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a b s t r a c t

Classical statistical theories of turbulence have shown their limitations, in that they cannot predict
much more than the energy spectrum in an idealized setting of statistical homogeneity and stationarity.
We explore the applicability of a conditional statistical modeling approach: can we sort out what part
of the information should be kept, and what part should be modeled statistically, or, in other words,
‘‘dissipated’’? Our mathematical framework is the initial value problem for the two-dimensional (2D)
Euler equations, which we approximate numerically by solving the 2D Navier–Stokes equations in the
vanishing viscosity limit. In order to obtain a good approximation of the inviscid dynamics, we use a
spectral method and a resolution going up to 81922. We introduce a macroscopic concept of dissipation,
relying on a split of the flow between coherent and incoherent contributions: the coherent flow is
constructed from the large wavelet coefficients of the vorticity field, and the incoherent flow from the
small ones. In previous work, a unique threshold was applied to all wavelet coefficients, while here we
also consider the effect of a scale by scale thresholding algorithm, called scale-wise coherent vorticity
extraction. We study the statistical properties of the coherent and incoherent vorticity fields, and the
transfers of enstrophy between them, and then use these results to propose, within a maximum entropy
framework, a simplemodel for the incoherent vorticity. In the framework of this model, we show that the
flow velocity can be predicted accurately in the L2 norm for about 10 eddy turnover times.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Fluid flows are said to be in the fully developed turbulent
regime when they are highly disordered and dominated by
nonlinear effects due to inertia, which occurs when their Reynolds
number, Re, is large. Competing tendencies to formand to dislocate
coherent structures then create motion over a wide range of
spatial and temporal scales. In the special case of periodic two-
dimensional (2D) decaying turbulence, on which we focus in
this paper, merging processes tend to win the game and the
average size of structures increases. Kraichnan has shown that
this basic phenomenology could be understood with the help
of a dual cascade paradigm, in which enstrophy and energy
are sent respectively towards scales finer and coarser than the
integral scale of the flow ([1], hereafter K67).Within the simplified
setting in which energy and enstrophy are injected around a
characteristic wavenumber kI , he established that the enstrophy
cascade would occur between kI and a cut-off wavenumber kD ∝
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Re1/2, and that for large Re the energy spectrum would become Re
independent and approach the universal scaling E(k) ∝ k−3. Such
an energy spectrum is associated to a k-independent enstrophy
flux from small wavenumber modes to large wavenumber modes.
The range of k between kI and kD is called the inertial range,
while wavenumbers k larger than kD constitute the molecular
dissipation range. The relevance of the enstrophy cascade for
the phenomenological description of decaying 2D turbulence is
supported by numerical experiments [2,3].

The K67 theory is completely statistical, in the sense that it
does not claim to predict anything about the time evolution of
a flow, but invokes only generic features of all turbulent flows
satisfying certain hypotheses, that is, of all elements of a large
ensemble. It may be criticized on the grounds that realistic flows,
such as a jet or the wake behind an obstacle, typically do not
satisfy its underlying assumptions. Even in the restricted setting
where the theory is approximately valid, one may be interested
in the history of the flow and not only in properties of a global
attractor. Another shortcoming of the K67 theory is that it is
inconsistent with a mathematical theorem. Indeed, one of its
essential hypotheses is that the enstrophy dissipation rate does not
go to zero in the limit Re → ∞. But it is well known [4] that,
in the limit Re → ∞, smooth solutions of the 2D Navier–Stokes
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equations (NSE) with smooth forcing converge in the enstrophy
norm to smooth solutions of the 2DEuler equations (corresponding
to Re = ∞), which have constant enstrophy. This paradox,
which had already been predicted using a closure model [5], and
pointed out in [6], was recently revisited by high resolution direct
numerical simulation (DNS) of the 2D NSE [7,8]. It was shown
that even though the enstrophy dissipation rate is bounded by
C(t)Re−1 when Re → ∞ (a mathematical theorem!), the decay
with Re that can be observed in practice is only logarithmic,
because C(t) increases extremely quickly. The implications of this
result on the statistical theory of 2D turbulence were recently
outlined in [9] (see also [10] for a different viewpoint). It was
argued that no Reynolds-independent quantity was available
to characterize dissipation, and that the hope of a Reynolds-
independent description of 2D turbulence had to be given up.

This conclusion is somewhat disappointing, given the al-
ready mentioned convergence of smooth solutions to the 2D
Navier–Stokes equations in a periodic domain towards solutions to
the 2D Euler equations [4]. Convergence occurs at a relatively fast
rate O(Re−1) in the energy norm, so that Re-dependent effects can
be seen as perturbations on top of the inviscid behavior. In the pres-
ence of walls imposing no-slip boundary conditions, the 2D Euler
equations are also well posed, but their solutions behave very dif-
ferently from those of the Navier–Stokes solutions even at large Re,
and the problem is much more delicate; see, e.g., [11] for a discus-
sion. The 3D case also presents formidable difficulties. But in the
2Dwall-less case, on which we focus in this paper, the initial value
problem for the incompressible Euler equations is a solid founda-
tion from which features of 2D turbulence should be deduced. In
fact, the use of inviscid equations, sometimes along with an ad hoc
regularization mechanism, is widespread in numerical models, for
example in geophysical fluid dynamics [12]. Hence the main ob-
stacle may lie in our inability to ask the right questions.

