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1 Introduction

Many growth processes which shape the human environment generate structures at all
scales, e.g., trees, rivers, ligthning bolts. Likewise, most geophysical flows happen on
a wide range of scales, e.g., winds in the atmosphere, currents in the oceans, seismic
waves in the mantle. In general, both kinds of phenomena are governed by nonlinear
dynamical laws which give rise to chaotic behaviour, and it is thus very difficult to
follow their evolution, let alone predict it. Only in the last few decades could the
systems of nonlinear equations modelling environmental fluid flows be solved, thanks to
the development of numerical methods and the advent of super-computers. Although the
present computer performances still remain insufficient to simulate from first principles,
i.e., by Direct Numerical Simulation (DNS), many environmental fluid flows, especially
those which are turbulent, appropriate multiscale representations may contribute to the
success of that ongoing enterprise. The goal of this review is to present three of them:
fractals, self-similar random processes and wavelets.

A fractal is a set of points which presents structures that looks essentially the same
at all scales. When only its large scale features are considered, a certain shape is
observed, which does not become simpler when zooming towards small scales, but on
the contrary remains quite similar as it is at large scale. This goes on from one scale to
the other, up to the point that one cannot tell what is the scale of observation. When
measuring the length, surface, or volume of a fractal object, it is found that, in contrast
to classical geometrical objects, e.g., circle or polygones, a definite answer cannot be
obtained since the measured value increases when the scale of observation decreases.
Let us now consider a simple example of a drop falling into water, an experiment that
can be easily done with a glass of water, a drop of oil and a drop of ink. While falling,
the shape of the oil drop becomes more and more spherical, therefore more regular than
it was at the instant of impact. Since oil is hydrophobic, the drop tends to minimize
the interface between oil and water for a given volume. In contrast, the shape of the
ink drop becomes more and more convoluted, since the drop is unstable and splits
into smaller drops. In absence of surface tension the interface between ink and water
would then become fractal in the limit of long times. Indeed, since ink is hydrophilic
the drop tries to maximize the interface for a given volume. Both systems satisfy the
same equations and only one parameter, the surface tension, differs, which implies either
minimization or maximization of the interface. The solution of the former exists and is



smooth, while the maximum does not exist. John Hubbard, who suggested this example,
concludes: "The world is full of systems which are trying to reach an optimum which
does not exist, and consequently they evolve towards structures which are complicated
at all scales. This happens for trees, which try to maximize their exposure to light, for
lungs and capillaries, which try to mazximize the interface between tissue and blood. The
great work of Mandelbrot has been to tell, very loudly and in a very convincing way, that
the world is full of complicated phenomena, of complicated objects having structure at
all scales.” [27]

Fractals can be traced back to the discovery of continuous non differentiable func-
tions, e.g., the Weierstrass function, and non rectifiable curves, e.g., the Sierpinski
gasket. Measure theory, as developed in particular by Felix Hausdorff at the end of
the 19th century, and integration theory, as redesigned by Henri Lebesgue and others
at the beginning of the 20th century, together with the study of recursive sequences in
the complex plane, by Pierre Fatou and Gaston Juia, were all precursors of fractals,
although a different terminology was used at those times. Only when computer graph-
ics became widely available in the 60’s was one able to visualize fractals and wonder
about their apparent complexity. Although the mathematical tools were already there,
it is Benoit Mandelbrot, from IBM Research Center in Yorktown (USA), who popu-
larized fractals and named them in the seventies. Actually, before he started talking
about fractals, Mandelbrot was a specialist of Brownian motion that he had learned
about during the time he was at Ecole Polytechnique in Paris where he studied under
the French probabilist Paul Lévy [36]. It was Mandelbrot who gave in 1968 the name
'Fractional Brownian Motion’ [40] to the self-similar stochastic processes proposed by
Kolmogorov in 1940 [32], which are generalization with long-range correlated increments
of the classical Brownian motion.

The mathematical foundation of wavelets is more recent, since the continuous wavelet
transform has been introduced only in the eighties by Jean Morlet and Alex Grossmann.
Jean Morlet was working in oil exploration for the French company Elf, while Alex
Grossmann was a specialist of coherent states in quantum mechanics and a member
of CPT (Centre de Physique Théorique) in Marseille (France). From their work In-
grid Daubechies, Pierre-Gilles Lemarié and Yves Meyer constructed several orthogonal
wavelet bases. Soon after, Stéphane Mallat and Yves Meyer introduced the concept of
multiresolution analysis (MRA) which lead to the fast wavelet transform (FWT). With-
out the FWT, the wavelet transform would have remained confined to text books and
theoretical papers. The same was true for the Fourier transform that would not have
entered our everyday’s life without the combination of computers and FFT (fast Fourier
transform), invented by Gauss around 1805 and rediscovered by Cooley and Tukey in
1965.

The aim of this paper is to give researchers working in environmental fluid dynam-
ics some mathematical tools to study the multiscale behaviour of many natural flows.
For the sake of clarity, we propose to divide what is presently named ’fractals’ into
two classes: deterministic fractals and self-similar random processes. We will keep the
terminology ’fractals’ to designate the former, which are constructed following some
deterministic procedure iterated scale by scale. For the latter we propose to return to
the 'pre-fractal’ terminology of ’self-similar random processes’, which are ensembles of



random realizations whose statistics exhibit some scaling behaviour. We have thus or-
ganized the multiscale methods presented here into three classes: fractals, self-similar
random processes and wavelets. Note that they are all mathematical tools which do
not have any explanatory power per se. They require the scientist who use them to
have enough physical insight to interpret the results and decide if this tool is actually
appropriate to his problem. If a new technique is not mastered well enough, it would
provide an a priori interpretation, which is built-in the tool without the user being
sufficiently cautious about that risk. To avoid such a drawback, we will here limit our-
selves to give definitions, expose methods and illustrate their use on academic examples
rather than applications. We will justify this choice in the conclusion by showing how
such misinterpretation has happened in one field of application, with both fractals and
wavelets.

2 Principles

2.1 Fractals
2.1.1 Definition and history

To define what ’fractal’ means is quite a difficult endeavour since one finds in the litera-
ture different definitions. We propose the following definition: a fractal is a shape which
is so convoluted, irregular or fragmented that it is not rectifiable, i.e., one cannot mea-
sure its length. Its boundary is a set of points, either connected or disconnected, which
looks the same at different scales and tends to be space-filling. If the points remain
connected the boundary can be parametrized by a continuous but non-differentiable
function. Otherwise, the fractal is a dust of disconnected points which can only be
parametrize by a measure. A fractal shape looks complicated although it is not, since
it can be generated by a simple iterative procedure. The difficulty is, given an observed
complicated shape, can we infer the simple rule which has generated it? In most cases
the answer is no and this is why methods developed under the trademark ’fractals’ are
rather descriptive than predictive.

Benoit Mandelbrot introduced the word ’fractal’ in 1975, in a book first published
in French [42] and two years later in English [43], but he managed to keep the definition
vague and varied them throughout his books. The first definition he gave is: ... fractal
object’ and ’fractal’, terms that I have formed for this book from the Latin adjective
fractus’ which means irreqular or broken’ [42]. Subsequently Mandelbrot succeeded in
gathering under the same name different mathematical objects which were proposed
before but were considered by most mathematicians as surprising, anecdotic or weird.
Poincaré recalled that 'we have seen a rabble of functions arise whose only job, it seems,
s to look as little as possible like decent and useful functions. No more continuity, or
perhaps continuity but no derivatives [...] Yesterday, if a new function was invented it
was to serve some practical end, today there are specially invented only to show up the
arguments of our fathers, and they will never have any other use’6]. An example of
such entertaining mathematical object was the fractal curve known as the ’snow flake’,
see Fig. 1(a), published in 1904 by Helge von Koch in the Swedish journal ’Arkiv for
Matematik’ [31].



In 1918 the French Academy set for its 'Grand Prix des Sciences Mathématiques’
the iteration of fractional functions and Gaston Julia won that prize. Independently
Gaston Julia and Pierre Fatou were studying rational maps in the complex plane by
iterating polynomials, e.g. quadratic maps. In 1977 Adrien Douady and John Hubbard
used Newton’s method to solve the quadratic map f.(z) = 22 + ¢, with 2 € C, c € C a
parameter. This quadratic map is the simplest nonlinear dynamical system one can think
of in the complex plane and they studied the set K. of z for which the n-th iterate of f,
f2(2), converges. The frontier of K. is now called the Julia set of f.. Benoit Mandelbrot,
who worked for IBM and had thus access to large computers, graphical facilities and
good programmers, made visualizations to help understanding that problem. In a paper,
published in 1982, Douady and Hubbard [15] showed that if 0 € K. the set K, is
connex, and they denoted it M to pay tribute to Mandelbrot for his visualizations.
They commented as follows: ’Benoit Mandelbrot has obtained on a computer a very
beautiful picture of M, exhibiting small islands which are detached from the principal
component. These islands are in fact connected by filaments which escape the computer’
[15]. Without any doubt computer visualization has played an essential role in the
dissemination of fractals outside mathematics.

