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Scale-dependent and geometrical statistics of three-dimensional incompressible homogeneous

magnetohydrodynamic turbulence without mean magnetic field are examined by means of the

orthogonal wavelet decomposition. The flow is computed by direct numerical simulation with a

Fourier spectral method at resolution 5123 and a unit magnetic Prandtl number. Scale-dependent

second and higher order statistics of the velocity and magnetic fields allow to quantify their

intermittency in terms of spatial fluctuations of the energy spectra, the flatness, and the probability

distribution functions at different scales. Different scale-dependent relative helicities, e.g., kinetic,

cross, and magnetic relative helicities, yield geometrical information on alignment between

the different scale-dependent fields. At each scale, the alignment between the velocity and magnetic

field is found to be more pronounced than the other alignments considered here, i.e., the scale-

dependent alignment between the velocity and vorticity, the scale-dependent alignment between the

magnetic field and its vector potential, and the scale-dependent alignment between the magnetic field

and the current density. Finally, statistical scale-dependent analyses of both Eulerian and Lagrangian

accelerations and the corresponding time-derivatives of the magnetic field are performed. It is found

that the Lagrangian acceleration does not exhibit substantially stronger intermittency compared to

the Eulerian acceleration, in contrast to hydrodynamic turbulence where the Lagrangian acceleration

shows much stronger intermittency than the Eulerian acceleration. The Eulerian time-derivative

of the magnetic field is more intermittent than the Lagrangian time-derivative of the magnetic field.
VC 2011 American Institute of Physics. [doi:10.1063/1.3628637]

I. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence is encoun-

tered in a variety of applications going from astrophysics,1,2

e.g., the solar wind, to engineering, e.g., liquid metals in

dynamo experiments.3–5 MHD turbulence is characterized

by its wide range of dynamically active scales together with

strong intermittency. The magnetic field coupled with the

conducting fluid induces various dynamics; e.g., pronounced

alignment or anti-alignment between the magnetic and

velocity fields, so-called dynamic alignment (see, e.g., Refs.

6–17), and nonlinear interactions between the magnetic and

the velocity field; for a recent review on the interactions, we

refer to Ref. 18. MHD turbulence can exhibit small-scale

intermittency whose type differs from what is observed in

hydrodynamic (HD) turbulence.

Intermittency of MHD turbulence is attributed to coher-

ent structures,19 as first suggested by Batchelor and Town-

send20 for HD turbulence. For a given flow realization, the

structures are inhomogeneously distributed in space and

time. The flow intermittency is typically reflected by the

power law exponents of the p-th order structure functions of

velocity in HD turbulence (see, e.g., Ref. 21) and those of

the Elsässer variables, velocity, and magnetic field for MHD

turbulence (see, e.g., Refs. 22–24). In Refs. 25 and 26,

Homann et al. showed that the Eulerian velocity in MHD

turbulence is more intermittent than in HD turbulence,

whereas the situation is reversed for the Lagrangian velocity.

The magnetic field is even more intermittent than the veloc-

ity field.27,28 In Ref. 17, it was suggested that local alignment

or anti-alignment of the velocity and the magnetic field is a

robust process which leads to spatial intermittency through

the weakening of nonlinear interactions.

In the present paper, we address the question: what are

similarities and differences of small-scale intermittency in HD

and MHD turbulence? To answer this, we here use and gener-

alize the diagnostics introduced in Ref. 29, which are based

on the orthonormal wavelet decomposition. Therein, different

wavelet based tools to examine scale-dependent statistics of

fully developed three-dimensional (3D) HD turbulence were

proposed. It was shown that the scale-dependent velocity flat-

ness quantifies the spatial variability of the energy spectrum

and exhibits a substantial increase at small scales. By
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introducing the scale-dependent kinetic helicity, the geometri-

cal statistics of the flow were quantified. Statistical scale-de-

pendent analyses of both of the Eulerian and the Lagrangian

acceleration confirmed their different intermittency.

Orthonormal wavelets yield a suitable multiscale repre-

sentation of intermittent fields, because they take the lacu-

narity of the small-scale activity into account and provide a

clear scale-separation. The wavelet transform decomposes a

given flow field into well-localized scale-space contribu-

tions, thus allows for a sparse representation of intermittent

data and permits to quantify the degree of intermittency at

different scales. The p-th order scale-dependent moment of

an intermittent field is related to the structure function of the

field (see, e.g., Ref. 30). Compared to the increments of the

structure functions, wavelets typically have more than one

vanishing moment and can thus overcome the limitations of

structure functions, e.g., they can detect steeper power law

behaviors. Wavelet methodologies have been developed for

HD turbulence since the pioneering work.31–33 Readers inter-

ested in a recent review of application of wavelets to turbu-

lence may refer to Ref. 34. In Ref. 35, it was shown that the

wavelet representation of 3D MHD turbulence is efficient

with respect to the number of required modes to represent

the coherent vorticity sheets and current sheets.

