potential (2.7) is towards the hinge point at θ = α. Note, again, that the first term
in (2.19) dominates because q < 2.

Similar asymptotics may be carried out near Z = + 1, i.e. near z = 0 on the upper
side. Again, the results are in total agreement with those of § 2.1, the dominant term
in this region being the uniform strain term proportional to z2.

There is however a puzzle here: the jump in the radial component of velocity
across the left-hand wing AB near r = 0 from the lower to the upper side is positive
and so gives a positive (anticlockwise) contribution to the bound vorticity in that
wing. However, the total bound vorticity in this wing must be negative (clockwise)
to account for the direction of the dipole flow at a large distance. Hence, there must
be a greater negative contribution to the bound vorticity near the end of the wing at
z = c eiα .

To confirm this, we need to consider the asymptotics near Z = a = 1 − 2λ. Setting
Z = a + ζ where |ζ | � 1, we first find, from (2.9), that

z = ceiα

[
1 − ζ 2

8λ(1 − λ)
+ · · ·

]
(2.21)

and then, from (2.12), that

w ≈ 4ΩK2

sin 2α

{
±(1 − 2λ)

√
2λ(1 − λ)

(
1 − z

ceiα

)1/2

+ const.′′ + . . .

}
. (2.22)
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The jump in the radial velocity from the lower to the upper side of the wing at
position z = reiα is then easily obtained in the form

δu = uu − ul ≈ −4ΩK2

sin 2α

1 − 2λ

c

√
2λ(1 − λ)

(
1 − r

c

)−1/2

, (2.23)

where uu and ul are the radial velocities on the upper and the lower sides, respectively.
This is singular at r = c (as for any ideal flow around a salient edge), but the singularity
is integrable, and the integrated contribution to the bound vorticity from this region
is indeed negative as expected.

This is confirmed by figure 6, drawn for λ=1/3. The solid line in figure 6(a) shows
the radial velocity ul (normalized by Ωc) on the lower side of the wing as a function
of r/c, slightly negative over approximately 50 % of the chord near the hinge, but
with a region of strong positive velocity (singular at r/c =1) over 50 % near the
leading edge; the dashed line shows the radial velocity uu on the upper side of the
wing, which has the same singularity near r/c =1, but of opposite sign. The strength
of the bound vortex sheet (i.e. the jump in the radial velocity across the wing) is
concentrated in this outer 50 % of the wing, and is negative there (for the left-hand
wing), giving the required sign for the remote dipole field.

Figure 6(b) shows u
√

1 − r/c on both sides of the wing, confirming that the
singularity is indeed of the expected kind at r/c = 1. This also shows that the negative
contribution on the lower side is much greater (in magnitude) than that on the
upper side near r/c = 0, as expected from the local analysis near the hinge point. The
radial velocity jump is shown in figure 6(c) and its singular behaviour is magnified in
figure 6(d ), displayed in a logarithmic scale to reveal the (c − r)−1/2 asymptotics.

The far-field asymptotic expansion (2.15) is useful to calculate the lift force acting
on the wing. The total fluid-dynamic force, as given by Sedov (1965), in the case of
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thin wings equals

F =
iρ

2

∮
C

(
dw

dz

)2

dz + iρ
d

dt

∮
C

z
dw

dz
dz. (2.24)

The integrals are taken over any curve C enclosing the wing; the overbar signifies
the complex conjugate. Supposing that C consists of the real axis and a half-circle
of indefinitely large radius, and noting that only the half-circle contributes to the lift
L = Re F , the following formula can be obtained:

L =
πρc3(1 − λ)3λ−2

3λ3λ−1 sin 2α

{
Ω̇a +

Ω2

π

[
1

λ(1 − λ)
+ 3a ln

1 − λ

λ
− 2πa

tan 2α
− 6

]}
, (2.25)

which is equivalent to the formula for the lift first derived by Wu & Hu-Chen (1984).
Note that, when Ω is constant in time, L decreases monotonically and vanishes at
α = π/2.

2.3. Initiation of sweep

We are now in a position to describe exactly what happens at the critical moment
of separation of the wings, still within the framework of ideal fluid theory. This is
the moment tc of initiation of the ‘sweep’ phase, for which we may suppose that the
separation d(t) of the lower (‘trailing’) edges of the wings initially increases smoothly
in proportion to (t − tc)

3 (corresponding to linearly increasing outward acceleration
of the wings). Suppose the break occurs when α = αc and Ω = Ωc, and that both α

and Ω are continuous and smooth through the break.
Just before the break, the circulation Γ around the wing AB from the stagnation

point on the upper side of the hinge to that on the lower side is

Γ = −Ωc2g(λ), with λ = α/π, (2.26)

where the function g(λ) is as computed by Lighthill. As shown by Edwards & Cheng
(1982), this function has the explicit form

g(λ) =
1 − 2λ

2(sin 2πλ)λ2λ(1 − λ)2−2λ
. (2.27)

Note that g(1/2) = 2/π ≈ 0.636, and that near λ= 1/2,

g(λ) ≈ 2

π
+

1

2

(
λ − 1

2

)2

g′′
c , where g′′

c =
8(π2 − 6)

3π
≈ 3.285. (2.28)

This is a good approximation even at λ=1/3 (or α = π/3, the angle near which the
wings of E. formosa are observed to separate).

Lighthill further showed that the jump increase in pressure δp across the hinge
from the lower to the upper side is given (before the break) by

δp = ρ
dΓ

dt
= −ρΩ2c2

π
g′(λ), (2.29)

and he commented that this is small in the range of λ of entomological interest; for
example, when λ= 1/3, this gives δp/ρΩ2c2 ≈ 0.174. Whether this is small or not is
perhaps a matter of taste.

When the break occurs, this pressure jump is no longer sustainable; within the
framework of the incompressibility assumption, it is instantaneously spread over the
fluid in such a way that the condition

∇2[p + (1/2)ρ|∇φ|2] = 0 (2.30)
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is satisfied, as follows from the Bernoulli integral for the potential flow. The velocity
is continuous through the moment of separation, but the fluid acceleration is
discontinuous due to the temporal jump in ∇p resulting from this instantaneous
redistribution of pressure. In particular, fluid accelerates from a state of near rest
in the neighbourhood of the opening gap, the flux Q(t) through the gap increasing
from zero at t = tc. If the gap d(t) increases initially like (t − tc)

3, and the mean fluid
velocity through the gap increases like (t − tc)

2, then Q increases initially like (t − tc)
5.

The circulation ±Γ around the surface of each wing is continuous through t = tc,
since no impulse is applied to the fluid. Restricting attention to the left-hand region
immediately after the break, this circulation remains equal to Γ in the subsequent
sweeping motion since the flow remains irrotational; this is the basis of the Lighthill–
Weis-Fogh mechanism. Note however that, contrary to the impression conveyed by
Lighthill, there would appear to be no need (for the validity of the argument) for the
pressure jump δp to be negligibly small across the hinge before the break; we require
only the break to be smooth and impart no impulsive force to the fluid.

Although the velocity field is continuous through the break, its potential φ

undergoes a curious transition: before the break, φ is single-valued, whereas after
the break it is multiple-valued because of the circulations around the now separated
wings. We can, of course, artificially replace φ just before the break by the set of
functions {φ + nΓ }, where n is any integer positive, zero, or negative, for each of
which u = ∇φ is the same field; then the transition to the multiple-valued φ just after
the break becomes more easily comprehensible, the set of functions then changing in
a continuous manner (everywhere, except at the hinge point).