The main contribution of Mandelbrot has been to widely popularize fractals, thanks
to computer visualization. His argument is that fractals are more appropriate to describe
natural phenomena than the classical objects geometers have been using for centuries,
namely rectifiable curves (e.g., circle and other ovals) or piece-wise regular curves (e.g.,
triangle and other polygons). He illustrated that with many examples [42, 43] such as:
the length of the coast of Britain, fluctuations of stock exchange, flood data...

2.1.2 Fractal dimension

The box-counting dimension d of a simple geometrical object A is defined by

N~ 1= (1)
where N () is the minimal number of boxes of side length [ required to cover the whole
set of points A. For instance, if A is a regular curve (i.e., everywhere differentiable), like
a segment, then d = 1. If A is as simple surface (respectively a simple volume), then
d = 2 (respectively d = 3). In those cases, d corresponds to the topological dimension of
the manifold. The definition of d given by Eq. (1) can be extended to more general sets,
for which d is in general no more an integer, which brings up the concept of fractal set
for which d is then called the fractal dimension. A more rigorous definition of the fractal
dimension relies on the Hausdorff dimension [23]. But this is less easy to compute from
data, and in most cases the box-counting dimension d and the Hausdorff dimension are
equal. Hence, we consider thereafter that the Hausdorff dimension is equivalent to the
fractal dimension as defined in Eq. (1).

Classical illustrations of fractal sets of points are given by the Cantor dust and
the von Koch curve. The former is a set of points obtained by dividing recursively a
segment into three parts, where only the first and the third sub-segment are retained,
this construction is illustrated in Fig. 1(a). Since each step of the algorithm doubles
the number of segments while their length is divided by three, after n iterations there
are 2" segments of length 37". Since each segment includes all the sub-segments of the
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Figure 1: Illustration of the first four iteration steps leading to the Cantor dust (a) and
to the von Koch snow flake (b).

following iterations, it results that one can cover this ensemble of segments with 2™ balls
of radius 37". The fractal dimension of the Cantor set as defined by the box counting

method is thus: Lon -
dc:lim< . ) n 2)

n—oo _ln3_" - m

Therefore, the fractal dimension of the Cantor set is between 0 and 1, which implies
that the set is neither an ensemble of isolated points nor a line.

The second example, the von Koch curve, is also obtained using a recursive process
where in this case each segment of length [ is replaced by four segments of length [/3 as
illustrated in Fig. 1(b). Starting from the unit length segment, after n iterations there
are 4" segments of length 37". The fractal dimension of the von Koch curve, as defined
by the box counting method, is thus:

. In 4™ In4
dic = lim <—1n3—n> “ 3

The fractal dimension is hence contained between 1 and 2, implying that the length of
the von Koch curve is infinite while its surface is zero.

2.1.3 Holder exponent and singularity spectrum

Fractal dimension was defined above as a geometrical property that characterizes a set
of points, but it can also be used to analyze the regularity of functions or distributions as
detailed now. Complex signals, like those encountered in environmental data analysis,
can be seen as superpositions of singularities. One way of detecting a singularity of a
function f at a point z is to measure its Holder regularity. The function f is said to be
a-Holder in z if there exists a polynomial P, of degree n and a constant K such that
for sufficiently small [

[f(z+1) = Pa(D)] < KJI|%, (4)

where n is the integer part of a (i.e., n < a < n + 1). The Holder regularity of
f in x is the maximum « such that f is a-HoOlder in x. Note that for a = 1 the
function is called Lipschitz-continuous in x. If f is n 4+ 1 times differentiable in z, then
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Figure 2: Ilustrations of singularities at point x = 0 with the graph of the function
flx) =1—|z|* with « = 1,5/9 and 1/9 respectively for (a), (b) and (c).

P,(l)=>"10 ! (k,z!(m) 1* . the Taylor expansion of f in . The smaller the Holder exponent,
the stronger the singularity is (Fig. 2).

Some functions, sometimes called multi-fractal functions [46], have Holder regularity
which varies from one point to the other. It is thus interesting to analyze the set of
points A, where a function has Holder regularity «, for example by computing its fractal
dimension d(«). The singularity spectrum is the function which associates d(«) to each
value of the Holder regularity «. It is not easy to compute directly, but a trick can be
used to estimate it. We briefly sketch the idea without giving a rigorous demonstration.

If we consider a covering B; of the support of the function f by boxes of the form
By = [z, + 1], then, by definition of the regularity, we obtain that

[f(@+1) = flx)] ~ 1%, ()

where ~ stands for the magnitude order. Hereafter [ is assumed to be small (I < 1).
By definition of the fractal dimension, the minimal number of balls needed to recover
the support of A, is

N, (1) ~ 1), (6)

The moment function Z,(l) associated to the cover B; of the domain is defined by
Zy(l) = > p,ep, | f(x +1) — f(z)|?. Note that it is sometimes called partition function
by analogy with statistical physics. Contributions of boxes containing an a-singularity
are given by |f(x 4+ 1) — f(x)]|? ~ 9%, while the number of such boxes is given by Eq.
(6). Hence, the moment function can be approximated by Z4(l) ~ >, 190=d(@)  Since, [
is assumed to be small, the leading contribution in Z, is given by the term of minimum
exponent ga—d(«). It follows that the moment function is approximated by Z, (1) ~ 7@
where 7(q) = igf {qov — d(a)} is the multiscale exponent. Hence, as shown in [46] the

singularity spectrum d(«) appears as being the Legendre-Fenchel inverse transform of
the multiscale exponent 7(q)

() = inf {go — 7(q)} (7)

For instance, the singularity spectrum of the Riemann function f(z) = > >, Sinﬂ#,

is d(a) = 4h — 2 if a € [1/2,3/4] and d(3/2) = 0. Another example is given by the
Devil’s staircase, related to the Cantor set. In the Cantor set generation algorithm
that we have described earlier, each interval was split into two pieces in a symmetric
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Figure 3: Ilustration of the Devil’s staircase with an homogeneous repartition of mass
(a) and an heterogeneous repartition of mass where each left subsegment receives 30%
of the mass (b).

fashion at each iteration. Denoting by u the limit in the sense of distributions of the
characteristic function of the set as a result of the iterative process, the associated
function f(z) = [; p(du) is called the Devil’s staircase, as illustrated in Fig. 3(a). It
can be shown that each singularity of f is of the same Hoélder regularity o = In2/1n 3,
and the support of these singularities is the Cantor set. Thus, the singularity spectrum
is in that case reduced to the point d(In2/In3) =1n2/In 3.

More complex singularity spectra can be obtained by considering more general frac-
tals similar to the Devil’s staircase (see Fig. 3(b) ), which we do not detail here.

2.2 Self-similar random processes
2.2.1 Definition and history

Stochastic fractals, sometimes also called fractal noise, are self-similar random pro-
cesses, which yield models for many applications, e.g., turbulent velocity fields. The
self-similarity of a stochastic process is only satisfied in the statistical sense and hence
a given realization is not necessarily self-similar. One can distinguish between scalar
or vector valued random processes in one or higher space dimensions. For the sake of
simplicity we restrict ourselves in the following to scalar valued processes in one space
dimension, which typically corresponds to time ¢ or space x. The simplest ones are
Gaussian random processes.

Denoting by £(t) a Gaussian random process that we assume to be stationary (i.e., all
its statistics are invariant by translation), its one-point probability distribution function

(pdf) is given by
= u)2>

1
— o (S 0
where p is the mean and o the standard deviation. In the following we suppose that
the mean vanishes since we are only interested in the fluctuations. The process £(t) is
then characterized by its autocovariance function, defined as ({(7)£(0)), where (-) de-
notes the expectation, computed either from ensemble, time or space averages. Equiv-
alently it can be characterized by its energy spectrum defined as the Fourier trans-

p(€) =



form of its autocovariance function, E(f) = [, (£(1)£(0)) e™*™/ dr = <|£A(f)|2> with

E (f) = f & (t)e‘ﬂmf dt and ¢ = v/—1. The energy spectrum yields the spectral distribu-
tion of energy , and summing over all frequencies thus yields the total energy.

A simple example of a Gaussian process is the Wiener process, also called Brownian
motion, which was proposed in 1900 by Louis Bachelier as a model to describe market
price fluctuations. Its mathematical properties were studied in 1923 by Norbert Wiener
who called it the fundamental random function. The nomenclature 'Brownian’ is due to
Paul Lévy who named the Wiener process Brownian motion in memory of the Scottish
botanist Richard Brown, who in the beginning of the 19th century observed the random
motion of pollen suspension in water. An extension of Brownian motion has been intro-
duced by Kolmogorov in 1940 [32], a spectral representation was given by Hunt in 1951
[28], and Mandelbrot proposed in 1968 to call it ’fractional Brownian motion’ [40].

2.2.2 Brownian motion

For Brownian motion the variance of the increments scales as
(IB(t) = B(7)]*) = |t — 7| 9)

and the Holder regularity of the trajectories is 1/2. The formal derivative of a Wiener
process is called a Gaussian white noise. It is stationary and uncorrelated, i.e., its
autocovariance function is (£(7)£(0)) = §(7), where ¢ is the Dirac distribution, or equiv-
alently its energy spectrum is constant, E(f) = 1. The constant spectrum means that
all frequencies f have the same weight, and hence the noise is called white by analogy
with white light. Correlated Gaussian processes have non constant spectra and they
are called colored noise. Power-law spectra E(f) o< f? are of particular interest as the
processes are statistically self-similar, i.e., ({(A7)&(0)) = A*(&(7)£(0)). However such
processes are not necessarily stationary and, in order to recover stationarity, we con-
sider their increments. Due to non stationarity the energy spectrum can only be defined
formally and can no more be integrated (due to infrared divergence). For example, the
generalized energy spectrum of Brownian motion satisfies the power law E(f) oc 1/f2.
Brownian motion thus belongs to the class of so-called 1/f processes, which have been
studied for many applications.