In the search for a reduced description of hydrodynamic
turbulence, the detailed study of reference solutions obtained
from well validated numerical methods remains an important
ingredient. Therefore, although our long term goal is to build
a reduced description of 2D turbulence based on the wavelet
representation, we limit ourselves in the present contribution
to the analysis of fully developed decaying 2D turbulent flows
starting from first principles. From this a priori analysis, we
are able to study several wavelet-based models and to establish
their essential features. We hope that the resulting picture of
2D turbulence will provide a way towards more predictive
approaches.

In the first section, we recall the general notion of incomplete
statistical equilibrium, and explain how it was studied by
Kraichnan and others in the context of turbulence. We then
describe the mathematical setting and the numerical tools that we
have chosen for our specific study of 2D decaying turbulence. After
a brief reminder on wavelet theory, we present a set of results
about the statistics of 2D turbulence. We then recall the coherent
vorticity extraction procedure, which aims to split the degrees of
freedom of a turbulent flow into a noisy part and a deterministic
part. Subsequently, we study the transfer of enstrophy between
these two parts, both from a Fourier view point and from awavelet
view point. In the last section, we study the retroaction of the noisy
vorticity component onto the rest of the flow. Finally, we discuss
the overall results and draw some conclusions.

2. Conditional statistical modeling

Predictable quantities in turbulent flows can only be defined
in a statistical sense, as was already remarked by Burgers [13]
and Taylor [14]. In the 2D case, absolute statistical equilibria
assuming only conservation of energy and enstrophywere derived
by Kraichnan [1] and observed numerically by Basdevant and
Sadourny [15] after a long time in simulations of the Galerkin
truncated 2D Euler equations. Solutions to the full 2D Euler
equations never reach these absolute equilibria, due to their lack of
truncation at fine scales,which allows enstrophy to escape towards
infinitely high wavenumber regions of the spectrum. Instead,
these solutions tend to follow the phenomenology associated to
the already introduced K67 theory, but no rigorous statistical
ensemble has been constructed to explain this observation. In a
stationary setting, onemay try to derive theK67 theory by studying
the invariant measure of the dynamical system associated to the
Euler equations (see, e.g., [16] and related papers). But the fact that
the same phenomenology can be observed in freely decaying flows
suggests that the stationarity hypothesis is superfluous. In any
case, as argued by many authors, even a detailed understanding
of the invariant measure may yield little useful information about
the behavior of a particular solution, because of the slow and
non-uniform sampling of the attractor (see, e.g., [17]). However,
if one considers a flow that is evolving in time, we already
know that it is a solution to the Navier–Stokes equations, which
are completely deterministic, and there is no objective way to
introduce a statistical ensemble (see [18] for more along this line).

To understand the difficulty, let us first consider the rela-
tively easier case of classical kinetic theory [19]. In the fluid ap-
proximation, many-body systems are considered to be in a state
of local thermodynamic equilibrium and are described by a few
macroscopic fields, such as velocity and temperature. The local
Maxwellian distribution of particle velocities can be recovered
by maximizing entropy with the constraint that the macroscopic
fields take their known value in each point. Therewith the statis-
tical ensemble containing possible realizations of the microscopic
degrees of freedom is defined as a direct product of local ensem-
bles corresponding to each fluid particle. As long as the hypothesis
of local thermodynamic equilibrium holds, the equations govern-
ing the evolution ofmacroscopic quantities depend on the particu-
lar realization of the microscopic motion only through a stochastic
forcing term, which is neglected in practice. There is thus a perfect
separation between microscopic and macroscopic motions. If one
changes, by thought experiment, the sign of the velocity of a single
molecule in such a fluid, the microscopic motion soon takes an en-
tirely different trajectory, but there is no measurable influence on
the macroscopic velocity field. The only signatures of the micro-
scopic properties of the system are the friction terms in the fluid
equations. When energy is transferred to microscopic motion, it
is dissipated, or ‘‘thrown away’’ according to the Latin etymology,
evocative of an irreversible loss of information.

Now, due to the apparent disorder of the macroscopic velocity
field itself, it seems desirable to refine the separation by
distinguishing between two classes of macroscopic degrees of
freedom, those which we want to predict, and those which are to
be replaced by statistical distributions or, in other words, ‘‘thrown
away’’ to join their microscopic comrades. Kraichnan [20] gave an
intuitive argument in favor of such an intermediate description
over a fully statistical one. Comparing the characteristic time
needed to spread energy in space within a given scale, and the
characteristic time needed to transfer energy between scales,
he noted that they were of the same order of magnitude. In
other words, active flow elements will not completely forget
their location in space before they start getting distorted, and,
conversely, will not completely forget their shape before they
move to another location in space. These active flow elements
may be amenable to a deterministic treatment, while others
call for a statistical description. Kraichnan and Chen [21] went
further, asserting that ‘‘Turbulence [. . . ] is an interplay of order and
disorder, associatedwith strong departure fromabsolute statistical
equilibrium’’. They noted that advanced statistical models such
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as the direct interaction approximation (DIA) [22] could not
faithfully describe the dynamics of very simple dissipative systems.
To develop a better description, they proposed the concept of
‘‘constrained decimation’’, which consists in splitting the degrees
of freedom of the flow into two parts:

• those that are modeled statistically, which collectively consti-
tute the ‘‘dissipated’’ flow,

• those whose time evolution is described by an initial value
problem, which we call ‘‘explicit’’, following [21].