The remainder of the paper is organized as follows.

First, in Sec. II, we briefly describe the tools to perform

scale-dependent statistics using the orthogonal wavelet

decomposition. Then, in Sec. III, we describe the direct nu-

merical simulation (DNS) of 3D incompressible homogene-

ous MHD turbulence without mean magnetic field. Section

IV presents the numerical results of MHD turbulence. We

analyze velocity and magnetic fields and study different rela-

tive scale-dependent helicities, e.g., relative scale-dependent

kinetic, cross, and magnetic helicities. The Eulerian and

Lagrangian accelerations together with their analogous quan-

tities, the partial and total time-derivatives of the magnetic

field, are also investigated. The results about the kinetic hel-

icity and the accelerations are compared with those for 3D

homogeneous isotropic HD turbulence. Finally, some con-

clusions are drawn in Sec. V.

II. ORTHOGONAL WAVELET ANALYSIS AND
SCALE-DEPENDENT STATISTICS

The goal of this section is to summarize briefly the wave-

let tools to perform scale-dependent statistics and to define all

used quantities in a concise and self-consistent way. In the

following, we consider a generic vector valued quantity v(x)

which stands either for velocity u or the magnetic field b. The

field b is normalized by (l0q0)1=2, where l0 is the permeabil-

ity of free space and q0 is the fluid density. The introduced

concepts can also be applied to the derived quantities like

vorticity x¼r� u or the current density j¼r� b.

A. Vector valued orthogonal wavelet decomposition

The starting point is a 3D 2p-periodic vector field

v(x)¼ (v1(x), v2(x), v3(x)) with x¼ ðx1;x2;x3Þ 2 X¼ ½0;2p�3
�R3 and v‘ [L2(X) (‘¼ 1, 2, 3) sampled on N¼ 23J equidis-

tant grid points. The number of octaves in each space direction

of the Cartesian coordinate is denoted by J. The 3D orthonor-

mal wavelet transform unfolds v into scale, positions, and

seven directions using a 3D mother wavelet wl(x), which is

based on a tensor product construction.

The wavelet is well-localized in space x, oscillating, and

smooth. The mother wavelet generates a family of wavelets

wl,k(x) by dilation and translation, which yields an orthogo-

nal basis of L2ðR3Þ and also of L2(X) through the application

of a periodization technique.36 The spatial average of

wl,k(x), denoted by hwl,ki, vanishes for each index. Here, the

multi-index k¼ (j, i1, i2, i3) denotes the scale 2�j and the

position 2�ji¼ 2�j(i1, i2, i3) of the wavelets for each direc-

tion l¼ 1,…,7.

The vector field v, having a mean value hvi (which van-

ishes in the present applications for all components), can be

decomposed into an orthogonal wavelet series

vðxÞ ¼ hvi þ
XJ�1

j¼0

vjðxÞ; (1)

where vj is the contribution of v at scale 2�j defined by

vjðxÞ ¼
X7

l¼1

X2j�1

i1;i2;i3¼0

~vl;kwl;kðxÞ: (2)

Due to orthogonality of the wavelets, the coefficients are

given by ~vl;k ¼ hv;wl;ki, where h�, �i denotes the L2-inner

product defined by hf ; gi ¼
Ð
X f ðxÞgðxÞdx. Note that hvji¼ 0.

At scale 2�j, we have 7� 23j wavelet coefficients. The N
coefficients, which consist of N� 1 wavelet coefficients ~vl;k

and the mean value hvi, are efficiently computed from the N
grid point values of v by the use of the fast wavelet transform

which has linear complexity. For more details on wavelets,

we refer the reader to text books, e.g., Mallat.36

B. Scale-dependent statistics

1. Energy spectra, spatial fluctuations,
and scale-dependent flatness

From the scale-dependent energy of v defined as

ev
j ¼ hvj; vji=2, the total energy �Ev ¼

PJ�1
j¼0 ev

j is recovered

thanks to the scale orthogonality. The scale 2�j can be

related to the wavenumber kj by kj¼ kw2j, where kw is the

centroid wavenumber of the chosen wavelet (kw¼ 0.77 for

the Coiflet 12 used here). Therewith, the component aver-

aged wavelet energy spectrum of v can be defined as

~Ev
j ¼

1

Dkj
hev;‘

j ic; (3)