During the outward sweep, flip and inward sweep that follows the break, the
circulation around every closed circuit in the fluid that embraces the left-hand wing
once (and does not embrace the right-hand wing) remains constant and equal to Γ .
It should be recognized however that, for so long as the wing is in motion outwards,
streamlines starting on the lower side of the wing must end at the corresponding point
on the upper side, just as they did before the break (a consequence of incompressibility,
as noted previously). There are now however some streamlines that pass through the
gap (those contributing to the flux Q(t)), and on these streamlines, some of which
extend to the far (dipolar) field, the circulation is Γ .

If the wings were to be brought to rest in the separated position, then no streamlines
would start or end on the wings, and every streamline would be a closed curve
enclosing a wing. In this situation, the flux Q would be steady and proportional to Γ ,
and otherwise determined by the position of the wings. Each wing in such a situation
would find itself in the downflow of the circulation about the other wing, and would
experience a horizontal force of attraction to the other wing. There can be no vertical
lift force in this steady situation because the momentum in the fluid is constant and
the flux of momentum ‘to infinity’ associated with the remote dipole field is zero.

Of course, in practice the wings do not come to rest: they sweep outwards, then
flip, then sweep inwards, making renewed contact at the upper (‘leading’) edges. On
ideal theory, the circulation remains constant throughout this movement and persists
as circulation around the wings even until the moment of the renewed contact.

2.4. Sweep

Just like during the fling, the flow during the sweep phase can be analysed using
conformal mapping techniques, as recently proposed by Crowdy (2009). We follow
this approach with slight modifications, described in Appendix A. We also used a
vortex method to verify some results.
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Figure 7. (a) Circulation Γd > 0 around the wing (normalized by Ωc2); (b) its difference with
respect to Γd = 0 obtained from Lighthill’s model.

In view of the above discussion, it is instructive to match the solution during
sweep at t ↓ tc with Lighthill’s solution at t ↑ tc. An important question is whether the
circulation Γ after the break is equal to the value given by (2.26) before the break. To
clarify this, let us first consider a hypothetical situation in which there is a non-zero
distance d between the trailing edges, but there is no translational motion, i.e. U = 0.
The two wings rotate about their trailing edges with angular velocities +Ω and −Ω ,
and their angles of incidence equal +α and −α, respectively. Let us fix the value of Γ

by requiring the velocity to vanish at the trailing edges (thus we remove singularities
from them). In these circumstances, one can expect that, in the limit of d → 0, the
flow given by (A 10) converges to (2.12).

Figure 7(a) displays the required values of the circulation Γd > 0 (normalized by
Ωc2) as a function of distance d at α = π/3. Apparently, it is converging to the
value Γd = 0 ≈ −0.687 Ωc2 given by (2.26)–(2.27). Figure 7(b) presents the difference in
logarithmic scale. It suggests a power law Γd > 0 − Γd = 0 ∝ dm, m < 1; the exact value
of m presumably depends on λ.

Returning to the flow due to two wings which break apart at time tc, it is essential
that the circulation Γ around a wing must remain constant when t > tc. Lighthill
argued that this constant is Γd =0. Actually, there are singularities at the trailing edges
when d > 0, but as d tends to zero, the velocity everywhere within the fluid also
converges to its value at d = 0. It follows that the flow that evolves continuously
through the break is indeed the one that occurs when the wings carry the circulations
they had just before the break.

Once the circulation is fixed to Γ = Γd = 0, we can proceed with our analysis of the
flow during sweep. In what follows, we fix c =1; the results can easily be scaled to
any chord length. The motion of the wings is described in § 1 (see figure 4 and the
discussion related to it).

Figure 8 shows streamlines at t = 1.5, when the half-distance between the trailing
edges d/2 ≈ 0.059. The dipolar far-field is dominated by bound vortices at the leading
edges, as during fling (cf. figure 5). The circulation around a wing is prescribed at
its value at t = tc, which fails to ensure zero velocity at the trailing edges. A zoom
at z =0 indeed reveals a vortex at zte. Its contribution to the overall circulation Γ is
small, but the velocity at the trailing edge becomes infinite, no matter how small d

is (although zero in the limit d → 0). This singularity can be removed by a particular
choice of U (t), as suggested by Crowdy (2009). However, such a velocity necessarily
diverges at t = tc, and therefore fails to fulfil our requirements on the smoothness of
the transition from fling to sweep.
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Further insight into the flow near the trailing edges is provided by the x-velocity
and pressure profiles along the axis of symmetry (Im z =0), displayed in figure 9.
Figure 9(a) makes evident the continuous change of the velocity everywhere in the
fluid: the curves corresponding to t > tc converge to the values of Re dw/dz obtained
from (2.12), with α and Ω as in figure 4 at t = tc ≈ 1.08. Overshoots near z = 0 indicate
the expected singularity at the trailing edge.

Meanwhile, the pressure changes in time more rapidly. This is shown in
figure 9(b). Even at t = 1.0915, when d/2 ≈ 1.06 × 10−6, the departure from the
pressure distribution at t = tc is significant. Before the break there is a discontinuity
at z = 0; it disappears immediately after the break, but the gradient remains sharp
until the wings are sufficiently far from each other.



The Lighthill–Weis-Fogh clap–fling–sweep mechanism revisited 585

0 0.5 1.0 1.5

1

2

3

4

5

6

7

t

c L
 p

er
 w

in
g

ti tc

1.00 1.05 1.10 1.15 1.20
0

0.5

1.0

Figure 10. Lift coefficient per wing, generated during fling (solid line), during sweep with
U = 2.4(t − tc)

2 (dash) and with U = 5.7(t − tc)
3 (dash-dotted) in an inviscid fluid.

The pressure during sweep is likely not to converge to its values during fling, for
the following reason. The steady term −ρ|dw/dz|2/2 in (2.13) changes continuously
through the break, because the velocity does so. However, the unsteady term −ρ∂φ/∂t

depends on Γ̇ = dΓ/dt , which is discontinuous. Note that if the sweep started at
α = π/2, the circulation Γ would evolve continuously in time, and so would the
pressure.

The lift coefficient per wing, cL = 2L/ρΩ2
maxc3, is shown in figure 10. The solid line

corresponds to fling. It starts from cL = 20/3, and during t � tc the first term in the
expression within curly brackets in (2.25) is dominant. This component decays as
both a and Ω̇ decrease, and vanishes at t = ti . Then, cL continues to slowly decrease
as a consequence of the decreasing circulation around a half-wing, until the wings
break apart at tc.

The lift coefficient during sweep is only calculated for t > 1.085. Two motion laws
are compared: U = 2.4(t − tc)

2 and U = 5.7(t − tc)
3. The lift coefficient begins to

increase after the break, because now the circulation remains constant and, moreover,
the wings start to move with an increasing velocity U (while continuing to rotate with
angular velocity Ω). For U = 2.4(t − tc)

2, cL decreases again after t ≈ 1.25, when the
angle π/2 − α becomes small. For U = 5.7(t − tc)

3, the initial growth is slower and
the peak is delayed. A zoom at tc reveals a small discontinuity of cL, presumably a
consequence of the jump in pressure at t = tc.

The time history of the lift coefficient not only confirms Lighthill’s conclusion
that the clap–fling–sweep mechanism can operate in an inviscid fluid, but also gives
a quantitative measure of its validity, which can be directly compared to similar
results for a viscous fluid. This has been done in § 4. More examples of the inviscid
mechanism are discussed in Appendix B.

To conclude this section, we should mention a possibility to modify (A 10) using a
point-vortex model of the leading-edge viscous separation (see e.g. Edwards & Cheng
1982; Michelin & Llewellyn Smith 2009). However, near the trailing edges, viscous
effects are of a different kind.

