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DIRECTIONAL AND SCALE-DEPENDENT STATISTICS OF

QUASI-STATIC MAGNETOHYDRODYNAMIC TURBULENCE

Naoya Okamoto1, Katsunori Yoshimatsu2, Kai Schneider3 and Marie Farge4

Abstract. Anisotropy and intermittency of quasi-static magnetohydrodynamic (MHD) turbulence
in an imposed magnetic field are examined, using three-dimensional orthonormal wavelet analysis.
Wavelets are an efficient tool to examine directional scale-dependent statistics, since they are based on
well-localized functions in space, scale and direction. The analysis is applied to two turbulent MHD
flows computed by direct numerical simulation with 5123 grid points and with different intensities of
the imposed magnetic field. It is found that the imposed magnetic field plays an important role on the
amplification of anisotropy and intermittency of the flow.

Résumé. L’anisotropie et l’intermittence de la turbulence magnétohydrodynamique (MHD) dans
l’approximation quasi-statiqueavec un champ magnétique imposé sont examinés en utilisant l’analyse
par ondelettes orthogonales. Les ondelettes sont un outil efficace pour examiner les statistiques direc-
tionnelles en fonction de l’échelle, car elles sont basées sur des fonctions bien localisées dans l’espace,
l’échelle et l’orientation. L’analyse est appliquée à deux écoulements MHD turbulents calculés par
simulation numérique directe avec 5123 points de la grille à différentes intensités du champ magnétique
imposé. Il se trouve que le champ magnétique imposé joue un rôle important sur l’amplification de
l’anisotropie et de l’intermittence de l’écoulement.

1. Introduction

Low-magnetic-Reynolds-number magnetohydrodynamic (MHD) turbulence with an imposed magnetic field is
ubiquitous in industrial applications, such as electro-magnetic processing of materials in metallurgical industry
[1]. In this context the so-called quasi-static approximation can be applied to MHD turbulence (see e.g. [2]).

Characteristic features of quasi-static MHD turbulence subject to an imposed magnetic field are multiscale
anisotropy and intermittency of the flow. Quasi-static MHD turbulence has been studied by means of direct
numerical simulation (DNS) and different tools to quantify the anisotropy have been developed so far [3]. Using
energy spectra in Fourier space, it is shown that the anisotropy is persistent at small scale [4–6]. These spectral
analyses, while capturing the multiscale character, cannot quantify the spatially intermittent nature of the flows.
However, the wavelet representation can simultaneously examine the multiscale distribution of a quantity, its
anisotropy, and in addition yield information on its spatial distribution, since the representation is based on
well-localized functions in space, scale and direction [7]. The multiscale dynamics of both hydrodynamic and
MHD turbulence have motivated the development of wavelet techniques to analyze [8–12], model [13,14] and also
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to compute such flows [15]. Bos et al. introduced directional scale-dependent statistics to measure intermittency
of anisotropic turbulence [10].

The aim of this paper is to examine anisotropy and intermittency of the quasi-static MHD turbulence, by
using directional and scale dependent statistics [10]. We study the influence of the strength of the magnetic field
on the intermittency and the anisotropy. The statistics of two turbulent MHD flows with different intensities
of the imposed magnetic field are compared with those of an isotropic random field.

The remainder of the paper is organized as follows. First we briefly describe the DNS of the quasi-static MHD
turbulence in section 2. The directional scale-dependent statistics based on orthonormal wavelet decomposition
are introduced in section 3. Section 4 presents numerical results and a conclusion is drawn in section 5.

2. Direct Numerical Simulation of quasi-static MHD turbulence

We consider homogeneous MHD turbulence of incompressible fluid in a uniform magnetic field B0 in a 2π
periodic box. In the limit of low magnetic Reynolds number, the motion of the flow obeys the following equations
under the so-called quasi-static MHD approximation [2],

∂

∂t
u + (u · ∇)u = −

1

ρ
∇p+ ν∆u −

σ

ρ
∆−1(B0 · ∇)2u + f , (1)

∇ · u = 0. (2)

Here, u is the velocity field, ρ the fluid density, ν the kinematic viscosity and σ the electrical conductivity.
The constant magnetic field is given by B0 = (0, 0, B0). The third term in right-hand side of the equation (1)
is the rotational part of the Lorentz force, and the modified pressure p includes both the fluid pressure and
the magnetic pressure. The symbol ∆−1 represents the inverse Laplace operator. An estimate of the ratio of
the Lorentz force to the nonlinear term in (1) is given by the interaction parameter N = σB2

0L/(ρu
′), where

u′ = 〈u2〉/3 and L is the integral length scale defined by L = π/(2u′2)
∫
E(k)/k dk. Here, 〈·〉 denotes the spatial

average and E(k) is the energy spectrum.
We performed DNS computations at two interaction parameters N = 1 and 3. We used a Fourier pseudo-

spectral method with a fourth-order Runge-Kutta method for time marching. The aliasing errors are removed
by a phase-shift method, which keeps all the Fourier modes satisfying k = |k| < kmax, where k is the wave
vector, kmax = 21/2n1/3/3 and n the number of the grid points. An external solenoidal random force f is
applied to the velocity field only in the low wavenumber range, k < 2.5. Readers interested in details of how to
generate such a random force are referred to the Appendix of [16].