where h�ic ¼
P3

‘¼1 h�i=3, ev;‘
j ¼ ðv‘j Þ

2=2, v‘j is the ‘-th com-

ponent of vj and Dkj¼ kj ln 2. The variable v denotes either

u or b for velocity u or magnetic field b, respectively. We av-

erage here over all components of v, because in Sec. IV, we

consider 3D homogeneous MHD turbulence without mean

magnetic field as well as 3D homogeneous isotropic HD tur-

bulence. Note that the wavelet spectrum ~Ev
j corresponds to a

smoothed version of the Fourier energy spectrum.31,32
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We can then quantify the spatial variability of the

energy spectrum at a given wavenumber kj as the standard

deviation of ~Ev
j defined by

~rv
j ¼

1

Dkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðev;‘

j Þ
2ic � ðhe

v;‘
j icÞ

2
q

: (4)

To study higher order scale-dependent statistics, we define

the scale-dependent flatness of the vector v by

F½vj� ¼
hðv‘j Þ

4ic
fhðv‘j Þ

2icg
2
; (5)

noting that hv‘j i ¼ 0. This quantity can be expressed in terms

of the wavelet energy spectrum (Eq. (3)) and its standard

deviation (Eq. (4)) by the relation:37

F½vj� ¼
~rv

j

~Ev
j

 !2

þ1: (6)

2. Scale-dependent helicities

The kinetic helicity, defined as HK(x)¼ u � x, yields a

quantitative measure of the geometrical statistics of turbu-

lence. The statistics of isotropic turbulence and their rele-

vance to structures have been examined since the late 1980s,

for example, in Refs. 38–40. For a review, we refer to Ref.

41. To get insight into the scale-dependent geometrical sta-

tistics, the scale-dependent kinetic helicity defined by

HK
j ðxÞ ¼ uj � xj (7)

was introduced.29 The scale-dependent kinetic helicity HK
j

preserves Galilean invariance, though kinetic helicity u � x
itself does not.

In ideal MHD turbulence, the mean cross helicity,

defined as �HC ¼ hu � bi, and the mean magnetic helicity,

defined as �HM ¼ ha � bi, are conserved quantities. Here, a is

the vector potential of the magnetic field b, where r � a¼ 0

and hai¼ 0. The scale-dependent cross helicity and the mag-

netic helicity can be defined by

HC
j ðxÞ ¼ uj � bj; (8)

HM
j ðxÞ ¼ aj � bj; (9)

respectively. Then, the scale-dependent “super-magnetic hel-

icity” is defined as

HSM
j ðxÞ ¼ bj � jj: (10)

The nomenclature is based on the study on HD turbulence,42

where the helicity of vorticity defined by x � (r�x) is

called “super helicity.”

The corresponding mean helicities are obtained by sum-

mation over scale, �Ha ¼
P

j hHa
j i (a¼K, C, M, SM), thanks

to the orthogonality of the wavelet. Their scale-dependent

relative helicities can be defined by

hK
j ðxÞ ¼

HK
j

jujjjxjj
; (11)

hC
j ðxÞ ¼

HC
j

jujjjbjj
; (12)

hM
j ðxÞ ¼

HM
j

jajjjbjj
; (13)

hSM
j ðxÞ ¼

HSM
j

jbjjjjjj
: (14)

These quantities define the cosine of the angle between two

vectors, e.g., u and x, at each spatial grid point and thus their

ranges lie between �1 andþ 1.

III. DNS OF MHD TURBULENCE

We performed DNS of forced 3D incompressible MHD

turbulence without mean magnetic field in a 2p periodic box

X. The flow obeys the following equations:

@tuþ u � rð Þu ¼ � 1

q0

rPþ j � bþ �Duþ f ; (15)

@tbþ u � rð Þb ¼ b � rð Þuþ gDb; (16)

r � u ¼ 0; (17)

r � b ¼ 0; (18)

where t is time, f is an external force, P is the pressure, � is

the kinematic viscosity, g is the magnetic diffusivity, and

@t¼ @=@t. The Prandtl number Pr is set to 1, i.e., g ¼�.