3. Analysis of viscous effects near the break point
In a similar vein, let us now return to the break point, and enquire how the process

described above is modified by viscous effects. As indicated in the Introduction,
viscous vortex shedding from the sharp leading edges of the wings is important; in
this process, the vorticity that is shed is essentially that which would otherwise be
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contained in boundary layers on the upper side of the wings near the leading edges.
In contrast, the boundary layers near the leading edges on the lower side remain
attached, being in a region of decreasing pressure and rapid acceleration. A small
amount of (equal and opposite) vorticity may be swept downwards and outwards
from the lower side of the wings in the hinge region after the wings sweep apart (see
Kolomenskiy et al. 2010).

3.1. Local similarity solution for fling

We now focus on the hinge neighbourhood on both sides of the wings. As pointed
out in the Introduction, the local Reynolds number is small (O(Ωr2)) in this region,
and the Stokes approximation is appropriate. We use a streamfunction ψ(r, θ), with
velocity components

u = r−1∂ψ/∂θ, v = −∂ψ/∂r. (3.1)

In the Stokes approximation, this satisfies the biharmonic equation

∇4ψ = 0, (3.2)

on both sides from the hinge, and the boundary conditions

u = 0, v = Ωr, on θ = α (� π/2), (3.3)

and also the symmetry condition

ψ(r, θ) = −ψ(r, −θ). (3.4)

The solution to this problem was given by Moffatt (1964); on the upper side of the
wings, it takes the form (a similarity solution of the first kind)

ψ =
1

2
Ωr2f (θ) with f (θ) = − sin 2θ − 2θ cos 2α

sin 2α − 2α cos 2α
. (3.5)

The associated vorticity ω = −∇2ψ takes the remarkably simple form

ω =
−4Ωθ

tan 2α − 2α
, (3.6)

and the pressure field is then given by

∂p

∂r
=

µ

r

∂

∂θ
∇2ψ =

4µΩ

tan 2α − 2α

(
1

r

)
, i.e. p =

−4µΩ

tan 2α − 2α
ln

C

r
, (3.7)

where C is an integration constant. This is of course simply an asymptotic behaviour
near r = 0. Note that the coefficient of the logarithmic term in (3.7) vanishes and then
changes sign as α increases through π/4.

Similarly, on the lower side, we simply replace θ by π − θ and α by π − α in the
above solution, giving a local pressure field

p =
−4µΩ

2(π − α) + tan 2α
ln

C

r
. (3.8)

Here, the singularity at the value of α for which 2(π −α) = − tan 2α, namely α ≈ 51.3◦

(π − α ≈ 128.7◦), must be noted; for π − α > 128.7◦, as explained by Moffatt & Duffy
(1980), the solution (3.5) gives way, with a logarithmic transition through the critical
angle, to a similarity solution of the second kind, which then dominates near the
corner on the lower side. However, in the range of angles at which the break occurs
for hovering insects (π − α ≈ 120◦), the behaviour (3.8) is applicable and this is the
expression that we shall use.



The Lighthill–Weis-Fogh clap–fling–sweep mechanism revisited 587

0 1 2 3
−3

−2

−1

0

1

2
p/

4 
µ

Ω
 l

n(
C

/r
)

δp
/4

 µ
Ω

 l
n(

C
/r

)

0 1 2 3
−1.0

−0.5

0

0.5(b)

(d)

(a)

(c)

0 1 2 3
−2

−1

0

1

2

α

0.9 1.0 1.1 1.2 1.3 1.4
0

1

2

3

α

Figure 11. (a) Coefficient of the ln(C/r) term in the pressure field pu on the upper side of
the wings; (b) same coefficient in the pressure field pl on the lower side; (c, d ) coefficient of the
ln(C/r) term in the pressure jump from the lower to the upper side, δp = pu − pl . The range
of α relevant for the insect’s flight is between 1 and π/2.

Figures 11(a) and 11(b) show the coefficient of the ln(C/r) term in the pressure
field on the upper side (3.7) and the lower side (3.8) as a function of the angle α, and
figure 11(c) shows their difference; the flat behaviour in the range of α between 1
and 2 (about 57◦–104◦) is worth noting; a zoomed view is shown in figure 11(d ). The
fact that near the hinge the pressure is greater on the upper side of the wings than
on the lower side for this range of α is remarkable.

3.2. Local similarity solution for sweep

Now consider again what happens in the immediate neighbourhood of the hinge just
after the break. The streamfunction consists of three contributions,

ψ = ψf l + ψJH + ψsw, (3.9)

where ψf l is due to rotation of the wings with angular velocity Ω , ψJH is the Jeffery–
Hamel contribution, and ψsw is due to rectilinear motion of the wings during sweep.
We assume that the distance between the trailing edges d is infinitesimally small.

The last two terms in (3.9) appear only after the break, when there is a non-zero
flux Q through the gap between the trailing edges, and the wings move with non-zero
outward velocities ±U . In this analysis, the boundary conditions are still imposed at
two radial lines θ =α and θ = −α. We assume that the distance between the trailing
edges d is infinitesimally small. Its effect is represented by ψJH .

When the radius r is such that d/2 � r � c, the streamfunction (3.9) is a valid local
approximation for the solution. Asymptotics for each of the three terms on its right-
hand side are given by self-similar solutions of (3.2) with corresponding boundary
conditions.
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Contribution due to rotation of the wings is the same as during fling. This term
corresponds to a situation where there is a small gap between the trailing edges, but
the flux through it equals zero. When the distance between the trailing edges tends to
zero, the streamfunction uniformly converges to the limiting case of fling with no gap
between the trailing edges. When approaching the origin at a constant angle θ , the
streamfunction decreases as r2, the vorticity is constant, and the pressure gradient is
proportional to r−1.

The Jeffery–Hamel sink/source flow is the flow in a converging channel between
two plates. It is driven by a point sink/source of intensity Q located at the origin and
representing the flux between the trailing edges. Here Q is positive when the fluid is
pumped from the upper to the lower side. As we have seen, if the gap d(t) increases
smoothly from zero like (t − tc)

3, then we expect the flux Q through the gap to grow
from zero like (t − tc)

5. Actually, it grows more slowly now as viscous resistance
is included. For example, the numerical simulation in § 4.2 indicates Q ≈ 0.01 when
U ≈ 0.5 and d ≈ 0.1.

The wings are fixed, since their motion is taken into account by the two other terms
in (3.9). The boundary conditions for the streamfunction are

∂ψ

∂θ

∣∣∣∣
θ=α

= 0,
∂ψ

∂r

∣∣∣∣
θ=α

= 0,
∂ψ

∂θ

∣∣∣∣
θ=−α

= 0,
∂ψ

∂r

∣∣∣∣
θ=−α

= 0. (3.10)

The low-Reynolds-number limit of this flow was discussed in Moffatt & Duffy (1980)
(note that the volume rate is 2Q in the reference). The streamfunction, vorticity and
pressure are given by the following relations:

ψu = −Q

2

sin 2θ − 2θ cos 2α

sin 2α − 2α cos 2α
, ψl = −Q

2

sin 2θ + 2(π − θ) cos 2α

sin 2α + 2(π − α) cos 2α
, (3.11)

ωu = −2Q

r2

sin 2θ

sin 2α − 2α cos 2α
, ωl = −2Q

r2

sin 2θ

sin 2α + 2(π − α) cos 2α
, (3.12)

pu = Cu − 2µQ

r2

cos 2θ

sin 2α − 2α cos 2α
, pl = Cl − 2µQ

r2

cos 2θ

sin 2α + 2(π − α) cos 2α
. (3.13)

Subscripts u and l indicate, respectively, the upper θ ∈ [−α, α] and the lower
θ ∈ [α, 2π − α] sides of the wings.