2.2.3 Fractional Brownian motion

Fractional Brownian motion is a kind of self-similar Gaussian process which is non
stationary and whose energy spectrum follows a power law. A given realization of such
a noise is almost everywhere singular and has the same Hélder regularity at all points,
i.e., it is mono-fractal.
The fractional Brownian motion By (t) is the Gaussian process with zero mean such
that
Br(t=0)=0 (10)

and
(IBu(t) = Bu()*) = [t — 7[*, (11)
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where 0 < H < 1 is an additional parameter called Hurst exponent [29]. Here H
determines the regularity of the trajectories. The smaller H, the lower the regularity.
For H < 1/2 the increments of the process are correlated, while for H > 1/2 they are
anti-correlated. For H = 1/2 we get the classical Brownian motion. In all cases the
process is said to be long-range dependent.

The covariance function of By is given by

(Bur(t)Bi(r)) = (1?7 + |72 — |t — =) (12

Note that one given realization of fractional Brownian motion is not a fractal: the
self-similarity is only fullfilled in the statistical sense. Indeed, Eq. (11) implies that

([Br(A\t) = Bu(A7)*) = XH(|By (t) = Bu(7)). (13)

However, it can be shown that a given trajectory has the pointwise Holder regularity H =
a almost surely and is almost (besides for a set of measure zero) nowhere differentiable.

The self-similarity of the fractional Brownian motion By (t) implies for the energy
spectrum a power law behavior with exponent 2H + 1,

E(f) = % (14)

Gaussian processes, and thus also fractional Brownian motion, can be represented in
Fourier space using the Cramer representation

By(t) = /R VE) (et — 1)de (1), (15)

where d¢(f) is an orthogonal Gaussian increment process with (d€(f)dE(f7)) = d(f — '),
which means that the measure corresponds to Gaussian white noise. The term (e*>™f*—1)
instead of e*2™/* guarantees that By (0) = 0.

2.2.4 Multi-fractional Brownian motion

Allowing for time (or space) varying Hurst exponents generalizes fractional Brownian
motion, which is mono-fractal, to introduce stochastic multi-fractals. Their construction
is based on the spectral representation of stochastic processes. The starting point is a
function 0 : [0,1] —]0,1[ and the corresponding multi-fractional Brownian process can
be defined using the spectral representation,

22w ft 1
By(t) = /R Wdf(f)- (16)

The pointwise Holder regularity of By(t) is almost surely equal to 6(¢) and the
Hausdorff dimension of the graph of By is 2 — inf{#(¢),0 <t < 1}.

Methods for synthezising fractional Brownian motion are presented in section 3.2.
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2.3 Wavelets
2.3.1 Definition and history

In a signal the useful information is often carried by both its frequency content and
its time evolution, or by both its wavenumber content and its space evolution. Unfor-
tunately the spectral analysis does not give information on the instant of emission of
each frequency or the spatial location of each wavenumber. This is due to the fact that
the Fourier representation spreads the time or space information among the phase of
all Fourier coefficients, therefore the energy spectrum (i.e., the modulus of the Fourier
coefficients) loses any structural information in time or space. This is a major limitation
of the classical way to analyze non stationary signals or inhomogeneous fields. A more
appropriate representation should combine these two complementary descriptions.

From now on we will consider a signal f(z) which only depends on space. The
theory is the same for a signal f(¢) which depends on time, except that the wavenumber
k should in that case be replaced by the frequency v, and the spatial scale [ by the time
scale or duration 7. Any function f € L?(R) also has a spectral representation f(k‘)
defined as

fio = | " fw)e e, (17)
where ¢ = /—1.

However, there is no perfect representation due to the limitation resulting from the
Fourier’s uncertainty principle (also called Heisenberg’s uncertainty principle when it is
used in quantum mechanics). One thus cannot perfectly analyse the signal f from both
sides of the Fourier transform at the same time, due to the restriction Ax /-\Ak: > C,
where Az is the spatial support of |f(x)| and Ak the spectral support of |f(k)|, with
C' a constant which depends on the chosen normalization of the Fourier transform.Due
to the uncertainty principle there is always a compromise to be made in order to have,
either a good spatial resolution Az at the price of a poor spectral resolution Ak, or a
good spectral resolution Ak while loosing the space resolution Az, as it is the case with
the Fourier transform. These two representations, in space or in wavenumber, are the
most commonly used in practice because they allow to construct orthogonal bases onto
which one projects the signal to be analysed and processed.

In order to try to recover some space locality while using the Fourier transform,
Gabor [22] has proposed the windowed Fourier transform, which consists of convolv-
ing the signal with a set of Fourier modes e?™#® localized in a Gaussian envelope of
constant width ly. This transform allows then a time-frequency (or space-wavenumber)
decomposition of the signal at a given scale [y, which is kept fixed. But unfortunately,
as shown by Balian [4], the bases constructed with such windowed Fourier modes cannot
be orthogonal. In 1984 Grossmann and Morlet [24] have proposed a new transform, the
so called wavelet transform, which consists of convolving the signal with a set of wave
packets, called wavelets, of different widths [ and locations x. To analyze the signal
f(x), we generate the family of analysing wavelets 1, ;, by dilation (scale parameter 1)
and translation (position parameter x) of a given function 1 which oscillates with a
characteristic wavenumber ky in such a way that its mean remains zero. The wavelet
transform thus allows a space-scale decomposition of the signal f given by its wavelet
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coefficients ﬁx The wavelet representation yields the best compromise in view of the
Fourier uncertainty principle, because it adapts the space-wavenumber resolution Ax-Ak
to each scale [. In fact it gives for the large scales a good spectral resolution Ak but a
poor spatial resolution Az, while, on the contrary, it gives a good spatial resolution Az
with a poor spectral resolution Ak for the small scales.

In 1989 the continuous wavelet transform has been extended to analyse and synthe-
size signals or fields in higher dimensions [45, 1]. In 1985 Meyer, while trying to prove
the same kind of impossibility to build orthogonal bases as done by Balian [4] in the case
of the windowed Fourier transform, has been quite surprised to discover an orthogonal
wavelet basis built with spline functions, now called the Meyer-Lemarié wavelet basis
[35]. In fact the Haar orthogonal basis, which was proposed in 1909 in the PhD thesis
of Haar and published in 1910 [25], is now recognized as the first orthogonal wavelet
basis known, but the functions it uses are not regular, which limits its application. In
practice one likes to build orthogonal wavelet bases using functions having sufficient reg-
ularity, depending on the application. In particular, following Meyer’s work, Daubechies
has proposed in 1988 [12] new orthogonal wavelet bases built with compactly supported
functions defined by discrete Quadrature Mirror Filters (QMFs) of different lengths. The
longer the filter, the more regular the associated functions. In 1989 Mallat has devised a
fast algorithm [37] to compute the orthogonal wavelet transform using wavelets defined
by QMF. Later Malvar [39], Coifman and Meyer [7] have found a new kind of windows
of variable width which allows the construction of orthogonal adaptive local cosine bases
which have then been used to design the MP3 format for sound compression. The el-
ementary functions of such bases, called Malvar’s wavelets, are parametrized by their
position x, their scale | (width of the window) and their wavenumber k (proportional to
the number of oscillations inside each window). In the same spirit, Coifman, Meyer and
Wickerhauser [8] have proposed the so-called wavelet packets which, similarly to com-
pactly supported wavelets, are wavepackets of prescribed regularity defined by discrete
QMFs, from which one can construct orthogonal bases.

The Fourier representation is well suited to solve linear equations, for which the
superposition principle holds and whose generic solutions either persist at a given scale,
or spread to larger scales. In contrast, the superposition principle does not hold anymore
for nonlinear equations, e.g., the Navier-Stokes equations which is the fundamental
equation of fluid dynamics. In this case the equations can no more be decomposed
as a sum of simpler equations which can be solved separately. Generically the time
evolution of their solutions involves a wide range of scales and could even lead to finite
time singularities, e.g., shocks. The ’art’ of predicting the evolution of such nonlinear
evolution, the generic case being turbulent flows, consists of disentangling the nonlinear
from the linear dynamical components: the former should be deterministically computed
while the latter could, either be discarded or their effect be statistically modelled. A
review of the different types of wavelet transforms and their applications to analyse and
compute turbulent flows is given in [19, 50].
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2.3.2 Continuous wavelet transform

The only condition a real-valued function 1 (z) € L?(R) or a complex-valued function
Y(z) € L?(C) should satisfy to be called wavelets is the admissibility condition

co= [~ T < . (18)

where 1[1 = ffooo f(z)e 2™k gy its the Fourier transform of 1. If ¢ is admissible its mean

is zero, therefore J(kz = 0) = 0, and only then the wavelet transform is invertible. The
wavelet ¢ may also have other properties, such as being well-localized in physical space
x € R (fast decay of f for |x| tending to co) and smooth, i.e., well-localized in spectral
space (fast decay of ¢(k) for |k| tending to oo). For several applications, in particular
to study deterministic fractals or random processes, one also wishes that ¥ (k) decays
rapidly near 0, or equivalently that the wavelet has enough cancellations such that

o0
/ 2"Yp(x)de =0 for m=0,...M—1 |, (19)
— 0o

namely that its first M moments vanish. In this case the wavelet analysis will enhance
any quasi-singular behaviour of the signal by hiding all its polynomial behavior up to
degree m.