The above equations are computed with a Fourier

pseudo-spectral method at N¼ 5123 (J¼ 9) grid points. The

aliasing errors are removed by means of the phase shift

method. Only modes with wavenumbers satisfying k< 21=2

N1=3=3 are retained, where k¼ jkj, k is a wave vector and

N1=3 is the number of grid points in each direction of the Car-

tesian coordinate. A fourth-order Runge-Kutta method is

used for time integration. The time increment Dt is set to

Dt¼ 1.5� 10�3 and � ¼g¼ 3.6� 10�4. We imposed a sole-

noidal random force with a correlation time 3.0 and an inten-

sity 0.9� 10�3, only in the wavenumber range 1� k< 2.5.

Readers interested in details of how to generate such random

forces are referred to the Appendix of Ref. 43. The initial ve-

locity and magnetic fields are given by linear superposition

of random fields and deterministic fields. The random fields

are generated under the constraints, Eu(k)¼Eb(k)¼C1k4exp

(�k2=8), where Eu(k) and Eb(k) are the kinetic and magnetic

energy spectra, respectively. The deterministic fields are

given by u¼L(0.5, 2) and b¼Lb(0.6, 1), where Lu(C0,

j)¼C0(sin(jz)þ cos(jy), sin(jx)þ cos(jz), sin(jy)þ cos(jx)).

The constant C1 is determined so that the total kinetic and

the magnetic energy satisfy �Eu ¼ �Eb ¼ 0:5. The initial mean

cross helicity �HC is almost zero, �HC ¼ 3:78� 10�2, and the

mean magnetic helicity �HM is set to �HM ¼ 0:515. The nor-

malized mean helicities have the values HC ¼ 3:78� 10�2

and HM ¼ 0:691, where, HC ¼ �HC=f2ð �Eu �EbÞ1=2g and

HM ¼ �HM=ð2 �Ebhjaj2iÞ1=2
.

The simulation is performed up to t¼ 9(�5.9Ti) when

the energy dissipation rate per unit mass �h i remains almost

constant, which characterizes the behavior of small scales
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and thus corresponds to a statistically quasi-stationary state.

Here, Ti is the initial large eddy turnover time defined by

Ti¼ Lu=u0, where u0 ¼ 2 �Eu=3ð Þ1=2
, Lu is the integral length

scale given by Lu ¼ p=ð2u2
0Þ
Ð kmax

0
dk EuðkÞ=k, and kmax is the

maximum wave number. The absolute value of the total

cross helicity remains below 4.0� 10�2 during the whole

computation. The characteristics of the DNS at the final time

are provided in Table I. The Iroshnikov and Kraichnan

microscale gIK is defined by ð�2b0= �h iÞ1=3
, where b0¼ 2 �Eb=

�
3Þ1=2

. The kinetic and magnetic Taylor microscale Reynolds

numbers are given by Ru
k¼u0k

u=� and Rb
k¼b0k

b=g, respec-

tively, where the kinetic Taylor microscale ku¼ð15�u2
0=

h�uiÞ1=2
and the magnetic Taylor microscale kb¼ð15gb2

0=
h�biÞ1=2

. Here, h�ui and h�bi are the kinetic and magnetic

energy dissipation rates, respectively, and h�i¼h�uiþh�bi.

IV. NUMERICAL RESULTS

We apply the scale-dependent statistics presented in

Sec. II to the DNS data of MHD turbulence. We also use the

DNS data of 3D incompressible HD turbulence at Ru
k ¼ 173

with kmaxgK¼ 2, which was computed at 5123 grid points,

for details we refer to Refs. 44 and 45, in order to compare

qualitatively the statistics of MHD with those of HD, espe-

cially in terms of the relative scale-dependent kinetic helicity

and the accelerations. Here, gK is the Kolmogorov length

scale defined as gK ¼ ð�3=h�uiÞ1=4
.

A. Energy spectra and spatial fluctuations

First the scale-distributions of the second-order

moments of velocity and magnetic field, which correspond

to kinetic and magnetic energies, respectively, are studied.

Figure 1 shows the wavelet kinetic and magnetic energy

spectra, ~Eu
j and ~Eb

j , and the corresponding spatial variabil-

ities, ~ru
j and ~rb

j , as a function of the dimensionless wavenum-

ber kjgIKðj ¼ 0;…; 8Þ. In Fig. 1(a), we observe that ~Eu
j and

~Eb
j coincide well with the one-component Fourier kinetic and

magnetic energy spectra, Eu(k)=3 and Eb(k)=3, respectively.

The magnetic energy spectrum ~Eb
j is larger than ~Eu

j for each

kjgIK. In Fig. 1(b), it can be seen that ~rb
j > ~ru

j for each kjgIK.