To each definition of the explicit flow thus corresponds a notion
of dissipation, or transfer of energy (or enstrophy) from explicit to
dissipated degrees of freedom. The notion of ‘‘degrees of freedom’’
is used here in a loose sense that will be made more rigorous
later on. What is important is that the split is not necessarily
static, but can depend on the instantaneous flow, or even on its
history. Indeed, this approach, to which we refer as conditional
statistical modeling, is time dependent by construction, and in it
no assumptions aremade about the stationarity of the solution. The
same idea was later elaborated by several authors; see the review
by Kraichnan [23] and references therein. Due to the nonlinear
term, it is likely that, contrary to the microscopic degrees of
freedom, the dissipated flow retroacts strongly onto the explicit
flowand cannot be neglected or even treated perturbatively. Hence
the frontier between the two can a priori be chosen subjectively,
but the strength and qualitative properties of the retroaction of the
dissipated flow onto the explicit flow determines a posteriori the
practical relevance of the split.

In fact, the idea of extending the notion of dissipation tomacro-
scopic degrees of freedom in turbulent flows goes back at least to
Richardson and Gaunt [24]. The classes they had in mind can be
roughly termed ‘‘coarse scale motion’’ and ‘‘fine scale motion’’, and
therefore the dissipation so defined was formally equivalent to an
eddy viscosity, for which Prandtl had given a formula five years
earlier [25], and which has remained the dominant paradigm ever
since. More advanced methods have also been developed based
on the same splitting between coarse and fine scales, for exam-
ple large eddy simulation (LES) [26] and nonlinear Galerkin [27].
In the last ten years, more advanced statistical physics concepts
have been developed in this context [28], and applied for exam-
ple to describe multiscale atmospheric flows [29] or solutions of
dispersive nonlinear wave equations [30]. But from equilibrium
statistical physics we know that the correctness of the predictions
depends highly on the choice of the right variables to describe the
system. It is therefore an important research topic to explore dif-
ferent concepts of dissipation in turbulent flows. The goal of this
paper is to explore two alternatives to the coarse scale/fine scale
split. They are both based on thewavelet representation of the vor-
ticity field,which has been advocated since the late 1980s as an im-
provement over themore classical Fourier representation [31–33].
Multiscale expansions can be seen as a natural follow up on the
wavenumber band expansions studied by Kraichnan in [20], with
the essential improvement of maintaining some space locality in
the description. Interestingly, theywere also encouraged by Jaynes
(see the remarks at the end of [34]).

On the long list of remaining issues, there is the matter of
how to choose the statistical model for the dissipated flow.
By analogy with the Gibbs entropy of equilibrium statistical
mechanics, the entropy SF of the flow can be defined as the
Shannon entropy [35] computed from the statistical distribution
of the dissipated degrees of freedom (see Section 7.1). Following
the ideas of Jaynes [36], the distribution that should be chosen to
make the most unbiased predictions about the future evolution of
the flow is the one that maximizes SF . We should keep in mind
that the goal of entropy maximization is to avoid biased results,
and not to optimize the predictions of a model. Maximal entropy
predictions are not necessarily good; in fact, they may even be
completely worthless if the split between explicit and dissipated
degrees of freedom has been ill chosen.

In the following, we want to consider a single solution to the
initial value problem for the Euler equation, and see how these
ideas fit together to describe it.

3. Mathematical framework and numerical method

In any modeling effort there is, a priori, a phase of analysis, in
which information is gathered either from experiments or from
a well established underlying model, and, a posteriori, a phase
of synthesis, in which the new model is validated. Although our
long term goal is to help improve existing statistical models and
computational methods, we focus here on the a priori analysis
stage, having in mind the word of wisdom of Meneveau and
Katz [37]: ‘‘a posteriori tests typically do not provide much insight
into the detailed physics of models and the reasons that they do or
do not work’’. Therefore we set out to study numerical solutions to
the 2DNavier–Stokes equations, an approach commonly known as
direct numerical simulation (DNS), and since we are interested in
time-dependent properties of the flow and not only in stationary
statistics, we work on the initial value problem:
∂tω + (u · ∇)ω + ν(−∆)αω = 0
∇ · u = 0, ω = ∇ × u, ω(·, t0) = ω0,