One then generates a family of wavelets by dilatation (or contraction), with the scale
parameter [ € RT, and translation, with the location parameter x € R, of the so-called
mother wavelet and obtains

/

ale) =ty (277 (20)

where ¢(l) =1 —1/2 corresponds to all wavelets being normalized in the L?-norm, i.e., they
have the same energy, while for ¢(I) = [~! all wavelets are normalized in the L'-norm.

The continuous wavelet transform of a function f € L?(R) is the inner product of f
with the analyzing wavelets 1/; ,, which yields the wavelet coefficients

ﬂh@=%ﬁ¢m%:[%f@%ﬁAfwﬂ, (21)

with ¢* denoting the complex-conjugate of 1). The continuous wavelet coefficients mea-
sure the fluctuations of f at scale [ and around position x. If the analyzing wavelets have
been normalized in L?-norm, then the squared wavelet coefficients correspond to the en-
ergy density of the signal whose evolution can be tracked in both space and scale. Note
that the wavelet coefficients written in L'-norm are related to the wavelet coefficients
written in L?-norm by

JFLl = l_l/szz. (22)

To study the Holder regularity of a function and estimate its singularity spectrum, one
prefers to use wavelet coefficients in L!-norm (see section 2.1.3).
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The function f can be reconstructed without any loss as the inner-product of its
wavelet coefficients f with the analyzing wavelets 1y ,:

f@') = Cuz_l/

co JOT

[c oy e o]

Fl, )y o () % dz (23)

with Cy, the constant of the admissibility condition given in Eq. (18), which only depends
on the chosen wavelet 1.

Like the Fourier transform, the wavelet transform is linear, i.e., we have

e~ e~~~

Brfi(x) + Bafo(z) = Bifi(z) + P2 fol) (24)

with 81, B2 € R, and it is also an isometry, i.e., it conserves the inner-product (Plancherel’s
theorem), and in particular the energy (Parseval’s identity). The continuous wavelet
transform is also covariant by translation and by dilation, both properties which are
partially lost by the orthogonal wavelet transform. Let us also mention that, due to the
localization of wavelets in physical space, the behaviour of the signal at infinity does not
play any role. In contrast, the non local nature of the trigonometric functions used for
the Fourier transform does not allow us to locally analyse or process a signal with it.

Fig. 4 shows six examples of wavelet analyses of academic signals using the complex-
valued Morlet wavelet: a Dirac spike (a), a step function (b), the superposition of
two cosine functions having different frequencies (c), succession of two cosine functions
having different frequencies (d), a chirp (e), a Gaussian white noise (f). The modulus of
the wavelet coefficients is plotted as a function of position x on abscissa and the log of the
scale [ on ordinate. The curved black lines delimitate the region where the coefficients
are not influenced by left and right boundaries, which correspond to the spatial support
of the wavelets localized in © = 0 and © = 1. The horizontal straight black line indicates
the scale below which the wavelet coefficients are aliased, due to undersampling of the
wavelets at small scales. Note in particular that three signals, namely Fig. 4 (a), (e)
and (f), have similar flat Fourier and wavelet spectra (see Sec. 3.3.2), although the
space-scale representation of the energy density in wavelet space exhibit very different
behaviours.

The extension of the continuous wavelet transform to analyse signals in d dimensions
is made possible by replacing the affine group by the Euclidean group with rotation. One
thus generates the d-dimensional wavelet family v, z with [ the dilation factor, R the
rotation matrix in R? and & the translation such that:

Yzqr(@') = ld% (0 <7’_1 <x l_x>> (25)

where the wavelet 1 should satisfies the admissibility condition which becomes in d-
dimensions:

co= [ iw[ s < oo (26)

If we consider d = 2 then the rotation matrix R(0) is

< cosf —sinf ) ‘ (27)

sinf  cosf
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Figure 4: Examples of wavelet analyses of academic signals, namely a Dirac spike (a), a
step function (b), the superposition of two cosine functions having different frequencies
(¢), the succession of two cosine functions of very different frequencies (d), a chirp (e),
and finally one realization of a Gaussian white noise (f)). The modulus of the complex-
valued Morlet wavelet coefficients are plotted as a function of position and scale. The
original signal is plotted on the top. The Fourier spectrum (black curve) and the wavelet
scalogram (red crosses), as defined in Sec. 3.3.2, are also shown on the left, with the

axes rotated by 90 degrees.
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The wavelet analysis of a two-dimensional scalar field f(Z) is
F.7,0) = / / F@ s p(a) dF (25)
and the wavelet synthesis is

- [ fusne@t R L e

In dimensions larger than two one needs d — 1 angles to describe the rotation operator

R.

2.3.3 Orthogonal wavelet transform

Wavelets can also be used to construct discrete representations of various function spaces,
called frames [11], by selecting a discrete subset of all their translations and dilations.
Some special frames sampled on a dyadic grid A = (j,1), i.e., for which the scale [ has
been discretised by octaves j and the position z by spatial steps 2774, constitute or-
thogonal wavelet bases. The main difference between the continuous and the orthogonal
wavelet transform is that all orthogonal wavelet coefficients are decorrelated. This is
not the case for the continuous wavelet coeflicients which are redundant and correlated
in both space and scale. These correlations can be visualised by plotting the modu-
lus of the continuous wavelet coefficients of one realisation of a white noise computed
with a Morlet wavelet, see Fig. 9 (b). The patterns one thus observes are due to the
reproducing kernel of the continuous wavelet transform, which corresponds to the corre-
lation between all the analyzing wavelets themselves. Note that the redundancy of the
continuous wavelet transform is actually useful for algorithms such as edge and texture
detection. Moreover, its translation and dilation invariance eliminates some artefacts
one encounters when denoising with the orthogonal wavelet transform which does not
preserve those invariances.

As a tutorial example, we explain the orthogonal wavelet decomposition of a three-
dimensional vector field. For this we consider a square integrable vector-valued field
# — f(&) € LA(T?), where T3 = (R/Z)? is the 3D torus and & = (z1, 2, z3) € T3. Note
that in practice the fact that f is defined on a torus simply means that periodic boundary
conditions are assumed. The input data consists in discrete values of f sampled with a
resolution Nj, = 27 in each direction. Nj, is thus the number of grid points and J is the
number of octaves in each of the three directions, and the total number of grid points
is thus N = N; x Ny x N3 = 23/, The mother wavelet is denoted 1 as above, and we
assume that it satisfies all the necessary conditions (see, e.g., [13]) so that the wavelets
y; defined by Eq. (20) are pairwise orthogonal if (I, z) is sampled on the dyadic grid
{277,279) | =0,...,J —1, i =0,...,27 —1}. We also assume that the wavelet
has been suitably periodized. To develop the components f; of f (with d = 1,2,3)
into an orthogonal wavelet series from the largest scale lyax = 29 to the smallest scale
Imin = 27711, we need to construct a 3D multi-resolution analysis (MRA) as follows
13, 19].

For X belonging to the index set

Ao ={0G,@,0) | j=0,....,J =1, ie{0,1}3 7€{0,...,27 —1}3},
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(a) Haar wavelet (b) Coifman 12 wavelet

Figure 5: Orthogonal wavelets: Haar wavelet (left) and Coifman 12 wavelet (right).
We have superposed one wavelet at scale j = 0 (blue) and position = 0.5) and two
wavelets at the next smaller scale j = 1, located at position x = 0.25 (red) and x = 0.75
(green). They are mutually orthogonal, which can be directly seen for the Haar wavelet
and which is much less obvious for the Coifman wavelet.

define the 3D wavelet ) by

1/1)\(1'1,1'2,1'3) = 23j/2 H ¢(2jxk — Zk) H 1/1(2ja:k — Zk) s
1<k<3 1<k<3
k=0 Hp=1

where ¢ is the scaling function (also called father wavelet) associated to ¢ [13]. Here,
the parameters j and 7’ are the 3D equivalent to the scale and positions parameters that
we are already familiar with from the preceding discussion of the 1D continuous wavelet
transform. The new parameter, (i, provides an additional degree of freedom which is
necessary to represent 3D data without loss of information. It controls the directions of
oscillation of the wavelet. For example, if i = (1,0,0), the wavelet is oscillatory (i.e.,
it has vanishing mean) in the first direction, whereas it has nonvanihsing mean in the
two others directions. If i = (0,0,0), v, is the 3D equivalent to a scaling function, in
which case we shall denote it ¢, following the classical convention. The wavelets are
thus indexed by the subset of Ay whose elements satisfy ji # 0, which we denote A. The
wavelet coefficients and scaling coefficients of f; are then simply defined by

fg = (fa,¥n)
7)\ = <fd7¢>\>7

where (-,-) denotes the inner product in L?(R?).
Now we have all the ingredients to write down the wavelet series of fy:

fa= Fo00) + Z fly - (30)

A€A

The first term is a constant which is in fact the mean value of f, and the sum over
A contains all the oscillations of f at finer and finer scales, j = 0,...,J — 1, while
preserving some amount of space-locality thanks to the position index 7, and also some
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amount of directionality thanks to . Hence the expansion coefficients appearing in Eq.
(30) can be used to compute directional and/or scale-wise statistics of f, as we shall see
further down. Importantly, there exists a fast wavelet algorithm with O(N) complexity,
where N denotes the number of wavelet coefficients used in the computation. It is thus
asymptotically even faster than the FFT (Fast Fourier Transform), whose complexity is
O(N logy N).