Contribution due rectilinear motion of the wings assumes that the wings move in
opposite directions with velocities U and −U . The boundary conditions for the
streamfunction are then

∂ψ

∂θ

∣∣∣∣
θ=α

= rUr,
∂ψ

∂r

∣∣∣∣
θ=α

= Uθ,
∂ψ

∂θ

∣∣∣∣
θ=−α

= rUr,
∂ψ

∂r

∣∣∣∣
θ=−α

= −Uθ,

(3.14)
where Ur = U sinα and Uθ = U cosα. These boundary conditions suggest the following
form for the local similarity solution (see Moffatt 1964):

ψ = rf1(θ), f1(θ) = A cos θ + B sin θ + Cθ cos θ + Dθ sin θ. (3.15)

The unknown coefficients are obtained by substituting (3.15) into (3.14), yielding the
streamfunction

ψu = −rU
(α sin 2α − cos2 α) sin θ + θ cos θ cos 2α

α − sinα cos α
(3.16)
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Figure 12. Flow during sweep as given by the local similarity solution (3.9) at t = 1.5.
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on the upper side. Similarly, on the lower side

ψl = rU
((π − α) sin 2α + cos2 α) sin θ + (π − θ) cos θ cos 2α

(π − α) + sinα cosα
. (3.17)

The corresponding relations for the vorticity and the pressure are

ωu =
2U

r

cos 2α

α − sin α cos α
sin θ, ωl = −2U

r

cos 2α

(π − α) + sin α cosα
sin θ, (3.18)

pu = Cu +
2µU

r

cos 2α

α − sinα cos α
cos θ, pl = Cl − 2µU

r

cos 2α

(π − α) + sin α cosα
cos θ.

(3.19)
The two last terms in (3.9) dominate in a sufficiently small neighbourhood around

the origin. Strictly speaking, the leading term is ψJH , but there is a cutoff at r = O(d/2).
By noting that |ψJH/ψsw| =O(Q/Ur) = O(d/r), one can see that ψsw is in fact
dominant in the range of r concerned.

Figure 12(a) displays streamlines computed from (3.9) with α ≈ 1.467, Ω = 1,
U = 0.088 and Q =0.01, which corresponds to t = 1.5. The value of Q is taken
from numerical simulations. The streamlines are smooth at θ =α, as expected from
the no-slip boundary condition. An interesting feature, contrasting with the inviscid
case discussed in § 2, is the recirculation zone on the lower side. This is obviously not
a detached eddy, since the vorticity in figure 12(b) has its maximum on the wing. The
isobars, traced in figure 12(c) for µ = 1, indicate that sufficiently near the hinge the
pressure is negative and that in the limit r → 0 it is actually decreasing to −∞ on
both sides of the corner.

The analysis of viscous effects near the hinge is pursued in § 4.2, where the local
similarity solution is supported by numerical results.
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4. Numerical simulations of the viscous clap–fling–sweep mechanism
The numerical simulations presented in this section are intended to supplement

the previous theoretical results. First, we are interested in identifying the logarithmic
singularity of the pressure during fling. Second, we are interested in the flow in the
neighbourhood of the hinge point during the initiation of sweep.

By solving the Navier–Stokes equations, we obtain the flow field around the wings,
which contains all the features of the global solution, such as the strong vortices
generated at the leading edges. However, we seek to compare it with the local
similarity solution near the hinge point, obtained in the Stokes limit. Therefore, we
start by considering the Reynolds number Re = 1, which is low enough to allow a
direct comparison (and for which the local Reynolds number near the hinge is much
less than unity), and then we proceed to a more realistic value of the Reynolds
number.

Video sequences of the vorticity, streamfunction and pressure visualizations are
provided as supplementary data available at journals.cambridge.org/flm.

4.1. Physical model and numerical method

The model that we use for the numerical simulations is described in more detail in
Schneider & Farge (2005) and Kolomenskiy & Schneider (2009). The latter paper
contains a validation study for the Lighthill–Weis-Fogh mechanism.

We consider rigid wings moving in a viscous incompressible fluid. The motion of the
fluid is governed by the Navier–Stokes equations, completed with a no-slip condition
on the solid–fluid interface and a suitable initial condition. As the flow is assumed to
be two-dimensional, we use the vorticity–streamfunction formulation of the equations.
The no-slip boundary condition is modelled using the volume penalization method
(Angot, Bruneau & Fabrie 1999). The wings are assumed to be slightly permeable,
and the flow is governed by the penalized vorticity equation

∂tωη + uη · ∇ωη − ν∇2ωη + ∇ ×
(

χ

η
(uη − us)

)
= 0, (4.1)

where the penalization parameter η is a small number which controls the permeability
of the obstacle. The equation is written for dimensionless parameters and variables.
Units are chosen in order to normalize the dimensionless density, ρ =1. The vorticity
ωη = ∇ × uη is unknown. The velocity is determined as uη = −∇⊥ψη, with ψη being
the streamfunction, satisfying

−∇2ψη = ωη, (4.2)

where ∇⊥ψη = (−∂yψη, ∂xψη) denotes the orthogonal gradient of the streamfunction.
The parameter ν is the kinematic viscosity of the fluid. Equations (4.1) and (4.2) are
valid in a computational domain A which incorporates both the solid wings As and
the fluid region Af (see figure 13). Geometry and kinematics of the wings are given
by the mask function

χ(x, t) =

{
1, for x ∈ As,

0, for x ∈ Af ,
(4.3)

and the velocities of the wings us(x, t) at each point. Angot et al. (1999) rigorously
proved that the solution of the penalized Navier–Stokes equation converges to the
solution of the Navier–Stokes equation with the no-slip boundary condition when the
penalization parameter η tends to zero.

For the spatial discretization of (4.1) and (4.2), we use a classical Fourier pseudo-
spectral method in a sufficiently large periodic domain A (see Canuto et al. 1988).
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Figure 13. Sketch of the computational domain A, containing the fluid domain Af , the
solid wings As and their boundary ∂As . Note that the actual thickness-to-chord ratio in the
numerical simulations is much smaller (h/c = 0.006) than shown in this schematic.

The solution is advanced in time with an adaptive second-order Adams–Bashforth
scheme for the nonlinear term, while the viscous term is integrated exactly.

An attractive feature of the volume penalization method is that it allows modelling
of moving solid obstacles of complex shape. There is no need for remeshing the
computational domain A, since it remains unchanged in time, and all information
about the obstacle shape and its motion is contained in the mask function χ(x, t),
which evolves in space and time. Translation of the obstacle in each direction is
implemented by turning the phase of the corresponding Fourier coefficients, and
rotation is decomposed into three skewing operations (for details, see Kolomenskiy &
Schneider 2009).

The volume penalization method also enables us to compute the fluid forces acting
on the wing via volume integration, which is convenient for numerical implementation,

F =

∫
A

χ

η
(uη − us) dA + hcU̇ c, (4.4)

where U̇ c =dU c/dt is the acceleration of the centre of volume of the wing.

4.2. Fling–sweep sequence at Re = 1

We are interested in identifying the behaviour of the flow near the hinge point,
and intend to directly compare the asymptotics derived in § 3 with those observed
in numerical simulations. For this purpose, we consider a flow at low Reynolds
number Re =Ωc2/ν = 1. The chord length is c = 1, and the thickness-to-chord
ratio is h/c = 0.006. We use the simplified wing kinematics described in § 1 (see
also figure 4). The periodic domain size equals Lx × Ly = 10 × 10, it is discretized
with Nx × Ny = 8192 × 8192 grid points. The penalization parameter is chosen to be
η =1.5 × 10−5 as a good compromise between the precision of the volume penalization
method and the computing time.