As reference, ~Eu
j , Eu(k)=3 and ~ru

j for HD turbulence are

shown in the insets of Fig. 1.

The probability density functions (PDFs) of the total ve-

locity u and the total magnetic field b, in Fig. 2, are almost

Gaussian, as expected. (The PDFs of the vector field v are

obtained by using its three components v1, v2, and v3.) The

PDFs of the scale-dependent velocity uj and magnetic field

bj exhibit heavy tails. We only consider scales for j	 3, i.e.,

kjgIK� 0.054, because we are interested in the small-scale

statistics. For decreasing scales, i.e., j increases, the tails of

the PDFs of uj and bj become heavier. Note that for each j,
the tails of the PDFs of bj are decaying more slowly than the

tails for uj. The behavior of the tails can be characterized by

the scale-dependent flatness F[uj] and F[bj].

Figure 3 shows that both F[uj] and F[bj] increase as

kjgIK increases, i.e., scale 2�j decreases. We also observe

that the flatness of the magnetic field, F[bj], is larger than the

flatness of the velocity field, F[uj], for kjgIK �> 0:054. There-

fore, it is concluded that the magnetic field is more intermit-

tent than the velocity, which is consistent with previous

works.27,28,35 For HD turbulence at Ru
k ¼ 173, F[uj] also

grows with decreasing scale, as observed for homogeneous

isotropic HD turbulence at much higher Ru
k ¼ 732,29 as well

as, for rotating or stratified HD turbulence.37

B. Geometrical statistics: Helicities

Next, geometrical statistics of MHD are studied. We

consider the statistics of spatial distributions of different rel-

ative scale-dependent kinetic, cross, and magnetic helicities,

TABLE I. Characteristics of the DNS at the final time for MHD turbulence.

The normalized mean helicities are given as HK ¼ 0:909� 10�3,

HC ¼ �7:52� 10�3, andHM ¼ 0:655, whereHK ¼ �HK=ð2 �Euhjxj2iÞ1=2
.

�Eu �Eb �HKð�10�3Þ �HCð�10�3Þ �HM gIK(�10�3) Ru
k Rb

k

0.238 0.618 7.16 �5.77 0.503 8.79 150 306

FIG. 1. (Color online) (a) Wavelet mean kinetic and magnetic energy spec-

tra, ~Eu
j and ~Eb

j , vs. kgIK for MHD turbulence. The dashed curve with closed

circles and the curve with open diamonds show ~Eu
j and ~Eb

j , respectively. The

thick black solid curve denotes the Fourier kinetic energy spectrum Eu(k)=3,

while the thick gray solid curve denotes the Fourier magnetic spectrum

Eb(k)=3. The inset in (a) shows the wavelet kinetic energy spectrum for HD

turbulence, denoted by the dashed curves with open circles, together with

the corresponding Fourier energy spectra. As reference, the power laws

k�3=2 and k�5=3 are plotted in dotted lines. (b) Spatial variability of the

wavelet kinetic and magnetic energy spectra, ~ru
j and ~rb

j , vs. kjgIK for MHD

turbulence. The inset in (b) shows ~ru
j vs. kjgK for HD turbulence.
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defined by Eqs. (11)–(13), respectively, together with the rel-

ative super-magnetic helicity, defined by Eq. (14).

Figure 4(a) shows two peaks in the PDF of the relative

kinetic helicity hK
j ¼ 61. It can be observed that the peaks

become more pronounced as kjgIK increases for the range

0:108. kjgIK. 0:865 ð4 � j � 7Þ. For kjgIK� 1.73(j¼ 8),

these peaks are weaker than those at j¼ 7. The peaks imply

that the flow becomes more helical, i.e., scale-dependent ve-

locity uj becomes more aligned or anti-aligned with scale-de-

pendent vorticity xj, at smaller scales except for j¼ 8 where

this tendency is weakened. This behavior for MHD turbu-

lence is in contrast to the case of HD turbulence at Ru
k ¼ 173

shown in Fig. 4(b). The PDFs of the relative kinetic helicity

present a peak for hK
j ¼ 0 at scales kjgK� 0.050 and 0.100

(j¼ 3,4), which corresponds to a higher probability for uj

and xj be orthogonal, while at smaller scales

kjgK& 0:399 ðj 	 6Þ, it has two peaks at hK
j ¼ 61. The peaks

for j	 6 become more pronounced with increasing j. For HD

turbulence, the behavior of hK
j at Ru

k ¼ 173 is consistent with

what was observed at much higher Ru
k ¼ 732 in Ref. 29.