(1)

where the unknown vorticity ω(x, t) is a scalar field defined on
T2

× [t0, t1], T2
= (R/Z)2 is the unit torus, t0 and t1 are respec-

tively the initial and final time, u is the velocity field, ν is the fluid
viscosity, α ∈ N∗, and ω0 is a smooth initial vorticity field. Clas-
sical results guarantee the existence and uniqueness of a solution
ω(x, t) to problem (1) in a suitable function space; see [38]. These
results extend to the case of the incompressible Euler equations,
corresponding to ν = 0 in (1); see [11].Whenα = 1, the equations
given as (1) are called Navier–Stokes equations (NSE), and when
α > 1 they are called hyperdissipative NSE (HNSE) [39]. Hyperdis-
sipation is an ad hoc regularizationmechanism for the incompress-
ible Euler equations, which aims to approach the inviscid dynamics
better than classical dissipation (α = 1), for given computational
resources. Although its widespread use has been criticized [40], we
havemade a good case for it in the restricted context of the 2D NSE
with periodic boundary conditions in a previous paper [41]. Here,
we shall consider only two choices, namely α = 1 and α = 2.

In the following, ⟨· | ·⟩ is the classical scalar product in L2(T2),
the space of square-integrable functions onT2, ‖·‖ is the associated
norm, and the Fourier transform of a field f on T2 is defined by

f̂ [k] =

∫
T2

f (x) exp(−2ιπk · x)dx,

where ι =
√

−1 and k ∈ Z2. When ν = 0 and when the initial
data are smooth, an infinity of integral quantities are preserved by
the flow, among which the energy E =

1
2‖u‖

2 and the enstrophy
Z =

1
2‖ω‖

2. When ν > 0, Z decays in time according to

dZ
dt

+ 2νP = 0, (2)

where P =
1
2‖∇ω‖

2 is called the palinstrophy.
To use as initial condition we construct a random vorticity field

ωr by letting

ω̂r [k] =


|k|

6
eιθk if |k| ≤ 6

|k|

6

−1

eιθk if 6 < |k| ≤ 42

0 otherwise,

(3)
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Fig. 1. Time evolution of energy (left) and enstrophy (middle and right) for solutions of the 2D NSE at various Reynolds numbers. The right panel shows the evolution of
enstrophy in log–log coordinates along with a t−1 reference scaling.
where the θk are pseudo-random numbers drawn uniformly in
[0, 2π [. If E[k] denotes the energy spectrum of the flow

E[k] =
1
2

−
k≤|k|<k+1

|û[k]|
2,

we have, for ωr ,

Er [k] ≃


πk
36

if |k| ≤ 6

36πk−3 if 6 < |k| ≤ 42
0 otherwise,

(4)

which peaks at k = 6. Taking ωr as initial data for the HNSE
(1), we shall consider the family of solutions with the parameters
mentioned in Table 1 on the time interval [0, 200]. Since the
initial spectrum slope is compatible with the K67 prediction, a
quick development of fine scales is favored, but at the same time
dissipative effects do not start to play a role too early. The initial
vorticity field is the same for all runs, and only ν and α are varied,
so that we approach a single solution to the Euler equations,
which is our object of study for the rest of this paper. Its energy
is E0 = E(0) ≃ 2 · 10−3 and its enstrophy is Z0 = Z(0) ≃

0.16. With that the initial eddy turnover time, defined by τ =

Z(0)−1/2, is approximately 2.5. Since the initial data is fixed, the
only dimensionless parameter playing a role in the NSE is the
Reynolds number, which we choose to define by

Re =
Ul
ν
, (5)

where l =
1
6 is the integral scale of the initial flow and U =

l−1√2E(0) is the initial root mean square (RMS) velocity. When
α > 1, we do not attempt to define an equivalent Reynolds
number.

The HNSE are discretized in space using a classical fully
dealiased Fourier pseudo-spectral method, which is equivalent to
a Fourier–Galerkin scheme up to round-off accuracy [42]. This en-
sures that (2) is satisfied by the semi-discrete solution up to round-
off accuracy.Wedenote byK themaximumwavenumbermodulus,
and the necessary number of grid points in each direction is then
N = 3K . ν is chosen as small as possible with the constraint that
the solution remains well resolved, which in practice means that it
should be proportional to K−2α (see Table 1). For time discretiza-
tion we employ a third-order Runge–Kutta scheme [43, p. 20],
together with an integrating factor to accommodate the vis-
cous term. The duration of each timestep is adjusted ac-
cording to the CFL (Courant, Friedrichs, Lewis [44]) condition.
Under these conditions, numerical dissipation due to time-
discretization was shown to be negligible in [41]. All compu-
tations are made in double precision, and using OpenMP for
parallelization.
Table 1
Parameters of reference numerical experiments.