The initial conditions and the flow parameters, except the interaction parameter, are identical in the two
simulations. The grid points are n = 5123, the kinematic viscosity ν = 2.8 × 10−4 and the time increment
∆t = 1.0×10−3. The two computations are integrated during about nine initial eddy turnover times T = L/u′.
The Kolmogorov length scale η is defined by η = (ν3/〈ǫ〉)1/4, where 〈ǫ〉 is the mean rate of energy dissipation per

unit mass. Table 1 summarizes the Taylor microscale Reynolds number Rλ = u′λ/ν, where λ = (15νu′2/〈ǫ〉)1/2,
kmaxη at t = 9T and the interaction parameter N . The initial energy spectrum of the DNS has the form
E(k) ∝ k4 exp(−2k2/k2

p), where kp = 2 and the initial total energy is 0.5.

N Rλ kmaxη
1 390 1.4
3 927 2.0

Table 1. Physical parameters of the DNS computations with N = 1 and 3 at t = 9T .
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3. Methodology

To examine anisotropy and intermittency of MHD turbulence, we first introduce the directional statistical
quantities based on the orthogonal wavelet representation. Then we compare the statistics of the DNS field
thus obtained with those of an isotropic divergence free random field.

3.1. Directional statistical quantities based on the wavelet representation

The velocity field u = (u1, u2, u3), sampled at resolution n = 23J , is decomposed into an orthogonal wavelet
series such that

u(x) =
∑

λ

ũλψλ(x), (3)

where the multi-index λ = (j, i, d) denotes, for each wavelet ψλ, the scale index j (varying from 0 to J − 1),
the spatial index i = (i1, i2, i3), having 23j values for each j and d, and the direction index d = 1, ..., 7 [8, 9].
Here, we use Coiflet 12 wavelets [9]. Due to orthogonality, the wavelet coefficients are given by ũλ = 〈u, ψλ〉,
where 〈·, ·〉 denotes the L2-inner product. The wavelet coefficients measure the fluctuations of u at scale 2−j

and around position i/2j for each of the seven directions d. The contribution of u at scale 2−j and direction
d, denoted by uj,d, is obtained by fixing (j, d) and summing only over i in Eq. (3). By construction we have

u(x) =
∑J−1

j=0

∑7

d=1
uj,d(x).

Relating scale 2−j with wavenumber kj as kj = kψ2j, where kψ is the centroid wavenumber of the chosen
wavelet (kψ = 0.77 for the Coiflet 12 used here), we obtain the directional wavelet energy spectrum for the
velocity component uℓ, defined by

Ẽℓ(kj , d) = 〈eℓj,d〉/∆kj , (4)

where eℓj,d = (uℓj,d)
2/2 and ∆kj = (kj+1 − kj) ln 2. Its standard deviation is given by

σ̃ℓ(kj , d) =
√
〈(eℓj,d)

2〉 − 〈eℓj,d〉
2/∆kj . (5)

From the directional scale-dependent energy spectrum for all the velocity components, we obtain the total

energy E =
∑

ℓ,j,d Ẽ
ℓ(kj , d).

To study higher-order statistics, we define the flatness of uℓ at scale 2−j and direction d by

F ℓj,d =

〈(
uℓj,d(x)

)4〉
〈(
uℓj,d(x)

)2〉2 . (6)

In [10] it was shown that the flatness is related to the standard deviation of the spectral distribution of energy (5)
by

F ℓj,d =

(
σ̃ℓ(kj , d)

Ẽℓ(kj , d)

)2

+ 1. (7)

This demonstrates that the scale-dependent flatness F ℓj,d based on the wavelets coefficients of velocity yields an
easy way to compute a quantitative measure of the spatial variability of the energy spectrum.

Summing the velocity field uj,d(x) from d = 1 to 7 yields the contribution of u at only scale j, i.e., uj(x) =∑
d uj,d(x). Replacing eℓj,d in Eqs. (4) and (5) by eℓj = (uℓj)

2/2, we obtain expressions for the wavelet energy
spectrum and its standard deviation,

Ẽℓ(kj) = 〈eℓj〉/∆kj , σ̃ℓ(kj) =
√
〈(eℓj)

2〉 − 〈eℓj〉
2/∆kj . (8)

The wavelet spectrum Ẽℓ(kj) corresponds to a smoothed version of the Fourier energy spectrum [8, 9]. The

flatness of uj is given by F ℓj = {σ̃ℓ(kj)/Ẽ
ℓ(kj)}

2 + 1.
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In the present paper the considered flows are axisymmetric with respect to the x3-axis. Hence, we consider
for the directional statistics only three principle directions, i.e., d = 1, 2 and 3.