Note that the PDFs of the relative total kinetic helicities for

MHD and HD turbulence, defined by hK(x)¼u �x=(jujjxj),
are symmetric with respect to hK¼ 0 (see insets, Figs. 4(a)

and 4(b)).

The PDFs of the relative scale-dependent cross helicity

hC
j in Fig. 5(a), have two peaks at hC

j ¼ 61, i.e., a pro-

nounced scale-dependent dynamic alignment is found. For

smaller scales, the two peaks become higher, even in the

case that �HC � 0 and the PDF of the relative total cross hel-

icity is symmetric (see inset, Fig. 5(a)). The higher peaks

correspond to a higher probability that the scale-dependent

velocity and magnetic field are aligned or anti-aligned.

FIG. 2. (Color online) Scale-dependent PDFs of (a) velocity uj and (b) mag-

netic field bj for MHD turbulence, where ru
j and rb

j are the standard devia-

tions of uj and bj, respectively.

FIG. 3. (Color online) Scale-dependent flatness of velocity and magnetic

field, F[uj] and F[bj], vs. kjgIK for MHD turbulence. The inset shows F[uj]

vs. kjgK for HD turbulence.

FIG. 4. (Color online) Scale-dependent PDFs of the relative kinetic helic-

ities hK
j for (a) MHD turbulence and (b) HD turbulence. The insets show the

PDFs of the corresponding total relative kinetic helicities.
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Different types of scale-dependent dynamic alignment

were found in analyses of solar wind data14 as well as in

DNS data of incompressible MHD turbulence in the presence

of a strong large-scale external magnetic field.15,16 In Ref.

14, it was shown that magnetic fluctuations in the plane per-

pendicular to the imposed magnetic field are more

aligned=anti-aligned with the velocity being perpendicular to

the imposed field, as scale decreases. In Refs. 15 and 16,

Mason et al. confirmed the theory proposed by Boldyrev46,47

stating that magnetic fluctuations in the plane perpendicular

to the imposed magnetic field are more aligned with velocity

perpendicular to the imposed field, as scale decreases within

the inertial subrange, and that increasing the degree of the

dynamic alignment with deceasing scale leads to scale-de-

pendent depletion of the nonlinear interaction.

Dynamic alignment of total velocity and magnetic fields

has been studied since the beginning of 1980s.6–8 Global

dynamic alignment competes with other MHD relaxation

processes and has been observed in different flow configura-

tions, like in 2D decaying MHD flows either in periodic10 or

confined domains12 and also in 3D decaying MHD turbu-

lence in a periodic box.11 The degree of the alignment after

many large eddy turnover times depends on initial integral

quantities, i.e., the kinetic and magnetic energies and the

cross and magnetic helicities. DNS of the 3D MHD turbu-

lence showed that the local dynamic alignment occurs rap-

idly and is robust.13

Figure 5(b) shows that the distributions of the relative

scale-dependent magnetic helicity hM
j become more symmet-

ric at small scales. The PDFs of hM
j exhibit higher peaks at

hM
j ¼ 61, as scale decreases. We also observe that the PDF

of the relative total magnetic helicity is skewed, and it has a

strong peak atþ 1, owing to substantial �HM (see the inset of

Fig. 5(b)).

Figure 5(c) shows that the PDFs of the relative scale-de-

pendent super-magnetic helicity hSM
j become less skewed, as

scale becomes smaller. The degree of the skewness of hSM
j

is smaller than that of hM
j at each scale. The scale-depend-

ence of the two peaks at hSM
j ¼ 61 is the same as that for the

case of hK
j . The total PDF is skewed (see inset, Fig. 5(c)).

However, it has two strong peaks at 61 corresponding to

large probabilities of alignment or anti-alignment between

the magnetic field b and the current density field j, in contrast

to the total PDF of the magnetic helicity hM. The peak at

hSM¼ 1 is higher than that at hSM¼�1.

Comparing Figs. 4 and 5, it can be concluded that the

scale-dependent velocity and magnetic fields are more

aligned with each other, than the other vector fields studied

here.

C. Eulerian and Lagrangian time-derivatives

To get further insight into the dynamics of MHD turbu-

lence, we now analyze the Eulerian and Lagrangian accelera-

tions defined as

aE ¼ �ðu � rÞu� 1

q0

rPþ j � bþ �r2u; (19)

aL ¼ � 1

q0

rPþ j � bþ �r2u; (20)

respectively. Here, we drop the forcing term f, because it

was only imposed at large scale and hence does not change

their small-scale statistics.