α 1 1 1 1 1 2
ν × 107 6.3 1.6 0.40 0.010 0.0025 8.4×10−11

Re × 10−3 17 66 266 1062 4248 HNSE
N 512 1024 2048 4096 8192 8192

4. Statistical analysis

4.1. Classical statistics

For consistencywith previouswork,we check that our solutions
behave as expected with respect to classical diagnostics. Energy
decays in time with a rate that goes to zero as Re−1 (Fig. 1, left),
while the enstrophy dissipation rate has an apparent dependency
on Re which decays much more slowly when Re → ∞ (Fig. 1,
middle), in conformity with the results reported by Dmitruk and
Montgomery [7] and Tran and Dritschel [8]. The enstrophy decay
approaches a t−1 behavior for long times (Fig. 1, right), as found
by Matthaeus et al. [45]. We note that at t = 50 the spectrum
has a k−3 power law decay range which extends over about two
decades (Fig. 2, left), so we consider that a state of fully developed
turbulence has been reached. In Fig. 2 (right), we show also for
t = 50 a histogram of the values taken by the vorticity field on
the collocation grid, normalized so that its integral equals 1, which
is referred to as a probability distribution function (PDF). The PDFs
have an exponential decay for large values of ω, and a relatively
flat core region around ω = 0. It is also noteworthy that both the
energy spectrum and vorticity PDF appear to converge to a limit
when Re → ∞, which is consistent with the fact that the solution
converges.

4.2. Wavelet transform

In this section, we briefly introduce the wavelet representa-
tion, mostly for the sake of notation. Details may be found in text-
books; see, e.g., [46]. Let ψ be a 1-periodic wavelet generating an
orthogonal multiresolution analysis of L2(T), and ϕ be the associ-
ated scaling function. A function f in L2(T2) can be expanded as
follows:

f = f +

−
λ∈Λ

fλψλ, (6)

where f is the mean value of f on T2,fλ = ⟨f | ψλ⟩,

Λ = {λ = (j, i, µ) | j ∈ N, i ∈ {0, . . . , 2j
− 1}2, µ ∈ {1, 2, 3}},

and

ψ(j,i,1)(x1, x2) = 2jψ(2jx1 − i1)ϕ(2jx2 − i2)

ψ(j,i,2)(x1, x2) = 2jϕ(2jx1 − i1)ψ(2jx2 − i2)

ψ(j,i,3)(x1, x2) = 2jψ(2jx1 − i1)ψ(2jx2 − i2).
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Fig. 2. Energy spectra (left) and vorticity PDFs (right) at t = 50 for solutions of the 2D NSE at various Reynolds numbers. Note that the horizontal axis for the PDFs
corresponds to the actual vorticity values, and it has not been normalized in any way.
Fig. 3. Left: scale-wise PDFs of vorticity wavelet coefficients for the HNSE reference solution for t = 50 and µ = 1. The vertical dashed lines indicate the threshold
determined by the scale-wise CVE algorithm; see Section 5.1. Right: scale-wise flatness of vorticity wavelet coefficients for varying Reynolds number for t = 50 and µ = 1.
The dashed line indicates the value 3, which is the flatness of a Gaussian distribution.
The index j corresponds to the scale of the wavelet, with the
conventions that j = 0 is the coarsest scale and j increases from
coarse to fine scales. The multi-index i corresponds to the position
of the wavelet on the grid of size 2j

× 2j which is associated to its
scale. Finally, the value of µ indicates the directions of oscillation
of the wavelet, 1 for the x1 direction, 2 for the x2 direction, and 3
for both directions.

In order to approximate the wavelet coefficients of a function
using its values at the nodes of a Cartesian grid of sizeN×N = 2J

×

2J , the classical fast wavelet transform algorithm [46] is utilized.
The finest scale which is resolved in this manner is J −1. Following
earlier work [47], we work with Coiflet wavelets corresponding to
filters of length 12 [48].

4.3. Scale-wise statistics

In 3D turbulent flows, energy-containing regions have a
smaller and smaller area when going from coarse to fine
scales, a phenomenon known as intermittency. To quantify this
phenomenon, scale-dependent statistics have often been used,
in particular since Sandborn introduced the scale-dependent
flatness [49]. Wavelets offer a convenient way of defining
scale-dependent statistics and of computing them efficiently.
Such statistics have been considered for example in [50] for
analyzing fine scale intermittency in anisotropic turbulence.
Their relationship with previously introduced statistics that are
constructed from structure functions is well known [33]. Their
computation for 2D flows instead of 3D flows does not pose any
particular technical difficulty, but their behavior, as we recall
below, is quite different. In the following, except when otherwise
noted, by scale-dependent statistics we mean quantities that
depend on µ and j; that is, they are also direction dependent.

In an orthogonal wavelet representation, there is no redun-
dancy among the pieces of information corresponding to different
scales of the flow, so we may legitimately speak of scale by scale –
or scale-wise – statistics. The main such object that we would like
to focus on is the statistical distribution of the wavelet coefficients
of the vorticity field at a given scale and in a given direction. It is a
generic scale-wise statistical object, since many others can be re-
covered from it, for example, all scale-wise moments of the vor-
ticity field. One way of approximating the scale-wise distribution
is to consider the PDF of wavelet coefficients within each scale and
direction. Surprisingly, such PDFs have not been considered in pre-
viouswork. They are akin to thewell known PDFs of velocity incre-
ments [51]. However, the PDFs of velocity increments pose some
problems when the spectrum is steeper than k−3 [52,53]. Scale-
wise PDFs do not suffer from the same shortcoming, provided that
the analyzing wavelet has enough vanishing moments [54]. Since
we are using a Coiflet with four vanishing moments, we would
need to start worrying about seeing the effects of the spectrum of
the wavelet itself only if the field we were analyzing had a spec-
trum steeper than k−9.