3 Methods of analysis

3.1 Fractals
3.1.1 Estimation of the fractal dimension

The box-counting algorithm is a simple method to compute the fractal dimension of
a given object (a set of points S in Euclidean space R?, for example a curve in two
dimensions or an iso-surface in three dimensions) by counting the number of boxes
(squares in two dimensions, cubes in three dimensions, ...) which cover the object. First
the object is overlaid with an equidistant Cartesian grid of size ¢. Then the number of
boxes with side length ¢ covering the object is counted which yields N(¢). Subsequently
the grid size ¢ is reduced (e.g., by a factor 2), a refined grid is overlaid and the number
of boxes covering the objet is counted again. The above procedure is repeated until the
finest resolution of the object is obtained. Finally, the number of boxes N () covering the
object is plotted against the inverse grid size 1/¢ in log-log representation. A straight
line is fitted to the curve thus obtained and the slope of the curve yields the fractal
dimension of the set S as defined by Eq. (1).

For a regular smooth curve (e.g., a straight line in two or three dimensions) we can
observe that the number of boxes covering the curve is proportional to the inverse of the
grid size and hence its dimension is 1 which is equal to its topological dimension. For a
smooth surface (e.g., the surface of a sphere in three dimensions) we find that the number
of boxes increases quadratically with the inverse grid size which yields its topological
dimension of two. For fractals the obtained dimension differs from its topological one.

Besides pathological cases, the limit obtained with the box counting algorithm cor-
responds to the Hausdorff dimension and thus this technique is an efficient way for
computing it.

3.1.2 Synthesis of fractal sets

Now we discuss a method to generate a fractal set of points based on iterated functions,
recursively applied. An iterated function system (IFS) is a set of contractions {f;};cn,n
from R? into itself such that there exists for each i a constant ¢; such that 0 < ¢; < 1
with | f;(x) — fi(y)| < ¢ilx —y|. The Hutchinson function F' associated to the IFS is the
transformation from C(RY) to itself, where C(R?) denotes the set of all compact subsets
of R?, defined by
F(4) = fi(A) U+ U fi(A), (31)
)

with A € C(R?). It can be shown that F itself is also a contraction defined into C(R?
for the Hausdorff distance 0g, that is 6y (F'(A), F(B)) < cou(A, B), where 0 (A, B) =
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max{sup,e 4 infyep v — y|,sup,cpinfrea[r — y|} and ¢ = max{c;}. Because of the
completeness of the metric space (C (RY), 6 H), F admits a fixed point in C(R%), and this
fixed point is a compact limit ensemble Ap, obtained as Ap = lim,,_,, F"(A), where A
is an arbitrary initial compact set, and Ap verifies Ap = F(Ap).

As illustration for an IFS, we consider the IFS {f1, fo} defined on the real line R by
fi(x) = /3 and fo(x) = x/3 + 2/3. These functions are contractions with ratio 1/3.
When applying these two contractions to the segment [0, 1], we obtain the algorithm
for generating the Cantor set, as illustrated in Fig. 1. The Cantor set is thus the
limit ensemble of the IFS {f1, fo}. In the particular case where the IFS is made of
disconnected or just-touching affine functions f;(z) = ¢;R;x + b; where 0 < ¢; < 1 is the
magnitude, R; the rotation matrix and b; the translation, then the fractal dimension d
of the limit set is linked to the similitude magnitude ¢; by the relation

d =1 (32)
1

By applying this relation to the Cantor set, we obtain the equation 2(1/3)¢ = 1, whose
solution is the fractal dimension d = In2/1n 3 already found above. Similarily, the von
Koch curve can be obtained from an IFS of four similitudes of magnitude 1/3, so that

its fractal dimension satisfies 4(1/3)? = 1, leading to the known result d = In4/1n 3.
To construct the limit ensemble, a direct solution is to start from a simple compact
set and to make it evolve by using the Hutchinson function associated to the IFS.
However this solution is computationally costly, since we have to deal with sets. An
more efficient alternative is to use a random procedure as we will describe now. From
a single point A = {z¢} which is a compact set, a recursive process is generated so
that x,+1 = w, where w, is randomly chosen within the list {f;(x,)} where f;(x,) is
sampled with probability p;. If fi(z) = A;z + b;, where A; is a matrix, then p; can be

defined as p; = %. The intuitive reason of this choice for p; is that the volume

of the unit square transformed by f; is | det A;|. When the determinant is zero, p; is set
to a small value compared to the other non zero determinants, and then normalized to
ensure the probability normalization ), p; = 1.

Another possibility to construct a fractal set of points from an existing set of points,
is given by the collage theorem [5]. We consider a compact ensemble S of R¢ and
€ > 0. The idea is to be able to reconstruct this ensemble from an IFS strategy, which
would be easy if an [FS generating the pattern was known exactly. However, in pratical
applications the generating system is unknown. The collage theorem states that, if one
finds an IFS {f;};cp1,n) such that the Hutchinson function F' leaves S invariant up to
a tolerance ¢, i.e., 0 (S, F(S)) < g, then the limit ensemble Ap associated to the IFS
satisfies

5H(S7AF)§ 1iC7 (33)
where ¢ is the contraction ratio of F'.

Even if this theorem does not lead to a constructive method to determine an appro-
priate IFS, it provides a useful way for building fractal sets from a given set of points.
In practice, the IFS can be looked for within a reduced class of contractions. For in-
stance, one can try to estimate the smallest set of similitudes required to ensure a given

tolerance e.
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3.1.3 Singularity spectrum

As an illustration of the singularity spectrum and its limitations, we compute the sin-
gularity spectrum of a function f and we compare its singularity spectrum when noise
is added.

In Fig. 6(b), we show the singularity spectrum of the function f plotted in Fig. 6(a).
The support of the spectrum is the whole interval (0, 1), and the fractal dimension of the
Holder exponent close to o« = 1 is about d = 0.7. It is larger than the fractal dimension
of stronger singularities (having small Holder exponents). Hence, the support where
the signal is regular is larger than the one where it is irregular, as seen in Fig. 6(a).
If a white noise with a weak standard deviation of ¢ = 0.01 is added, see Fig. 6(c),
then the signal becomes more irregular leading to a singularity spectrum truncated at
an Holder exponent closed to o« = 0.5, as seen on Fig. 6(d). Moreover, the support
of the singularities becomes larger since the fractal dimension d(a) for a = 0.5 for the
noise-free signal, in Fig. 6(a), is close to o = 0.5, see Fig. 6(b), while for the noisy signal
in Fig. 6(c) it is close to @ = 1, see Fig. 6(d). This effect is reinforced with a more
intense noise of standard deviation o = 0.1, see Fig. 6(e) and (f).

This illustrates that the computation of the singularity spectrum is sensitive to the
amount of noise present in the signal. Thus adding white noise to a signal reduces the
regularity since large Holder exponents disappear as the amount of noise increases, as
seen in Fig. 6.

3.2 Self-similar random processes
3.2.1 Analysis

The Hurst exponent H of a stochastic process can be estimated by considering the
quadratic variation of a given realization, e.g., observed data. For fractional Brownian
motion Bpy(t) with ¢t € [0,1] the quadratic variation Vy associated to the step size
dt = 1/N, N being the number of sampling points, is given by

= ko1 ANE
VN = kZ:O [BH <N+N> — By <N>:| . (34)
This quadratic variation can be related to the Hurst exponent by

Vi, = ent (35)

where c is a constant. Moreover the quadratic variation of the dyadically subsampled
data, taking only one out of two values of By (k/N), is Viy/o. It follows that

Vi _9l-2H

— ) 36
Vrsa (36)
which leads thus to the Hurst exponent
1 VN >
H=—-(1-1log . 37
5 (10w 37)

Hence this relation can be used to estimate H from the data. It only requires to compute
the quadratic variation of both the data and the dyadically subsampled data.
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Figure 6: Singularity spectrum of a function f (a) (the Devil’s staircase) and its noisy
versions perturbed with a white noise of standard deviation o = 0.01 (¢) and ¢ = 0.1
(e). The corresponding singularity spectra are shown on the right column. Without
noise (b), with noise of standard deviation ¢ = 0.01 (d) and ¢ = 0.1 (f).
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3.2.2 Synthesis

Different approaches are available for the synthesis of self-similar random processes
which are typically either based on the spectral representation of stochastic processes
or construct the process in physical space using a decomposed covariance matrix. Ad-
ditionally wavelet techniques have been developed which allow the efficient generation
of realizations with long range dependence and with many scales without imposing a
cut—off scale thanks to the vanishing moment property of the wavelets.