Figures 14–16 visualize the flow field obtained in this numerical simulation (see
also supplementary movie 1). First, we discuss subfigures (a) of these figures, which
correspond to time t = 1.08, just before the break which occurs at tc ≈ 1.0805. The
computed streamlines, shown on the left of figure 14(a), are in qualitative agreement
with the asymptotic behaviour given by (3.5), which is shown by a thick dashed line
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isoline.
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Figure 15. Vorticity isolines, drawn with a step δω = 0.4. See caption to figure 14 for details.
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Figure 16. Pressure isolines, drawn with a step δp =0.4. See caption to figure 14 for details.

superimposed on the same figure. The discrepancy below the wing is due to the fact
that π − α is close to its critical value 128.7◦ (see § 3.1). The streamlines pass through
the wing, as required by the velocity boundary condition on the interface. The latter
is confirmed by the velocity vector plots, and one can also see that the fluid is at
rest near the hinge point. At r < 0.2, the vorticity isolines, plotted in figure 15(a), are
almost straight, as expected from (3.6), in which ω is proportional to θ and does not
depend on r .
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Figure 17. (Colour online available at journals.cambridge.org/FLM) Flow during fling at
Re = 1, visualized at t =1.08. Colour plot displays the vorticity. Vector plot on the right half
of the figure shows the velocity. Contours on the left half are isobars drawn with a constant
step δp = 0.4. Their positive, zero and negative values are identified with, respectively, solid,
dotted and dashed lines.

The pressure plotted in figure 16(a), indeed, decreases on the lower side and
increases on the upper side of the wings as r approaches zero. The isolines of the
pressure are concentric arcs, in agreement with the local similarity solution (3.7) and
(3.8). For r < 0.1 the pressure on the upper side is higher than on the lower side,
resulting in a negative contribution to the lift force.

The flow field far from the hinge point also deserves comment (see figure 17 and
movie 1). In contrast to the inviscid case of § 2, where all streamlines during fling pass
through the wings and form closed loops, in this simulation the streamfunction has its
extrema at a certain distance from the wings, although leading-edge vortices remain
attached to the wings. This is a viscous effect. A visualization of the streamfunction
can be found in movie 1, but the shape of streamlines can also be recognized from
the velocity vector plot in figure 17. Near the leading edges, the pressure is positive
on the lower side and negative on the upper side, which explains the overall positive
lift. Note that when Re → 0, the far-field evolves towards that of a Stokeslet.

Figure 18 displays the pressure gradient along the axis of symmetry of the wings in
logarithmic scale. The curves corresponding to the numerical solution of the Navier–
Stokes equations suggest that the 1/r asymptotics (3.7) and (3.8) are reasonable,
though they deviate when the distance to the hinge point is small enough, i.e.
comparable to the thickness of the wings.

A more thorough check of the asymptotic expansion in § 3 would be a comparison
with the Stokes flow past infinitesimally thin wings, but of finite chord length.
However, our numerical method (as well as real insects) only admits finite thickness,
and it can only be decreased with refining spatial discretization. Hence, for validation
purposes, we have developed a simple Stokes solver using finite differences, which is



594 D. Kolomenskiy, H. K. Moffatt, M. Farge and K. Schneider

−10−1 −10−2

−102

−101

−100

−10−1

−h/2c

∂
p/

∂
x 

c/
µ

Ω

x/c

(a) (b)

10−2 10−1

−102

−101

−100

−10−1

h/2c
x/c

Asymptote
Stokes eq., num.
N-S eq., Re = 1, num.
N-S eq., Re = 20, num.

Figure 18. Pressure gradient during fling at t = tc , α = π/3, probed on the axis of symmetry
of the wings near the hinge. (a) The lower side of the wings and (b) the upper side.

described in Appendix C. The pressure gradient curves thus obtained are shown by
dashed lines in figure 18. The 1/r behaviour is well pronounced down to |x| =10−3.
At large distances from the hinge, the ‘Stokes’ curves are close to those of ‘Navier–
Stokes’. At |x| → 0, they approach the similarity asymptotes. However, while the
curves perfectly superpose on the upper side (x > 0), there is still a noticeable (though
decreasing) discrepancy on the lower side (x < 0).

This can be explained as follows. The local similarity solution is valid only when the
half-angle between the plates is less than 128.73◦; otherwise the flow near the hinge
retains a scale dependence on the chord length c (see Moffatt & Duffy 1980). The
solution shown in figure 18 corresponds to 60◦ on the upper side and 120◦ on the lower
side. Therefore, the global solution may be expected to converge to its asymptote
near the hinge more rapidly on the upper side than on the lower side (to substantiate
this conjecture, we have also computed the pressure gradient at α = 90◦ and observed
an equally fast convergence to the local similarity asymptotes on both sides).

We can conclude that the local similarity solution, the numerical solution of the
Navier–Stokes equation and the numerical solution of the Stokes equation are in good
mutual agreement and prove the logarithmic singularity of pressure at the hinge.

After having identified the singular behaviour of the flow in the proximity of the
hinge point, we can proceed to the situation when the wings break apart. At t = 1.25,

the distance between the trailing edges is very small, d = 0.0039. Both the streamlines
and the velocity vectors, shown in figure 14(b), are similar to those at the previous
time instant. The difference is visible in figure 14(c) at a later time, t = 1.5. There
are streamlines which pass through the surface of the wings, but one can also see
closed loops, exactly as anticipated in § 3.2. The velocity equals zero at the centres
of these loops, where the streamfunction has local extrema, as well as at the two
(instantaneous) stagnation points on the axis of symmetry, one of which is situated
between the trailing edges.
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Figures 15(b) and 15(c) show the vorticity at the same time instants. The bound
vorticity at the trailing edges increases, but the Reynolds number remains too small
for vortex shedding. On the upper side of each wing, there is a point at which
the vorticity changes sign. This feature is also captured well by the local similarity
solution, as seen in figure 12(b). Apparently, it marks the neighbourhood where (3.18)
dominates over (3.6).

Let us inspect the pressure fields displayed in figure 16. Note a contrasting difference
between t = 1.08 and t = 1.25. The high positive pressure above the hinge disappears
as soon as the wings break apart, and the negative pressure is established around
the trailing edges on both sides of the wings. Its figure-of-eight iso-contours are
reminiscent of those shown in figure 12(c) for the similarity solution.

In figure 19, one can see the pressure gradient along the axis of symmetry at t = 1.25
and t = 1.5. It grows approximately like |x|−2 for |x| → 0, which is explained well by
∂psw/∂x, i.e. the gradient of the pressure distribution created by the rectilinear sweep
motion (3.19). This behaviour is modified by ∂pf l/∂x at large |x| and by ∂pJH/∂x at
small |x|, as well as by other terms neglected in the local analysis.

Now we can explain the flow during the initiation of sweep in a viscous fluid. The
streamfunction evolves from ψf l to ψf l + ψsw + ψJH . This transition is continuous,
since ψsw + ψJH vanishes when t ↓ tc (everywhere, except at the origin), and important
changes of the streamlines are localized in a neighbourhood of radius rψ ∝ U (t)/Ω ,
where ψsw dominates over ψf l . This relation can be obtained by equating (3.5) and
(3.16) at an arbitrary θ . The same is valid for the vorticity, as one can see from (3.6)
and (3.18). The pressure behaves differently: the radius rp , at which psw and pf l are
of the same order of magnitude, evolves nonlinearly such that rp lnC/rp ∝ U (t)/Ω ,
where C = C(t) matches the pressure between the lower and the upper sides. This
explains the more rapid change of the pressure compared to other quantities. Note
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Figure 20. Lift coefficient per wing obtained in numerical simulations of viscous fluid flows
at Re = 1 (solid line) and Re = 20 (dashed line). Lift coefficient in an inviscid fluid is also
shown for comparison (dash-dotted).

that in a viscous fluid the pressure evolves continuously in time, in contrast to the
instantaneous redistribution that occurs in an inviscid fluid.