The results of the scale-wise analysis for the solutions we have
at our disposal are regrouped in Figs. 3 and 4. We focus on t =

50 and, since the setup is isotropic, we restrict ourselves to one
direction, µ = 1.

We first consider the scale-wise PDF for different scales at the
maximum Reynolds number reached by our data (Fig. 3, left). The
wavelet coefficients have been rescaled by their standard devia-
tion. All the PDFs have pronounced exponential tails. We notice
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Fig. 4. Wavelet coefficients PDFs in the direction µ = 1 for the reference solutions at t = 50, for varying Reynolds number. Left: scale-wise PDF at j = 7. Right: global PDF
of wavelet coefficients.
Fig. 5. Comparison of vorticity wavelet coefficient PDFs for the reference flow at Re ≃ 106 and t = 50 (computed with N = 4096), and for the same flow upsampled on a
grid of size 8192 in each direction. Left: scale-wise PDFs. Right: global PDFs.
that the curves for j = 8, 9, 10, corresponding to the inertial range,
almost superimpose, while the PDFs corresponding to finer scales
j = 11 and j = 12 have longer tails and a more concave shape.
We may therefore conclude that the vorticity field is close to be-
ing self-similar in the inertial range of scales, while the behavior
in the molecular dissipation range is distinct. This conclusion is
supported by the behavior of the scale-wise flatness (Fig. 3, right),
which seems to approach a value lying between 6 and 7, indepen-
dent of scale in the inertial range, as Re increases, while it reaches
much higher values in the molecular dissipation range.

We now fix the scale to j = 7 and look at the scale-wise
PDF of ω for various Reynolds numbers (Fig. 4, left). We observe
convergence towards a limiting curve as Re increases, consistent
with our working hypothesis that 2D turbulence has a definite
behavior when Re → ∞. In contrast, the global PDFs of all wavelet
coefficients (Fig. 4, right) do not have a limit when Re → ∞. To
understand this, recall that the global PDF can be seen as amixture
of the scale-wise and direction-wise PDFs for all the active scales
of motion, each one being weighted by its contribution to the total
number of resolved wavelets. Since the finest scale j = J − 1
accounts for the majority of wavelet coefficients (75%), and since
its behavior is Re dependent, it is not surprising that the global PDF
inherits this property.

To push this last point further, one can even consider the global
and scale-wise PDFs of the same flow but seen at two different
numerical resolutions. In Fig. 5, vorticity wavelet coefficients PDFs
are compared for the reference flow computed at N = 4096 and
Re ≃ 106, and for the same flow upsampled on a grid with twice
the resolution. The upsampling is done in Fourier space, but itmore
or less boils down to the addition of a new scale j = 12 to the
flowwith nearly vanishingwavelet coefficients. The changes in the
scale-wise PDFs for j ≤ 11 are too little to be noticed on the graphs,
and the curves overlap (Fig. 5, left). In contrast, the change in the
global PDF cannot be neglected (Fig. 5, right).

The results thatwe have presented in this section are consistent
withmost earlier numerical studies andwith experimental studies
of flows in soap films, based mostly on structure functions and on
vorticity increments statistics; see, for example, the review [55]
and references therein. One may summarize the situation by
stating that the vorticity statistics are non-Gaussian but nearly self-
similar in the inertial range, while intermittency is found in the
molecular dissipation range (Fig. 3, left). The main advantage of
wavelets over previously used tools is that they forman orthogonal
basis: there is no mixing up of information between different
scales, and the entire flow can be reconstructed from the wavelet
coefficients. The perspectives are appealing, both for computation
(see [56]), and for physical modeling, on which we focus in the
remaining sections.

Concerning theory, the situation is much less clear. In [9], a cor-
rection to the K67 energy spectrum was proposed, which consists
in keeping the self-similar k−3 range butmultiplying it with a loga-
rithmic Re-dependent factor. This stands in contradiction with our
numerical results, which indicate that the energy spectrum con-
verges to a Re-independent curve. Moreover, a deviation from ex-
act self-similarity is unavoidable, because the solution converges
when Re → ∞ towards an analytic solution to the Euler equation,
which must have an exponentially decaying spectrum for large k.
This is a further indication that the important point is not to in-
troduce Re-dependent effects, but, instead, to rethink the way our
statistical model is built.
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5. Scale-wise coherent vorticity extraction

5.1. Extraction algorithm

The definition of coherent structures in turbulence has been a
matter of debate for decades. In [57], it was proposed to define
coherent structures as the part of the flow which is not a noise, an
approach now known as coherent vorticity extraction (CVE). Such
a minimal and negative definition of coherent structures was put
forward in the hope that it would be consensual, since it does not
rely on the a priori choice of a template for a coherent structure.
It also falls neatly in line with the ideas of Kraichnan concerning
conditional statistical modeling of turbulence that were reviewed
in Section 2. The noise corresponds to information which has been
dissipated, while coherent structures correspond to the explicit
flow. The price of the approach is that hypotheses need to bemade
on the noise. As a most simple guess, the noise was assumed to
be stationary, additive, Gaussian, and uncorrelated [57], and it was
shown that it could be separated from the rest of the vorticity field
using wavelet denoising techniques.