In Fig. 6, we observe for MHD turbulence that the tails

of the scale-dependent PDFs of the Eulerian acceleration, aE
j ,

and those of the Lagrangian acceleration, aL
j , become heav-

ier, for decreasing scale. The tails of aL
j are as heavy as aE

j at

each scale except kjgIK� 1.73(j¼ 8) where the latter is heav-

ier than the former. We find that the tails of the PDF of the

total Eulerian acceleration aE decay more slowly than the

total Lagrangian acceleration aL, which means that the for-

mer is more intermittent than the latter. This is in contrast to

HD turbulence. As shown in the insets of Figs. 6(a) and 6(b),

FIG. 5. (Color online) Scale-dependent PDFs of the relative helicities; (a)

hC
j , (b) hM

j , and (c) hSM
j . The insets show the PDFs of the corresponding total

relative helicities.
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the total Lagrangian acceleration shows stronger intermit-

tency compared to the total Eulerian acceleration (e.g., Ref.

45). For a review on Lagrangian acceleration in HD turbu-

lence, we refer to Ref. 48.

In Fig. 7, we see that the scale-dependent flatness F½aL
j � is

comparable to F½aE
j � for kjgIK. 0:865ðj � 7Þ and that at the

smallest scale, j¼ 8, the former is smaller than the latter. The

scale-dependent flatness F½aE
j � increases up to 80, as scale

decreases. On the other hand, the scale-dependent flatness

F½aL
j � increases up to 40 for j� 7 and then only slightly changes

from j¼ 7 to j¼ 8. Therefore, the Lagrangian acceleration

does not exhibit substantially stronger intermittency than the

Eulerian acceleration, which is in contrast to HD turbulence,

where the Lagrangian acceleration is much more intermittent

than the Eulerian one (see inset, Fig. 7). For HD turbulence at

higher Ru
kð¼ 732Þ, it was shown that the former even exhibits

extreme intermittency compared to the latter.29 The nonlinear

convection term (u � !)u substantially weakens the intermit-

tency of the Eulerian acceleration in HD turbulence, whereas

this is not the case for MHD turbulence. In MHD turbulence,

(u �!)u does not contribute significantly to the flow intermit-

tency except at scale j¼ 8. The Lorentz force j� b plays a key

role for the intermittency of both accelerations.

Finally, we analyze the Eulerian and Lagrangian time-

derivatives of the magnetic field, @tb and Dtb, in analogy to

the Eulerian and Lagrangian accelerations. Here, we use the

notation Dtb¼ @tbþ (u � !)b. Figure 8 illustrates that the

FIG. 6. (Color online) Scale-dependent PDFs of (a) the Eulerian accelera-

tion aE
j and (b) the Lagrangian acceleration aL

j for MHD turbulence, where

ru
E;j and ru

L;j are the standard deviations of aE
j and aL

j , respectively. The insets

of (a) and (b) show the PDFs of the total Eulerian and Lagrangian accelera-

tions for HD turbulence, respectively.

FIG. 7. (Color online) Scale-dependent flatness of the Eulerian and Lagran-

gian accelerations, F½aE
j � and F½aL

j �, vs. kjgIK for MHD turbulence. The inset

shows the corresponding quantities for HD turbulence.

FIG. 8. (Color online) Scale-dependent PDFs of (a) the Eulerian time-deriv-

atives of the magnetic field @tbj and (b) the Lagrangian time-derivatives of

the magnetic field (Dtb)j for MHD turbulence, where rb
E;j and rb

L;j are the

standard deviations of @tbj and (Dtb)j, respectively.
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PDF of the total Eulerian time-derivative of the magnetic

field @tb exhibits heavier tails than the PDF of the total

Lagrangian time-derivative Dtb. The tails of the correspond-

ing scale-dependent PDFs become heavier, as j increases.

We again assess their intermittency by considering the

scale-dependent flatness of @tbj and (Dtb)j denoted by F[@tbj]

and F[(Dtb)j], respectively. Figure 9 shows that F[@tbj]

>F[(Dtb)j] for scales j	 3. Therefore, we can conclude

that @tb is more intermittent than Dtb. The convection term

(u �!)b thus enhances the intermittency of the Eulerian

time-derivative compared to the Lagrangian one.