For synthezising fractional Brownian motion numerically one can either discretize
the Cramer representation in a suitable way or generate it directly in physical space by
applying the decomposed covariance matrix to Gaussian white noise.

For the latter the discrete covariance matrix I'; ; = (By(t;) Bu(7;)) fori,j =1,..., N,
where N denotes the number of grid points, is first assembled. Then a Cholesky de-
composition I' = LL! is computed (where L is a lower triangular matrix with positive
diagonal entries, and L! is its transpose). Then, a vector of length N is constructed by
taking one realization of Gaussian white noise with variance 1, i.e., £(¢;) fori =1,..., N.
A realization of fractional Brownian motion is then obtained by multiplication of & with
L7

B(t;) = Lij§(t;)
where summation over j is assumed. For further details on generating Gaussian and
also non Gaussian processes we refer to [10].

Different wavelet techniques for synthezising fluctuating fields using self-similar ran-
dom processes with a wide range of scales have been proposed. Elliot and Majda [16, 17]
proposed a wavelet Monte-Carlo method to generate stochastic Gaussian processes with
many scales for one dimensional scalar fields and for two dimensional divergent-free ve-
locity fields. The fields thus obtained have a k~%/3 scaling of the energy spectrum (which
means that the increments grow as 12/3) and thus correspond to fractional Brownian mo-
tion with a Hurst exponent H = 2/3. Applications were dealing with the simulation of
particle dispersion (Elliot & Majda) [17]. A related construction was proposed by Tafti
and Unser [51].

An interesting technique from image processing, which was originally developed for
generating artificial clouds in computer animations was proposed in [9]. Therewith
intermittent scalar valued processes in two space dimensions can be efficiently generated
which have a given energy distribution which could be self-similar. The resulting process
is stricly band-limited.

3.2.3 Application to fractional Brownian motion

To illustrate the fractional Brownian motion we show in Fig. 7 (right) three realizations
of different fractional Brownian motion for H = 0.5 (corresponding to classical Brow-
nian motion), H = 0.75 and 0.9. The corresponding increments, which are fractional
Gaussian noise with different correlations, are shown in Fig. 7 (left). We can observe
that the regularity of the curves increases for larger values of H.
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Figure 7: Sample trajectories of Gaussian fractional noise (left column), and of fractional
Brownian motion (right column) for three different values of the Hurst exponent H.
The Gaussian fractional noise (left column) corresponds to increments of the fractional
Brownian motion (right column). The resolution is N = 1024.

To model random process with short range correlation we can suppose that the
covariance function decays exponentially oc exp(—t/7.). The corresponding spectral
density decays o< 47./(1 + (f7.)?). Fig. 8 shows examples for different values of 7. (left)
and different spectral densities (right). For increasing « the apparent regularity of the
trajectory increases, although the actual regularity of the underlying function remains
the same.

3.3 Wavelets
3.3.1 Wavelet analysis

The choice of the kind of wavelet transform one needs to solve a given problem is essen-
tial. Typically if the problem has to do with signal or image analysis, then the continuous
wavelet transform should be preferred. The analysis benefits from the redundancy of the
continuous wavelet coefficients which thus allows to continuously unfold the information
content into both space and scale. The best is to choose a complex-valued wavelet,
e.g., the Morlet wavelet, since from the wavelet coefficients one can directly read off
the space-scale behaviour of the signal and detect for instance frequency modulation
laws or quasi-singularities, even if they are superposed. For this one plots the modulus
and the phase of the wavelet coefficients in wavelet space, with a linear horizontal axis
corresponding to the position x, and a logarithmic vertical axis corresponding to scale
[, with the largest scale at the bottom and the smallest scale being at the top.

A classical real-valued wavelet is the Marr wavelet, also called "Mexican hat’, which
is the second derivative of a Gaussian,

Y(@) = (1—-a%) e (38)
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Figure 8: (a) Sample trajectories of Gaussian noise with exponentially decaying covari-
ance. (b) Spectra averaged over 1000 realizations for three types of noise with identical
variances, sampled on N = 2 points.

and its Fourier transform is

~

2
D(k) =k2e 2 (39)
The most useful complex-valued wavelet is the Morlet wavelet,

2

o) = v e (40)

with the wavenumber £, denoting the barycenter of the wavelet support in Fourier space
given by

_Jo klb(k)| dk

Jo© lb(k)| dk

The wavenumber k,, controls the number of oscillations inside the wavelet. Actually
the Morlet wavelet does not stricto sensus respects the admissibility condition as defined
in Eq. (18) since its mean is not zero. One should take ky, > 5 to insure that it vanishes
up to the computer round-off errors. A better solution is to define the Morlet wavelet

in Fourier space and enforce the admissibility condition by putting its mean, i.e., 15(0),
to zero which gives

(41)

(k—ky)?
J(k‘) — e 2 for k>0 |
0 for k<0

If the problem one would like to solve requires filtering or compressing a signal,
an image or a vector field under study, then one should use the orthogonal wavelet
transform to avoid the redundancy inherent to the continuous wavelet transform. In
this case there is also a large collection of possible orthogonal wavelets and their choice
depends on which properties one prefers, e.g., compact-support, symmetry, smoothness,
number of cancellations, computational efficiency.
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Figure 9: Localization of the Morlet wavelet in physical space (a) and in spectral space

(b).

From our experience, we recommend the Coifman 12 wavelet, which is compactly
supported, has four vanishing moments, is quasi-symmetric and is defined by a filter
of length 12, which leads to a computational cost of the fast wavelet transform in 24N
operations (since two filters are needed for the wavelet and the scaling function).

To analyze fluctuating signals or fields one should use the continuous wavelet trans-
form with complex valued wavelets, since the modulus of the wavelet coefficients allows
to read the evolution of the energy density in both space (or time) and scales. If one
uses real-valued wavelets instead, the modulus of the wavelet coefficients will present
the same oscillations as the analyzing wavelets and it will then become difficult to sort
out features belonging to the signal or to the wavelet. In the case of complex-valued
wavelets the quadrature between the real and the imaginary parts of the wavelet co-
efficients eliminates these spurious oscillations and this is why we recommend to use
complex-valued wavelets, such as the Morlet wavelet. If ones wants to compress tur-
bulent flows, and a fortiori to compute their evolution at a reduced cost compared to
standard methods (finite difference, finite volume or spectral methods), one should use
orthogonal wavelets. In this case there is no more redundancy of the wavelet coefficients
and one has the same number of wavelet coefficients as the number of grid-points and
one uses the fast wavelet transform [13, 19, 38]. The first application of wavelets to
analyze turbulent flows has been published in 1988 [18]. Since then a long-term research
program has been developed for analyzing, computing and modelling turbulent flows
using either continuous wavelets or orthogonal wavelets, and also wavelet packets (one
can download the corresponding papers from http://wavelets.ens.fr in "Publications’).

As an example we show the continuous wavelet transform, using the complex-valued
Morlet wavelet, of several signals: a deterministic fractal which is the Devil’s staircase
(Fig. 10) and two self-similar random signals, which are, Fractional Brownian Motions
(FBM) having different Hurst exponent, i.e., H = 0.25 and H = 0.75 (Fig. 11).

3.3.2 Wavelet spectrum

Since the wavelet transform conserves energy and preserves locality in physical space,
one can use it to extend the concept of the energy spectrum and define the local energy
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Figure 10: Devil’s staircase (left), and its continuous wavelet analysis (right).
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Figure 11: Continuous wavelet analysis of fractional Brownian motion with Hurst expo-
nent H = 0.25 (left), and H = 0.75 (right).
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spectrum of the function f € L?(R), such that
1

~ kd’
Cyky d <?$>

where ky, is the centroid wavenumber of the analyzing wavelet 1) and Cy, is defined by
the admissibility condition given in Eq. (18).

By measuring E(k,z) at different instants or positions in the signal, one estimates
which elements in the signal contribute most to the global Fourier energy spectrum,
that might suggest a way to decompose the signal into different components. One can
split a given signal or field using the orthogonal wavelet transform into two orthogonal
contributions (see section 3.3.5) and then plot the energy spectrum of each to exhibit
their different spectral slopes and therefore their different correlation.

2

E(k,z) = for k>0 |, (42)

Although the wavelet transform analyzes the flow using localized functions rather
than complex exponentials as for Fourier transform, one can show that the global wavelet
energy spectrum approximates the Fourier energy spectrum provided the analyzing
wavelet has enough vanishing moments. More precisely, the global wavelet spectrum,
defined by integrating Eq. (42) over all positions,

B(k) = /_ " Bk, 2) da (43)

gives the correct exponent for a power-law Fourier energy spectrum E(k) scaling as k=
if the analyzing wavelet has at least M > % vanishing moments. Thus, the steeper
the energy spectrum one would like to study, the more vanishing moments the analyzing
wavelet should have. In practice one should choose first a wavelet with many vanishing
moments and then reduce this number until the estimated slope varies. This will give

the optimal wavelet to analyze the given function.

Relation to Fourier spectrum The wavelet energy spectrum E(k‘) is related to the

Fourier energy spectrum E(k) via,
1 o0 ~ (kK
E(k)= [ E( v
0 =g [ Ew)[7 ()

which shows that the wavelet spectrum is a smoothed version of the Fourier spectrum,
weighted with the square of the Fourier transform of the wavelet v shifted at wavenum-
bers k. For increasing k, the averaging interval becomes larger, since wavelets are filters
with constant relative bandwidth, i.e., % = constant. The wavelet energy spectrum
thus yields a stabilized Fourier energy spectrum.