The idea behind the denoising algorithm used to single out the
coherent part of the vorticity field is as follows. Once ω has been
expanded in an orthogonal wavelet basis (Eq. (6)), the terms are
split into two groups: coherent terms and incoherent terms. Each
coefficient gets attributed to one of the two groups depending
on whether its modulus is larger or smaller than a threshold, Θ .
An iterative procedure was proposed in [58] in order to find an
optimal value ofΘ under the assumption that the incoherent part
was uncorrelated, which implied in particular that Θ should not
depend on scale. We shall refer to such a Θ as a global threshold,
and to the associated CVE algorithm as global CVE. In previous
work, global CVE has been applied to 2D [57,59] and 3D [47,60]
turbulence.

In the previous section, we have outlined the fact that the
statistics of the wavelet coefficients of a turbulent vorticity field
are scale dependent, and shown that over a certain range of
scales the scale-wise statistics are resolution independent and
have a definite limit when Re → ∞, while the global statistics
enjoy neither of those two properties. Therefore we would like to
propose a modified CVE algorithm, called scale-wise CVE, which is
based on the idea that the threshold should be scale dependent.
In the remaining part of this section, the global CVE and scale-
wise CVE algorithms are both thoroughly described. Then, in the
remaining sections of the paper, global CVE and scale-wise CVEwill
be compared from several angles.

For Θ > 0, let 1Θ be the indicator function of the interval
[−Θ,Θ], choose λ = (j, i, µ), and denote by Iλ the set of all λ′

which sharewith λ the same scale j and the same directionµ. Then
define the two quantities:

Nλ(Θ) =

−
λ′∈Iλ

1Θ(ωλ′) (7)

σλ(Θ)
2

=
1

Nλ(Θ)

−
λ′∈Iλ

1Θ(ωλ′)ω2
λ′ , (8)

which in fact depend only on scale j and direction µ (and not
on i), but for which we keep the multi-index λ for convenience
of notation. We remark that Nλ(Θ) is the number of wavelet
coefficients at scale j and direction µ that are contained in
the interval [−Θ,Θ], while σλ(Θ) is their empirical standard
deviation. Then construct by recurrence the sequence (Θn,λ)n∈N
such that
Θ0,λ = ∞

Θn+1,λ = qσλ(Θn,λ),
(9)
where q is a dimensionless constant. Iterating forward in the
sequence of thresholds (Θn,λ)n∈N gradually makes the interval
[−Θ,Θ] tighten around the wavelet coefficients at scale j and
direction µ that are close to zero, while expelling those that are
far from zero [58]. The latter are known in statistics as ‘‘outliers’’.

The constant q controls how restrictive our definition of an
outlier is. In the following we have taken q = 2.8 for scale-
wise CVE, so that, for a standard Gaussian random variable, the
probability of falling outside the interval [−q, q] is about 0.5%.
q can thus be interpreted as a quantile of the standard Gaussian
distribution. We should mention that our definition (8) for σλ(Θ)
differs slightly from the one in [58], because we use Nλ(Θ) as
the denominator (which is the correct denominator to use when
computing a variance), while [58] used the total number ofwavelet
coefficients. The price of this slight difference is that the proof
of convergence of the sequence (Θn,λ)n∈N given in [58] does not
apply to our version of the algorithm. Nevertheless, we observe
experimentally that, above a certain value of n (less than 100),Θn,λ
becomes constant with a valueΘλ satisfying

Θλ = qσλ(Θλ). (10)
To increase the compression rate, it was proposed in [59] to use

intermediate thresholds belonging to the sequence (Θn,λ) defined
by (9), instead of the limit n → ∞. Different result may be ob-
tained using this technique, but since compression is not our cen-
tral concern here, we have not considered it. Since the number of
distinctwavelet coefficientswithin scale j anddirectionµ is 22j, the
very coarse scales of the flow contain too few wavelet coefficients
for any statistical quantity to be meaningful, and applying the
above procedure to these scales would be quite hazardous. Hence
for j ≤ 4 we prefer to imposeΘλ = 0 (everything is coherent).

Once Θλ has been obtained, wavelet coefficients whose
modulus lies below Θλ, depending on scale j and direction µ, are
defined as incoherent, while the remaining ones are defined as
coherent. The wavelet coefficients index set Λ is thus split into a
set of incoherent coefficients,ΛI , and a set of coherent coefficients,
ΛC . Note that a similar procedure was independently proposed
for data classification in [61]. To impose a regularizing effect of
the thresholding operation on the Euler equations [41], we always
enforce that Θλ = ∞ for the finest scale at the current resolution
j = J − 1. This completes the definition of the scale-wise CVE
algorithm.