To supplement the description of the flow, the time history of the lift coefficient
per wing, cL =2L/ρΩ2c3, is traced in figure 20. The unusually large values of cL are
explained by the low Reynolds number. After a rapid growth at the initial phase of
the ‘fling’, associated with a strong vorticity production, cL slowly increases when the
angular velocity is kept constant, until it starts increasing more rapidly when the wings
break apart. It is noteworthy that the change of the slope at t = tc is qualitatively the
same in both the inviscid and the viscous fluids, and reflects the linearly increasing
acceleration of the wings during sweep, U̇ ∝ (t − tc).

The increase in cL during fling in a viscous fluid is related to the leading-edge vortices
(Spedding & Maxworthy 1986). At Re =1, they remain attached to the wings, and
the vorticity only propagates by diffusion. In this connection, it is interesting to note
that, after an initial transient, the slope of the cL curve is approximately the same as
it would be at a larger Reynolds number Re = 20, where inertial effects are important
and the leading-edge vortices are shed from the wings.

4.3. Fling–sweep sequence at Re =20

The unit Reynolds number in the previous section was chosen in order to make
a clear evidence of the viscous local effects near the trailing edges. Real insects,
however, operate in the range of Reynolds numbers where inertial forces are more
important. For E. formosa, Weis-Fogh (1973) measured the chord length c ≈ 0.3 mm,
the stroke-arc-to-wing-chord ratio Λ ≈ 4 and the flapping frequency f ≈ 400 s−1. In
nature, these parameters appreciably vary, and the motion of the wings is complex,
but Re = 20 seems to be a representative value. Let us therefore consider this regime.
The numerical simulation was performed with the penalization parameter η = 10−4,
while the other parameters were the same as in § 4.2.

Figure 21 displays the vorticity field at t =1.08, with the velocity vectors and isobars
superimposed on it. It shows vortex shedding from the leading edges. However, the
cores of these vortices remain near the wings, and they are shifted towards the upper
surfaces, which creates a larger depression above the wings (see also movie 2). Another
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Figure 21. (Colour online) Flow during fling at Re = 20, visualized at t = 1.08. Colour plot
displays the vorticity. Vector plot on the right half of the figure shows the velocity. Contours
on the left half are isobars drawn with a constant step δp = 0.125. Their positive, zero and
negative values are identified with, respectively, solid, dotted and dashed lines.

outcome is a strong downward jet between the two vortices, which hits the interior
of the hinge and thus modifies the flow there.

Nevertheless, as soon as a sufficiently small neighbourhood of the hinge is viewed,
the local effects overcome the influence of the far-field. This is evidenced by the
vorticity being virtually independent of r when r < 0.1, and by the circular isobars in
the hinge vicinity. The region of negative pressure just below the hinge is very small;
therefore, it is not seen in figure 21. However, figure 18 confirms that, even at Re = 20,
the pressure decreases logarithmically when approaching the hinge from the lower side.

The lift coefficient, shown by a dashed line in figure 20, is two to four times smaller
than at Re = 1. This drop is typical for the range of Re in question. Meanwhile, the
main trends are unchanged: after an initial transient, cL slowly grows during fling,
then increases and falls off during sweep. At all stages, except at the very beginning
of the process, the lift coefficient remains far greater than that generated in an ideal
fluid. This was stated in earlier studies, but, to our knowledge, no exact quantitative
comparison between the two cases has been made in terms of the lift coefficient.

4.4. Clap–fling–sweep sequence at Re =20

In §§ 4.2 and 4.3, we assumed that the fling motion starts in a fluid at rest. This
assumption may be true for the first downstroke, but all subsequent downstrokes are
preceded by upstrokes. Thus, fling is usually preceded by clap (see figure 3), and one
may question how this situation modifies the flow described previously.

We performed a numerical simulation of the clap–fling–sweep sequence at Re = 20.
During clap, α = t and d/2 = −t − sin t , as shown by dashed lines in figure 4. The
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Figure 22. (Colour online) Vorticity (colour plots) and velocity (vector plots) during
clap–fling–sweep at Re = 20. Time instants are (a) t = −0.3, (b) t = 0, (c) t = 0.5, (d ) t = 1.08,
(e) t = 1.25 and (f ) t = 1.5. Letters A to F denote pairs of vortices generated by the two wings.

simulation starts at t = −1.5. Other parameters are the same as in § 4.3. Note that
clap is not a mirror image of fling. It is faster and at larger angle of incidence. The
wings impulsively stop when they touch each other. These features are inspired by
observations of Weis-Fogh (1973), but the clap motion discussed here is, of course, a
major idealization of the real process.

Figure 22 displays the flow field at six successive time instants. Figure 22(a) shows
clap at t = −0.3, when the wings approach each other. Two vortex pairs (denoted by
letters A and B in the figure) are generated at the leading and trailing edges, and
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Figure 23. Lift coefficient per wing during the clap–fling–sweep process (solid line) and during
the fling–sweep sequence only, when the wings are initially clapped and start in a fluid at rest
(dashed line, also see figure 20). The Reynolds number is Re = 20.

they are associated with two vertical jets in opposite directions. The vertical velocity
is the largest at t = 0, the moment when the wings are fully clapped (figure 22b), and
the downward jet is stronger than the upward. Vortex pairs A and B then detach
and propagate upwards and downwards, respectively. Their interaction with the wings
forms vortex pairs C and D, which are, respectively, opposite to A and B . During fling
(figures 22c and 22d), vortices C evolve to become the leading-edge vortices, as seen
in figure 21, but in the present case they are significantly weaker due to interaction
with vortices A. On the contrary, vortices D are stronger in this numerical simulation.
Vortices E are almost unaffected by the presence of clap. Similarly, vortices F during
sweep (figures 22e and 22f) are explained well by the local analysis presented in § 3.2.

Time history of the lift coefficient cL is shown in figure 23. During clap, the lift
coefficient is positive, until at the end when it rapidly drops below zero, because
larger suction force is exerted on the trailing edges than on the leading edges. This
behaviour is in agreement with experimental observations of Lehmann, Sane &
Dickinson (2005). Numerical simulations of Sun & Yu (2003) and Miller & Peskin
(2005) exhibited similar trends, but with a broader negative peak and different
minimum and maximum values of cL, because the kinematics were different.

Positive lift coefficient re-establishes during fling, and its peak is significantly larger
compared to the value obtained without clap. However, during the last part of the
fling, the lift coefficient decreases, and it almost vanishes at the moment of break
tc. During sweep, it regains and then drops again, in a manner consistent with the
previous results.

To conclude, the flow near the trailing edges during fling and sweep is not very
sensitive to the initial condition. But the flow near the leading edges is. For this reason,
clap has a strong influence on the lift coefficient. Strong interdependence between
the lift coefficient and the wake suggests, as a further step, making a numerical
simulation of wings performing several full strokes. However, three-dimensionality of
the flow becomes essential at this point (cf. Maxworthy 1979, 2007). An analysis of
the three-dimensional effects is beyond the scope of this paper, and will be reported
elsewhere.
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5. Conclusions
To summarize the results of our analytical and numerical study of the Lighthill–

Weis-Fogh mechanism, let us draw the following conclusions.
(i) Lighthill’s two-dimensional inviscid scenario is correct to the extent that

circulation (equal and opposite around the two wings) can be generated in an
inviscid fluid and that this circulation appears when a solid body immersed in the
fluid breaks into two pieces (when fling gives way to sweep). Bound vortex sheets
produced during fling are still carried by the just-separated wings. This is associated
with a continuous time evolution of the velocity everywhere in the fluid, provided the
linear and angular velocities of the wings are continuous.

Kelvin’s theorem requires circulations around each wing to be constant during
sweep. This implies a discontinuity in the time derivative of the bound vorticity, even
if the linear and angular accelerations of the wings are continuous (unless when the
incidence angle of the wings at the moment of break αc = π/2). In correspondence
with this, the pressure field in the fluid changes instantaneously when the break occurs.