3.2. Divergence-free isotropic random field

In addition to the two turbulent DNS fields we generated an isotropic divergence-free Gaussian random field
u whose energy spectrum E(k) is identical to the DNS field with N = 3. This allows to compare the statistics of
the DNS fields with that of the random field. A departure from the random field may provide a basic measure
of the anisotropy and intermittency. We checked that the statistical behavior of the random field at N = 3 are
qualitatively the same as those for the random field at N = 1.

4. Numerical results

4.1. Visualization and wavelet energy spectra

To obtain an intuitive idea on the flow structures at N = 1 and 3, we visualize the modulus of the vorticity
field |ω| in Figure 1. In Figure 1(left), one can see sheet-like structures and tube-like structures. Many of the
structures are aligned parallel with the imposed magnetic field B0. The alignment of the structures shows the
strong anisotropy of the flow. In contrast, the structures at N = 1 in Figure 1 (right) exhibit entangled vortex
tubes, which do not seem to be aligned with any specific direction. Thus, the field at N = 1 is less anisotropic
than that at N = 3.

The anisotropy of the turbulent fields, i.e., the DNS fields, can be characterized by wavelet energy spectra

for each component of the velocity fields u. Figure 2 shows wavelet mean energy spectra Ẽℓ(kj) for the DNS
fields as a function of the dimensionless wavenumber kjη. For the field with N = 3, the spectrum of the

Figure 1. Visualization of intense vorticity regions of the DNS fields for N = 3 (left) and
N = 1 (right) at t = 9T . Isosurfaces of |ω| = 〈|ω|〉 + 4σ are shown, where σ denotes the
standard deviation of |ω|. The vertical arrow indicates the direction of the imposed magnetic
field.
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Ẽ
ℓ
(k

j
)

kjη

Figure 2. Wavelet mean energy spectra Ẽℓ(kj) of the DNS fields at N = 3 (left) and N = 1 (right).
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Ẽ
1
(k

j
)

kjη

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.001  0.01  0.1  1  10

l=3, sum over d
l=3, d=1
     d=2
     d=3

Ẽ
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Figure 3. Directional wavelet energy spectra Ẽℓ(kj , d) vs. kjη for the DNS field with N = 3
(left), the DNS field with N = 1 (middle) and the random field (right). For the isotropic

random field only Ẽ1(kj , d) is plotted. The solid black lines with + show the corresponding

wavelet mean energy spectra Ẽℓ(kj).

velocity component parallel to B0, i.e., Ẽ3(kj), yields larger values than the spectra of the velocity components

perpendicular to B0, i.e., Ẽ1(kj) and Ẽ2(kj), at each scale satisfying kjη & 0.03 (j = 3, 4, · · · , 8). We also

observe Ẽ1(kj) ∼ Ẽ2(kj). The predominance of Ẽ3(kj) over both Ẽ1(kj) and Ẽ2(kj) is consistent with the
results of Burattini et al. [4], who examined Fourier spectra of each velocity component. For the field with

N = 1 (Figure 2, right), we observe that the wavelet mean energy spectra Ẽℓ(kj) (ℓ = 1, 2, 3) agree well for
kjη & 0.03. In the following, we consider only the statistics of the two velocity components, u1 and u3, because
the considered system is axisymmetric with respect to the x3-axis.

To examine the directional anisotropy of uℓ at each scale, we plot directional wavelet energy spectra Ẽℓ(kj , d)

for both velocity components in Figure 3. For N = 3 the largest energy contribution in Ẽ1(kj) is made by
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Figure 4. Scale-dependent flatness F ℓj vs. kjη for the DNS fields with N = 1 and N = 3.

Ẽ1(kj , 2), followed by the remaining spectra, Ẽ1(kj , 1) and Ẽ1(kj , 3). Most of the energy of Ẽ3(kj) at kjη & 0.03

is retained by Ẽ3(kj , 1) and Ẽ3(kj , 2). The contribution of Ẽ3(kj , 3) to Ẽ3(kj) is almost negligible for kjη & 0.03.
The statistics for the field at N = 1 confirm the weaker anisotropy compared to the case N = 3, as anticipated

from Figure 1. The spectra show that Ẽ1(kj , 2) ∼ Ẽ1(kj , 3) for kjη & 0.03, while the contribution of Ẽ1(kj , 1)
is smaller.

We use the statistics of the isotropic random field as a reference to measure the anisotropy of the DNS fields.