Comparison of Figs. 7 and 9 shows that the Eulerian

time-derivative of the magnetic field b is more intermittent

than the velocity u at each scale. This is consistent with the

stronger intermittency of the magnetic field compared to the

velocity, as quantified in Fig. 3. In contrast, the degree of the

intermittency of (Dtb)j is comparable to that of aL
j .

V. CONCLUSIONS

We have examined geometrical and scale-dependent sta-

tistics to analyze the intermittency of 3D incompressible ho-

mogeneous MHD turbulence without mean magnetic field

using orthogonal wavelets. The wavelet decomposition pro-

vides an ideal tool to perform scale-dependent statistics in a

proper way thanks to the clear scale separation induced by

the orthogonality of the basis functions. The spatial localiza-

tion of wavelets allows furthermore to study the spatial vari-

ability of the statistics at a given scale, and thus yields

adequate measures to quantify the intermittency of flow

fields. Wavelet analysis has been applied to DNS data of

MHD turbulence at Ru
k ¼ 150, which was computed at 5123

grid points in a periodic box with a dealiased Fourier spectral

method. DNS data of 3D incompressible homogeneous HD

turbulence at Ru
k ¼ 173 (Refs. 44 and 45) were also analyzed

for comparison.

The results confirmed that the magnetic field is indeed

more intermittent than the velocity, reflected in a faster

increase of the flatness with scale. Multiscale measures to

study geometrical statistics, the relative scale-dependent

cross and magnetic helicities together with the super-mag-

netic helicity, have been introduced, in addition to the rela-

tive scale-dependent kinetic helicity. We observed a higher

probability for velocity and vorticity vectors to be aligned or

anti-aligned, i.e., helical flow, at small scales for MHD tur-

bulence. In contrast, the PDF of relative kinetic helicity for

HD turbulence shows a higher probability for the vorticity

and velocity vectors to be orthogonal at scales kjgK� 0.05

and 0.1, while the flow is helical at smaller scales kjgK& 0:4.

It was shown that the relative cross helicities become more

pronounced at 61, corresponding to alignment and anti-

alignment, as scale decreases. We found that the alignment

or anti-alignment of the scale-dependent velocity and mag-

netic field, i.e., the scale-dependent dynamic alignment, is

more pronounced than that of the other vectors studied here,

i.e., alignment of velocity and vorticity, alignment of mag-

netic field and its vector potential, and alignment of magnetic

field and current density, at each scale.

Finally, we examined scale-dependent statistics of the

Eulerian and Lagrangian accelerations, and the correspond-

ing time-derivatives of the magnetic field. We showed the

different dynamics of MHD compared to HD turbulent

flows. In MHD turbulence, the degree of intermittency of the

Lagrangian acceleration is at most comparable to that of the

Eulerian acceleration. In contrast, in HD turbulence, the

Lagrangian acceleration exhibits substantially stronger inter-

mittency than the Eulerian one. We also studied the Eulerian

time-derivative of the magnetic field and showed that it is

more intermittent than the corresponding Lagrangian time-

derivative. These findings suggest that the type of intermit-

tency in MHD turbulence is inherently different from that in

HD turbulence at least for the case studied here, i.e., the case

where at large scale the magnetic energy spectrum is compa-

rable to the one of kinetic energy. We conjecture that the

larger scale magnetic field, which cannot be removed from

the system by transformation into any moving reference

frame, contributes to the weakening of the degree of inter-

mittency of the Lagrangian time derivatives of velocity and

magnetic field compared to HD turbulence.

We have shown that the scale-dependent dynamic align-

ment in MHD turbulence without mean magnetic field

becomes more pronounced as scale decreases up to the dissi-

pative range. One might think that the scale-dependent

dynamic alignment leads to a scale-dependent depletion of

the nonlinear interaction, if one follows arguments from Bol-

dyrev’s theory46,47 for MHD turbulence with strong mean

magnetic field in the inertial subrange. Studying how the

scale-dependent dynamical alignment relates to the scale-de-

pendent depletion of nonlinearity, not only in scale, but also

in space, would be intriguing, but this is beyond the scope of

the present work.

In future work, it would be also interesting to examine

the Reynolds number dependence of the statistics studied

here. The investigation of anisotropic MHD turbulence in

the presence of an imposed mean magnetic field using direc-

tional and scale-dependent statistics introduced in Ref. 37,

and application of the methodology developed here to 2D

MHD turbulence are other directions for further studies.

FIG. 9. (Color online) Scale-dependent flatness of the Eulerian and Lagran-

gian time-derivatives of the magnetic field, F[@tbj] and F[(Dtb)j], vs. kjgIK.
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