In a general situation, the lift is non-zero. Before the break, it is associated with
the changing shape of the body (such as the force acting on an accelerating body in
an inviscid fluid, this is a ‘virtual mass’ effect). After the break, it is associated with a
combination of this type of ‘acceleration force’ and the Magnus force ρUΓ on each
wing, which ultimately dominates.

We should note that Lighthill’s description of the flow during ‘fling’ as being
predominantly a sink-type flow is clearly erroneous. The far-field is a dipole flow
during both fling and sweep, and this is quite important because the dipole strength
is closely related to the momentum stored in the fluid, and the rate of change of this
momentum is in turn related to the lift.

(ii) Viscous effects are important not only in relation to vortex shedding at the
leading edges of the wings (as previously recognized). In particular, viscous stresses
control the build-up of flow through the opening gap between the wings just after
the break.

In profound contrast to the inviscid case, and to Lighthill’s assumption of a
negligible pressure jump at the hinge point just before the break, the pressure has
a logarithmic singularity there, it is positive above, and negative below. After the
break, the local flow is dominated by the outward translational motion of the wings,
and the pressure becomes negative above as well as below. Unlike in the inviscid
situation, no immediate redistribution of pressure occurs, except just at the hinge
point, at which the infinite pressure jump has to disappear when the wings separate.

Near the trailing edges, the local Reynolds number immediately after the break
is very low, and the flow there is described well by similarity solutions of the Stokes
equation. In this situation, no trailing-edge vortex shedding occurs, and the Wagner
effect is not present.

The lift generated in a viscous fluid is much greater than in an inviscid fluid. It grows
during fling, in contrast to the inviscid case. During sweep, the lift evolves similarly in
both cases, essentially due to the acceleration reaction. The average lift coefficient at
Re = 1 is 8.3 times larger than in the inviscid case. At Re = 20, it is 2.5 times larger.

(iii) We restrict the scope of this paper to the two-dimensional approximation.
Three-dimensionality of the flow in a real situation will be addressed elsewhere.
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Deutsch-Französische Hochschule, project ‘S-GRK-ED-04-05’

Supplementary movies are available at journals.cambridge.org/flm.

Appendix A. A method for calculating potential flow during sweep
Consistent with Lighthill’s model for fling, we consider a single wing moving

away from an infinite plane boundary. The physical domain is a half-plane with
an embedded slit; this can be obtained by conformal mapping from an annulus, as
shown by Crowdy (2007).

We use a superposition of two mappings, z = z(ζ (Z)), illustrated in figure 24.
The following formula can be used for mapping from a domain bounded by two
non-concentric circles to the physical domain (cf. Appendix B in Crowdy 2007):

z(ζ ) = iC1

ω(ζ, 1)

ω(ζ, −1)
+ C2, (A 1)

where C1 and C2 are constants, and ω(ζ, γ ) is the Schottky–Klein prime
function. Crowdy & Marshall (2007) developed an efficient algorithm based
on the Fourier–Laurent expansion and implemented it in a Matlab code
(www2.imperial.ac.uk/∼dgcrowdy/SKPrime) which we use in the present work. In
a doubly connected domain, the Schottky–Klein prime function is generated by only
one Möbius map,

z = δ +
q2ζ

1 − δ̄ζ
, (A 2)

where δ is the centre of the inner circle and q is its radius. The four parameters C1,
C2, δ and q can be chosen to ensure the desired angle of incidence α and chord length
c, and to place the trailing edge at the point id/2. The values of δ and q are found
by an iterative process. Note that Crowdy (2009) proposes a convenient formula
that requires iteration for only one parameter. The mapping from the non-concentric
circles to the concentric circles is given by

ζ =
δ

|δ|
Z − bR0

bZ − R0

, (A 3)

where

b =
1 + x1x2 +

√(
1 − x2

1

)(
1 − x2

2

)
x1 + x2

, R0 =
ax2 − 1

x2 − a
, x1 = |δ| + q, x2 = |δ| − q.

(A 4)
Now, the exterior boundary is the unit circle, which maps to the wing, and the interior
is a circle of radius R0, which maps to the x-axis.
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The Jacobian of the mapping is
dz

dZ
=

dz

dζ

dζ

dZ
, (A 5)

where
dz

dζ
= iC1

ωζ (ζ, 1)ω(ζ, −1) − ωζ (ζ, −1)ω(ζ, 1)

ω2(ζ, −1)
, (A 6)

dζ

dZ
=

δ

|δ|
R0(b

2 − 1)

(bZ − R0)2
, (A 7)

and the derivatives ωζ are again evaluated using the Fourier–Laurent expansion.
While z(Z) is known explicitly, evaluation of its inverse Z(z) is more costly since

it requires solving an equation. This must be done for the leading edge, zle, and the
trailing edge, zte, in order to fix the values of parameters C1 and C2. We evaluate
l(θ) = |z(eiθ )| at a number of equidistant points, and then solve dl/dθ = 0. This gives
two angles θle and θte, which respectively maximize and minimize the distance l(θ).
Note further that ζ = 1 maps to C2, and ζ = −1 maps to the point at infinity in the
physical domain.

Knowing the conformal mapping, the problem reduces to finding the values of the
complex potential w = φ + iψ inside the annular domain,

∇2w = 0,

Im w = 0 on |Z| = R0,

Im w = ψte − Ωl2te/2 − Ulte cos α on |Z| = 1,

⎫⎪⎬
⎪⎭ (A 8)

where Ω is the angular velocity of the wing, U is the velocity of sweep, α is the angle
of incidence, and lte = |z(eiθ )−zte|. The value of the streamfunction at the trailing edge
ψte determines the mean value of ψ along the unit circle, and hence the circulation
around the wing,

Γ = − 1

lnR0

∫ 2π

0

(
ψte − Ωl2te/2 − Ulte cosα

)
dθ. (A 9)

The solution of (A 8) may be written as

w =
Γ

2πi
ln

R0

Z
− 1

2πi

∫ 2π

0

(
ψte0 − Ωl2te/2 − Ulte cosα

) (
1 − 2

Z

eiθ

ωζ (Z/eiθ , 1)

ω(Z/eiθ , 1)

)
dθ + C.

(A 10)

Here, the first term is the complex potential of a point vortex of strength Γ placed at
the origin. The second term corresponds to the flow with zero circulation around the
wing, given by the Villat formula (see Akhiezer 1990; Crowdy, Surana & Yick 2007),
which only admits the value of ψte0 determined from the compatibility condition

ψte0 =
1

2π

∫ 2π

0

(
Ωl2te/2 + Ulte cosα

)
dθ. (A 11)

The Schottky–Klein function ω is generated this time by the map z =R2
0ζ . Here C is

a real constant chosen such that φ vanishes at infinity.
The complex velocity in the physical domain is u − iv = dw/dz, = dw/dZ dZ/dz,

where

dw

dZ
= − Γ

2πi

1

Z
+

1

πi

∫ 2π

0

(
ψte0 − Ωl2te/2 − Ulte cos α

) 1

eiθ

(
ωζ

ω
+

Z

eiθ

ωζζω − ω2
ζ

ω2

)
dθ

(A 12)
is the complex velocity in the annular domain.
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The complex potential (A 10) and the complex velocity (A 12) are only functions
of instantaneous values of α, d/2, Ω and U . The pressure p is given by (2.13) and,
obviously, depends on accelerations via the time derivative of the potential. It is
difficult to obtain an explicit formula, because there is no obvious way to explicitly
relate the mapping parameters q(t) and δ(t) to the physical parameters α(t), d(t)/2
and c. The unsteady pressure component is therefore evaluated numerically using a
centred fourth-order finite-difference scheme,