We see that Ẽ1(kj , 2) and Ẽ1(kj , 3) have almost the same contributions at kjη & 0.03, while the contribution

of Ẽ1(kj , 1) is less pronounced compared to them. The reduced contribution of Ẽ1(kj , 1) compared to Ẽ1(kj , 2)

and Ẽ1(kj , 3) is due to the divergence-free constraint of the flow, i.e., the longitudinal energy contribution of a
given velocity component is reduced with respect to the transversal ones [10]. For the divergence-free random

field we thus see the same trend in Ẽℓ(kj , d), as that for the DNS field with N = 1.

4.2. Directional spatial intermittency

The spatial intermittency of the DNS fields for N = 1 and 3 is examined in Figure 4 by plotting the scale-
dependent flatness of uℓ, F ℓj , vs. kjη. For both DNS fields we can observe that F ℓj (ℓ = 1, 3) increases as scale

decreases. We also find that the velocity component u1 is more intermittent for N = 3, than that for the field
with N = 1, for kjη & 0.1. In contrast, the flatness of the u3 component only weakly depends on N .

To get further insight into the anisotropy of intermittency, we plot in Figure 5 the directional scale-dependent
flatness F ℓj,d, (d = 1, 2, 3) for the two DNS fields and the random field. For N = 3 we find for both velocity

components ℓ = 1, 3 that F ℓj,3 > F ℓj,1 and F ℓj,3 > F ℓj,2 at each scale satisfying kjη & 0.3. For both velocity

components ℓ = 1, 3 and all three directions d = 1, 2, 3 the flatness values F ℓj,d are larger for N = 3 than for

N = 1. In particular the flatness in the z-direction, F ℓj,3, is significantly larger for the case N = 3 than for

N = 1. For the field with N = 1, F ℓj,d is larger than F ℓj,ℓ for d 6= ℓ. This predominance of F ℓj,d over F ℓj,ℓ for

d 6= ℓ is consistent with the two cases of isotropic and rotating incompressible turbulence studied in [10]. As
anticipated the random field has values close to three for kjη & 0.02, which is characteristic for Gaussian noise
(Figure 5, right).

These results on the flatness F ℓj,d show that the imposed magnetic field B0 plays a significant role on the
amplification of small-scale intermittency, especially the intermittency in the x3-direction, which is parallel to
B0. This is in contrast to the case of incompressible rotating turbulence, whose flow structures are aligned
parallel with the rotational axis. The rotational effect does not play a major role on the amplification of
small-scale intermittency [10].
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Figure 5. Directional scale-dependent flatness for the DNS field with N = 3 (left), the DNS
field with N = 1 (middle), and the isotropic Gaussian random field (right). For the random
field only F 1

j,d is plotted, as F 3
j,d yields similar values.

5. Conclusion

The anisotropy and intermittency of homogeneous incompressible quasi-static MHD turbulence with an
imposed magnetic field B0 have been examined using three-dimensional orthonormal wavelet decomposition.
Wavelet analysis is an efficient tool to examine directional scale-dependent statistics, since it is based on well-
localized functions in space, scale and direction. The wavelet representation detects and allows to quantify the
flow anisotropy and intermittency which are directly reflected in the coefficients. In the presented analyzes,
we focused on directions parallel and perpendicular to B0. We analyzed two DNS data sets computed with
5123 grid points of turbulent MHD fields with two different interaction parameters, N = 1 and 3. The results
were compared with those obtained for an isotropic divergence-free Gaussian random field with the same energy
spectrum as that of the turbulent field at N = 3.

The directional wavelet energy spectra allowed to characterize the anisotropy of the turbulent fields at each
scale. The energy for the field at N = 3 was shown to be dominated by the perpendicular direction at each
scale. In contrast, the directional dependence of energy for the field with N = 1 was shown to be qualitatively
close to that of the isotropic random field.

The results confirmed that the imposed magnetic field B0 plays a significant role not only for the anisotropy-
but also for the amplification of small-scale intermittency, especially in the direction parallel to B0. In contrast,
the random field did not show any intermittent behavior, as expected.

The present results provide useful information for the improvement of wavelet-based turbulence models for
anisotropic turbulence. A wavelet-based turbulence model, the Coherent Vorticity Simulation (CVS), which
is based on the deterministic computation of the coherent vorticity field using an adaptive wavelet basis, was
proposed in [17,18], for a review we refer to [15]. The coherent vorticity field is obtained by filtering the wavelet
coefficients, which thus exploits the intermittency of turbulence and yields a sparse representation. Examples
of CVS can be found in [17–20] for two-dimensional turbulent flows and in [21] for three-dimensional turbulent
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mixing layers. For highly anisotropic turbulence, the wavelet-based simulation method is expected to become
more efficient, if one takes into account the anisotropy and intermittency of the turbulence.
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