2
dk' | (44)

Considering for example the Marr wavelet given in Eq. (38), which is real-valued
and has two vanishing moments only, the wavelet spectrum can estimate exponents
of the energy spectrum for § < 5. In the case of the complex-valued Morlet wavelet
given in Eq. (42), only the zeroth-order moment is vanishing. However higher m?/-
order moments are very small (o kqfe(_ki/ 2)), provided that £, is sufficiently large. For
instance choosing ky, = 6 yields accurate estimates of the exponent of power-law energy
spectra for at least 3 < 7.
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There also exists a family of wavelets with an infinite number of vanishing moments

T,Zn(k?) =y, exp (—% <k2 + ﬁ)) , n>1 | (45)

where «,, is a normalization factor. Wavelet spectra using this wavelet can thus cor-
rectly measure any power—law energy spectrum. This choice enables, in particular, the
detection of the difference between a power—law energy spectrum and a Gaussian energy
spectrum such that E(k) oc e */ k0)® " This is important in turbulence to determine the
wavenumber after which the energy spectrum decays exponentially. The end of the in-
ertial range, dominated by nonlinear interactions, and the beginning of the dissipative
range, dominated by linear dissipation, can thus be detected.

Relation to structure functions Structure functions, classically used to analyze
non stationary random processes, e.g., turbulent velocity fluctuations, have some limi-
tations which can be overcome using wavelet-based alternatives. Structure functions are
defined by moments of increments of the random process. The latter can be interpreted
as wavelet coefficients using a special wavelet, the difference of two Diracs (called DoD
wavelet), which is very singular and has only one vanishing moment, namely its mean
value. This unique vanishing moment of the DoD wavelet limits the adequacy of struc-
ture functions to analyze sufficiently smooth signals. Wavelets having more vanishing
moments do not have this drawback.

For second order statistics, the classical energy spectrum, defined as the Fourier
transform of the autocorrelation function is naturally linked to the second order structure
function. Using the above relation of the wavelet spectrum to the Fourier spectrum
a similar relation to second order structure functions can be derived. For structure
functions yielding a power law behaviour the maximum exponent can be shown to be
limited by the number of vanishing moments of the underlying wavelet.

The increments of a function f € L?(R) are equivalent to its wavelet coefficients
using the DoD wavelet

Vo (x) =0(x+1) —o(z) . (46)

We thus obtain B
f(:E + CL) - f(:E) = f:v,a = <f) wz,a> ) (47)

with ¢g7a(y) = 1/a[0(%7) — 6(¥,7)], where the wavelet is normalized with respect to
the L'-norm. The p-th order moment of the wavelet coefficients at scale a yields the
p-th order structure function,

Sy(a) = / (Foa)Pd (43)

As already mentioned above the drawback of the DoD wavelet is that it has only one
vanishing moment, its mean. Consequently the exponent of the p-th order structure
function in the case of a power law behaviour is limited by p, i.e., if S,(a) a¢(P) then
¢(p) < p. The detection of larger exponents necessitates the use of increments with a
larger stencil, or wavelets with more vanishing moments.
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We now focus on second order statistics, the case p = 2. Equation (44) yields a
relation between the global wavelet spectrum E(k) and the Fourier spectrum E(k) for

a given wavelet ¢. Taking the Fourier transform of the DoD wavelet we get Jé(k‘) =
vk Lk

eh —1=re2(e? — e *2) and therefore we have |¢° (k)2 = 2(1 — cos k). The relation
between the Fourier and the wavelet spectrum thus becomes

- 1 o koK'
Ek)=—= [ BEF)(2—2cos(—=) ) dk’ 49
0 =g [ W) (2- 200 ) v (19)
and the wavelet spectrum can be related to the second order structure function by
setting a = ky /k
~ 1
Ek)=—S5 . 50
)= g () (50)
Using now the result of section 3.3.2 that for a Fourier spectrum which behaves like
k=% for k — oo, the wavelet spectrum only yields E(k) o< k=% if @ < 2M + 1, where
M denotes the number of vanishing moments of the wavelet, we find for the structure

function Sy(a) that Sa(a) o< aP) = %’ <) for a — 0 if {(2) < 2M.

For the DoD wavelet we have M = 1, which explains why the second order structure
function can only detect slopes smaller than 2, which corresponds to wavelet energy
spectra with slopes being shallower than —3. This explains why the usual structure
function gives spurious results for sufficiently smooth signals.

3.3.3 Detection and characterization of singularities

The possibility to evaluate the slope of the energy spectrum is an important property of
the wavelet transform, related to its ability to characterize the regularity of the signal
and detect isolated singularities [26, 30]. This is based on the fact that the local scaling
of the wavelet coefficients is computed in L'-norm, i.e., with the normalization ¢(l) = [~*
instead of c¢(I) = 1'/? in Eq. (20).

If the function f € C™(xg), i.e., if f is continuously differentiable in x up to order
m, then

(L z0))imo < 112 (51)

The factor 112 comes from the fact that to study the scaling in zg of the function
f we must compute its wavelet coefficients in L'-norm, instead of L?, i.e., with the
normalization ¢(l) = I~! instead of ¢(l) = 1'/2 in Eq. (20).

If f has Holder regularity « at z( (see Sec. 2.1.3), then

[T, x0)]im0 = Ce' 1012 (52)

Where ® is the phase of the wavelet coefficients in xy. The phases of the wavelet
coefficients ® (I, x) in wavelet coefficient space allow to localize the possible singularities
of f since the lines of constant phase converge towards the locations of all the isolated
singularities when [ — 0. If the function f presents few isolated singularities, their
position xg, their strength C, and their scaling exponent « can thus be estimated by the
asymptotic behavior of f(I, ), written in L'-norm, in the limit / tending to zero. If, on
the contrary, the modulus of the wavelet coefficient becomes zero at small scale around
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xo, then the function f is regular at zp. This result is the converse of Eq. (51) but it
only works for isolated singularities since it requires that in the vicinity of zy the wavelet
coefficients remain smaller than those pointing towards zy. Consequently its use is not
applicable to signals presenting dense singularities. The scaling properties presented
in this paragraph are independent of the choice of the analyzing wavelet . Actually
we recommend to use complex-valued wavelets since one thus obtains complex-valued
wavelet coefficients whose phases locate the singularities while their moduli estimate
the Holder exponents of all isolated singularities, as illustrated in Fig. 10. We can then
compute the singularity spectrum (see section 2.1.3).

3.3.4 Intermittency measures

Localized bursts of high frequency activity define typically intermittent behaviour. Lo-
calization in both physical space and spectral space is thus implied and a suitable basis
for representing intermittency should reflect this dual localization. The Fourier repre-
sentation yields perfect localization in spectral space, but global support in physical
space. Filtering a fluctuating signal with an ideal high-pass Fourier filter implies some
loss of spatial information in physical space. Strong gradients are smoothed out and
spurious oscillations occur in the background. This comes from the fact that the mod-
ulus and phase of the discarded high-wavenumber Fourier modes have been lost. The
artefacts of Fourier filtering lead to errors in estimating the flatness, and hence the
signal’s intermittency.

An intermittent quantity (e.g., velocity derivative) contains rare but strong events
(i.e., bursts of intense activity), which correspond to large deviations reflected in ‘heavy
tails’ of the probability distribution function of that quantity. Second-order statis-
tics (e.g., energy spectrum, second-order structure function) are not very sensitive to
such rare events whose spatial support is too small to play a role in the integral. For
higher-order statistics, however, these rare events become increasingly important, may
eventually dominate and thus allow to detect intermittency. Of course, not for all prob-
lems intermittency is essential, e.g. second-order statistics are sufficient to measure
dispersion (dominated by energy-containing scales), but not to calculate drag or mixing
(dominated by vorticity production in thin boundary or shear layers).

Using the continuous wavelet transform we have proposed the local intermittency
measure [19, 48] which corresponds to the wavelet coefficients renormalized by the space
averaged energy at each scale, such that

P
Joo f(1,2) Pd*7
It yields information on the spatial variance of energy as a function of scale and position.

For regions where I(l,Z) ~ 1 the field is non intermittent while regions of larger values
are intermittent.

(1, 7)

(53)

Similarly to the continuous wavelet transform the orthogonal wavelet transform al-
lows to define intermittency measures, either local as shown above, or global as illus-
trated below. The space-scale information contained in the wavelet coefficients yields
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suitable global intermittency measures using scale-dependent moments and moment ra-

tios [49]. For a signal f the moments of wavelet coefficients at different scales j are

defined by
27 —1

My(f) =273 (Ta) (54)
=0

The scale distribution of energy, i.e., the scalogram, is obtained from the second order
moment of the orthogonal wavelet coefficients: E; = 2J _1M2,j. The total energy is then
recoved by the sum: E =3 i>0 Ej thanks to the orthogonality of the decomposition.