−ρ
∂φ

∂t
(z, t) = − ρ

�t

2∑
k=−2

bkφ(z, t + k�t) + O(�t4), (A 13)

where b = (1/12, −2/3, 0, 2/3, −1/12).
The total forces on the wing are also evaluated numerically. Integrals in (2.24)

are taken over a circle in the annular domain, Z = RS e−iθ , where RS is any number
between R0 and 1. Then dZ = iZdθ , and (2.24) is discretized in space using the
periodic trapezoid rule with integration points θj = 2πj/n, j = 1, . . . , n. Note that
counterclockwise paths in the annular domain become clockwise when mapped in
the physical domain, and the integrals change sign. Hence, a discrete counterpart of
(2.24) is obtained,

F ≈ ρ
2π

n

⎧⎨
⎩1

2

n∑
j=1

[(
dw

dZ

)2 (
dz

dZ

)−1

Z

]
j0

+
1

�t

2∑
k=−2

bk

n∑
j=1

[
z
dw

dZ
Z

]
jk

⎫⎬
⎭, (A 14)

where z, dz/dZ and dw/dZ are given, respectively, by (A 1), (A 5) and (A 12).
Subscripts k and j denote quantities evaluated at time t + k�t and at azimuthal
point θj . This scheme is spectral in space and fourth-order accurate in time.

Appendix B. On the lift coefficient of the inviscid mechanism
To supplement the discussion in § 2.4, here we examine the lift coefficient of

the inviscid Lighthill–Weis-Fogh mechanism with different kinematics. First, let us
consider the motion proposed by Miller & Peskin (2005). Between t =0 and t = 1.74,

the wings rotate with angular speed

Ω(t) =
1

2
Ωrot

[
1 − cos

(
2π

t − tturn

�trot

)]
, (B 1)

where Ωrot = 2�θUmax/�trot c, �θ = π/4, �trot = 1.74 and tturn = 0. The translational
motion begins at tc =0.86. The wings start sweeping apart with increasing speed

U (t) =
1

2
Umax

[
1 + cos

(
π + π

t − tc

�taccel

)]
, (B 2)

where �taccel =1.3. After t = tc +�taccel , the speed remains equal to Umax = 1.
The lift coefficient is shown in figure 25 by a solid line. During fling, the maximum

of cL equals 1.26, i.e. slightly more than a half of its value at Re =128 reported
by Miller & Peskin (2005). There is a noticeable discontinuity at tc. The maximum
during sweep is reached approximately at t = 1.74, when the wings stop rotating. This
corresponds well to the viscous case. By coincidence, cLmax = 2.51 also agrees well with
the numerical simulation at Re = 128. At t = 2.16, the acceleration reaction disappears,
and the change of the slope of cL(t) reflects the corresponding change of U̇ . Then,
the lift remains equal to ρΓ U , and there is no visible interference between the wings.
The corresponding cL = 2.07 is much larger than the real value in a viscous fluid.
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Figure 25. Lift coefficient per wing with Ω and U as in (B 1) and (B 2).

The dashed line in figure 25 corresponds to (B 1)–(B 2) with tc = 1.74. Hence, the
wings fully stop at tc, and then start translating. Their circulation Γ equals zero at
the moment of break and remains unchanged in the subsequent motion. Of course,
cL(tc) = 0. Moreover, the integral

∫ tc

0
cL dt = 0, i.e. no net lift is generated during

fling. There is a positive contribution during sweep, but only due to the acceleration
reaction. Obviously, this contribution also cancels out if the wings reverse and clap.

Appendix C. Finite-difference solution of the Stokes equation
This appendix describes the Stokes solver which was developed to validate the

similarity solution for fling, as mentioned in § 4.
Let the streamfunction ψ satisfy the Stokes equation (3.2) with ψ = Ωr2/2,

∂ψ/∂n = 0 on the wings. The computational domain is circular, with its centre at
the hinge point. The radius R of its outer boundary is large (but limited with the
maximum grid size) and the radius of its inner boundary is zero. This domain is
parametrized with polar coordinates (r, θ) and (3.2) is solved in it with the following
boundary conditions:

(i) ψ = Φ1, ∂ψ/∂r = Φ2 on the outer circular boundary (assuming Φ1 = Φ2 = 0);
(ii) ψ = 0, ∂ψ/∂r = 0 on the inner degenerate boundary and
(iii) ψ = Ωr2/2, ∂ψ/∂θ = 0 on the wings.

The streamfunction of the flow due to flapping wings in a Stokesian fluid grows
indefinitely large at large distances from the wings. However, the boundary conditions
for the numerical solution are prescribed at a finite distance from the wings, and the
flow due to a two-dimensional Stokeslet could provide adequate values of ψ and
∂ψ/∂n on the outer boundary (see Batchelor 2000). Numerical experiments show that
these conditions are unimportant if the outer boundary is sufficiently far.

The Laplace operator in polar coordinates reads as

∇2 =
∂2

∂r2
+ r−1 ∂

∂r
+ r−2 ∂2

∂θ2
, (C 1)

and the Stokes equation (3.2) can be rewritten as(
∂2

∂r2
+ r−1 ∂

∂r

)2

ψ +

(
2r−2 ∂2

∂r2
− 2r−3 ∂

∂r
+ 4r−4

)
∂2ψ

∂θ2
+ r−4 ∂4ψ

∂θ4
= 0. (C 2)

The streamfunction is sought in the form ψ = ψ1 + ψ2. The contribution ψ2 is an
arbitrary function which verifies non-homogeneous boundary conditions. In contrast,
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the contribution ψ1 equals zero on the boundaries, and in the interior it is determined
from the equation

∇4ψ1 = −∇4ψ2. (C 3)

Thus, the problem reduces to solving a bi-harmonic equation with non-vanishing
right-hand side and homogeneous boundary conditions.

Derivatives in θ are approximated on a uniform grid with finite differences as
follows.

(i) Second derivatives are computed with a central second-order scheme (in what
follows, f is any given function)

∂2f

∂θ2
(ri, θj ) ≈ fi,j+1 − 2fi,j + fi,j−1

�θ2
. (C 4)

(ii) Fourth derivatives are obtained everywhere, except at the points next to the
wings, by applying twice the second derivative operator. At the nearest points on
each side of the wings, the following scheme is used:

∂4ψ

∂θ4
(ri, θjw−1) ≈ −2

3

11ψi,jw
− 18ψi,jw−1 + 9ψi,jw−2 − 2ψi,jw−3

�θ4
, (C 5)

∂4ψ

∂θ4
(ri, θjw+1) ≈ −2

3

11ψi,jw
− 18ψi,jw+1 + 9ψi,jw+2 − 2ψi,jw+3

�θ4
, (C 6)

where jw = jw left (or jw = jw right) is the index of the grid line which coincides with
the left (or right) wing centreline. By construction of the interpolant, this scheme
guarantees that the first derivative in θ equals zero on the wings.

Derivatives in r are evaluated using a Chebyshev spectral collocation method (see
e.g. Canuto et al. 1988). The grid points cluster near the boundaries, ri = R(1 −
cos(iπ/N))/2, i = 0, . . . , N . This property is useful for our purpose of identifying the
asymptotic behaviour at r → 0.

Discretization of (C 3) results in a linear system of equations which is solved for
ψ1 at interior points. After the streamfunction ψ is found, the vorticity is calculated
as ω = −∇2ψ using the same numerical schemes. The pressure is computed from the
relations

∂p

∂x
= −∂ω

∂y
,

∂p

∂y
=

∂ω

∂x
. (C 7)

For that purpose, the vorticity is interpolated to a Cartesian grid in x–y coordinates
and its derivatives are calculated with central differences of second order. Then,
the pressure at every point is computed as a contour integral, with the integration
contours chosen not to cross the wing.

This numerical method, despite being imperfect, is good enough to capture the
essential features of the flow.
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