Ratios of moments at different scales quantify the sparsity of the wavelet coefficients
at each scale and thus measure the intermittency

Mp,j(f)
(Mg (f))

which correspond to quotient of norms computed in two different sequence spaces, [P-
and [9-spaces. Typically, one chooses ¢ = 2 to define statistical quantities as a function
of scale. For p = 4 we obtain the scale dependent flatness F; = Q4,2 ; which equals 3 for
a Gaussian white noise at all scales j. and indicates that a signal is not intermittent.
Scale dependent skewness, hyperflatness and hyperskewness are defined for p = 3,5 and
6, respectively. Intermittency of a signal is relfected in increasing @), 4; for increasing j
(smaller scale) supposing p > q.

Q;mq,j(f) = ) (55)

3.3.5 Extraction of coherent structures

To study fluctuating signals or fields we need to separate the rare and extreme events
from the dense events, and then calculate their statistics independently for each one.
For this we cannot use pattern recognition methods since there is no simple patterns
to characterise them. Moreover there is no clear scale separation between the rare
and the dense events and therefore a Fourier filter cannot disentangle them. Since the
rare events are well localized in physical space, one might try to use an on-off filter
defined in physical space to extract them. However, this approach changes the spectral
properties by introducing spurious discontinuities, adding an artificial scaling (e.g., k=2
in one dimension) to the energy spectrum. The wavelet representation can overcome
these problems since it combines both physical and spectral localizations (bounded from
below by the uncertainty principle).

We have proposed in 1999 [20] a better approach to extract rare events out of fluc-
tuating signals or fields which is based on the orthogonal wavelet representation. We
rely on the fact that rare events are localized while dense events are not, and we assume
that the later are noise-like. From a mathematical viewpoint a noise cannot be com-
pressed in any functional basis. Another way to say this is to observe that the shortest
description of a noise is the noise itself. Note that one often calls 'noise’ what actually
is ’experimental noise’, i.e., something that one would like to discard although it may
not be noise-like in the above mathematical sense. The problem of extracting the rare
events has thus become the problem of denoising the signal or the field under study.
Assuming that they are are what remains after denoising, we need a model, not for
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Figure 12: Academic example of denoising of a piecewise regular signal using the algo-
rithm for coherent structure extraction. Original signal (left), same signal plus Gaussian
white noise giving a signal to noise ratio (SNR) of 11.04dB (middle), denoised signal
with SNR of 27.55dB (right).
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Figure 13: Real part of the continuous wavelet analysis of fractional Brownian motion
with Hurst exponent H = 0.25 (left), and of classical Brownian motion (right).

the rare events, but for the noise. As a first guess, we choose the simplest model and
suppose the noise to be additive, Gaussian and white, i.e., uncorrelated.

We now describe the wavelet algorithm for extracting coherent structures out of a
signal corrupted by a Gaussian noise with variance ¢? and vanishing mean, sampled on
N equidistant grid points. The noisy signal f(r) is projected onto orthogonal wavelets
using Eq. (30) to get fy. Its wavelet coefficients are then split into two sets, those whose
modulus is larger than a threshold e that we call 'coherent’, and those remaining that
we call ’incoherent’. The threshold value, based on minmax statistical estimation [14],
is € = (2/do?In N)Y/2, where d is the space dimension. Note that besides the choice of
the wavelet there is no adjustable parameter since o2 and N are known a priori. In case
the variance of the noise is unknown, one estimates it recursively from the variance of
the incoherent wavelet coefficients, as proposed in [3]. The convergence rate increases
with the signal to noise ratio, namely if there is only noise it converges in zero iteration.
The coherent signal fo is reconstructed from the wavelet coefficients whose modulus is
larger than € and the incoherent signal f; from the remaining wavelet coefficients. The
two signals thus obtained, fo and f7, are orthogonal.



33

To illustrate the method we choose an academic signal (Fig. 12, left) which is a
superposition of several quasi-singularities having different Holder exponents, to which
we have superimposed a Gaussian white noise yielding a signal to noise ratio of 11.04dB
(Fig. 12, middle). Applying the extraction method we recover a denoised version of
the corrupted signal which preserves the quasi-singularities (Fig. 12, right). It could be
checked a posteriori that the incoherent contribution is spread, and therefore does not
compress, and has a Gaussian probability distribution.

4 Recommendations

In the introduction we stated cautious remarks about the risk of misusing new math-
ematical tools, if one has not first gained enough practice on academic examples. The
problem is the following. When doing research the questions one addresses are still open
and there exist several competing theories, models and interpretations. Nothing being
clearly fixed yet, neither the comprehension of the physical phenomenon under study,
nor the practice of the new techniques in use, one runs the risk to perform a Rorschach’s
test rather than a rational analysis. Indeed, the interpretation of the results may reveal
one’s unconscious desire for a preferred explanation. Although it is a good thing to rely
on one’s intuition and have a preferred theory, one should be conscious of that risk, and
make sure to avoid bias. Moreover, when a new technique is proposed, most of referees
do not master it yet and are therefore not able to detect flaws in a submitted paper.
Let us take as example the case of turbulence, which has applications in everyday life
and plays an important role in environmental fluid dynamics. For centuries, turbulence
has been an open problem and thus a test ground for new mathematical techniques.
Let us focus here on the case of fractals and wavelets, as they were applied to study
turbulence. Kolmogorov’s statistical theory of homogeneous and isotropic turbulence
[33] assumes that there exists an energy cascade from large to small scales, which is
modelled as a self-similar stochastic process whose spectrum scales as k~°/3, where k
is the wavenumber. Although this prediction only holds for an ensemble average of
many flow realisations, many authors interpret the energy cascade as caused by the
successive breakings of whirls into smaller and smaller ones, as if they were stones.
This interpretation was inspired by a comment Lewis Fry Richardson made in 1922:
When making o drawing of a rising cumulus from a fized point, the details change
before the sketch was completed. We realize thus that: big whirls have little whirls that
feed on their velocity, and little whirls have lesser whirls and so on to wviscosity— in
the molecular sense[47]. We think that Richardson’s quote has been misunderstood
and turbulence misinterpreted. Indeed, his remark concerns the interface between a
cumulus cloud and the surrounding clear air, which is a very convoluted two-dimensional
surface developing into a three-dimensional volume. Such an interface may develop
into a fractal since its topological dimension is lower than the dimension of the space
which contains it. But keeping such a fractal picture to describe three-dimensional
whirls which evolve inside a three-dimensional space does not make sense since both
have the same topological dimension. In 1974 Kraichnan was already suspicious about
this interpretation, when he wrote: ‘The terms ’scale of motion’ or ’eddy of size 1’
appear repeatedly in the treatment of the inertial range. One gets an impression of little,
randomly distributed whirls in the fluid, with the fission of the whirls into smaller ones,
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after the fashion of Richardson’s poem. This picture seems to be drastically in conflict
with what can be inferred about the qualitative structures of high Reynolds numbers
turbulence from laboratory visualization techniques and from plausible application of the
Kelvin’s circulation theorem’ [34]. Unfortunately Kraichnan’s viewpoint was not taken
into account and, on the contrary, the picture of breaking whirls was even reinforced
by the terminology fractals due to its Latin root fractare (to break). This gave rise to
numerous models of turbulence which were based on fractals, and later on multi-fractals
(for a review of them see [21]).

Let us now consider the use of wavelets to analyze turbulent flows and illustrate the
risk of misinterpretation there too. If one performs the continuous wavelet analysis of
any fluctuating signals, for example the temporal fluctuations of one velocity component
of a three-dimensional turbulent flow, one should be very cautious, especially when using
a real-valued wavelet. Indeed, for this class of noise-like signals one observes a tree-like
pattern in the two-dimensional plot of their wavelet coefficients which is generic to the
continuous wavelet transform and corresponds to its reproducing kernel [19]. When one
performs the continuous wavelet transform of one realization of a Gaussian white noise
one observes such a pattern (see Fig. 13), which proves that the correlation is among the
wavelets but not in the signal itself. Unfortunately in the case of turbulent signals, this
pattern has been interpreted as the evidence of whirls breaking in a paper published in
1989 by Nature under the title "Wavelet analysis reveals the multifractal nature of the
Richardson’s cascade’ [2].

Let Benoit Mandelbrot concludes: ’In the domain I know of, there are many words
which are meaningless, that do not have any content, which have been created just to im-
press, to give the feeling that a domain exists when actually there is none. If one gives a
name to a science, this science maybe does not exist. And, once more, due to the fierce
discipline I was imposing to myself, I avoided that [...]. Therefore I have created the
word “fractal” with much reflection. The idea was that of objects which are dispersed,
which are broken into small pieces. [41] The question remains for us: are fractals a new
science or only consist of refurbishing older concepts to launch a new fashion? In the
same vein, Yves Meyer wrote: Wavelets are fashionable and therefore excite curiosity
and irritation. It is amazing that wavelets have appeared, almost simultaneously in the
beginning of the 80’s, as an alternative to traditional Fourier analysis, in domains as di-
verse as speech analysis and synthesis, signal coding for telecommunications, (low-level)
information, extraction process performed by the retinian system, fully-developed turbu-
lence analysis, renormalization in quantum field theory, functional spaces interpolation
theory... But this pretention for pluridisciplinarity can only be irritating, as are all
?great syntheses” which allow one to understand and explain everything. Will wavelets
soon join ”catastrophe theory” or ”fractals” in the bazaar of all-purpose systems? [44]
Let the future tells us the answer...
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