The global CVE algorithm is obtained if one changes (7)–(8) by
extending the sums to all directions and to all scales except the
finest one j = J − 1, for which we keep Θλ = ∞, for the reason
already mentioned. For global CVE, we have taken q = 5, in order
to get a compression rate of the same order of magnitude as for
scale-wise CVE. In previous publications on global CVE [58–60],
the value q =


2 ln(N2) (where N is the total number of grid

points) was enforced, which is known to be asymptotically optimal
for denoising a Gaussian white noise when N → ∞ [62], but has
the disadvantage of being resolution dependent. For comparison,
if N = 2048,


2 ln(N2) ≃ 5.52. We shall come back on the touchy

issue of the choice of q in the final discussion.
In either case, we then define coherent vorticity ωC via its

wavelet coefficients:

ωC
λ = 1Θλ(ωλ)ωλ =

ωλ if |ωλ| ≥ Θλ
0 otherwise, (11)

and incoherent vorticity is given by the difference with total
vorticity:

ωI
= ω − ωC . (12)

Since thewavelet basis is orthogonal, the respective enstrophies ZC
and ZI of the coherent incoherent part add up to the total enstrophy
Z:

Z = ZC + ZI . (13)
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Fig. 6. Snapshots of the total vorticity field (first row), and of its coherent (first and second columns) and incoherent (third and fourth columns) parts for global CVE (middle
row) and scale-wise CVE (bottom row). The second (respectively, fourth) column shows a restriction of the coherent (respectively, incoherent) part to the subdomain [

1
16 ,

1
16 ]

(corresponding to the lower left corner of the full image). The absolutemaxima of the respective fields are given in the table on the top right, following the same arrangement
as for the images of the fields. The color table, shown at the bottom of the figure, varies from −max |ω| to +max |ω| for each picture.
FromωC andωI , coherent and incoherent velocity fields uC and
uI can be reconstructed, but they are in general not orthogonal, so
that to define an analogous split for the energy, a cross term needs
to be taken into account:

E =
1
2
‖uC

‖
2
+

1
2
‖uI

‖
2
+ ⟨uC

| uI
⟩ = EC + EI + ECI . (14)

5.2. Results

Now that the global CVE and scale-wise CVE algorithms have
been introduced, we apply them to analyze the vorticity fields
obtained after the computations described in Section 3, and whose
parameters are summarized in Table 1. This section is a follow up
onprevious results concerning 2D turbulence [57,59],with a strong
focus on the two following aspects:

• the dependency on Re in the limit Re → ∞,
• the interpretation in terms of dissipation.

In Fig. 6, we show snapshots of the vorticity fields obtained by
performing the various splits for the HNSE reference solution at
t = 50. Themain structures visible by eye in the total vorticity field
are preserved in the coherent vorticity field for bothmethods (first
column). The difference between global CVE and scale-wise CVE is
better seen by looking at the incoherent parts (third column): for
scale-wise CVE it appears quite homogeneous, whereas for global
CVE the remnants of structures can still be glimpsed. Now since the
resolution of the field is N = 8192 in each direction, its snapshots
lack a lot of details, which may give us a false impression. To check
this, we look at zooms on small squares of size 1

16 located in the
lower-left corners of each picture (Fig. 6, second and fourth row).
Notice that scale-wise CVE enhances most of the sharp features
of the vorticity field, while the effect of global CVE is not very
pronounced. In fact, as was pointed out already in [59], for global
CVE the coherent part looks very similar to the total vorticity
field. In contrast, the distinction is immediate for scale-wise CVE.
Perhaps the most striking difference is found on the zooms on the
incoherent parts shown in the fourth column: for scale-wise CVE
we see a smooth and disorganized field, while for global CVE we
see a rough field containing the trace of fine scale filaments.

Now, turning to more quantitative features of the coherent
and incoherent flows, we consider their vorticity PDFs (Fig. 7)
and energy spectra (Fig. 8, left). For both global CVE and scale-
wise CVE, the vorticity PDF is relatively well approximated by
the coherent vorticity PDF, and the extrema of the vorticity
field are captured by its coherent part. The incoherent vorticity
PDFs are supported on a narrower interval and have a nearly
Gaussian shape. Quantile–quantile plots (Fig. 7, right) allow us
to enhance the deviation with respect to Gaussiannity, which
is seen to be slightly more pronounced for global CVE than for
scale-wise CVE. The distinction between global CVE and scale-
wise CVE becomes more evident when looking at the energy
spectra (Fig. 8, left). For global CVE, the coherent energy spectrum
closely follows the total energy spectrum except in the molecular
dissipation range, where incoherent energy becomes dominant,
in agreement with earlier results [59]. However, the k−1 scaling
of the incoherent energy spectrum (corresponding to enstrophy
equipartition) that was observed in [59] is confirmed here only
over a restricted range of wavenumbers, while the overall shape
of the incoherent energy spectrum seems better described by a
k0 scaling. For scale-wise CVE, the total, coherent, and incoherent
energy spectra all have a k−3 scaling range. The incoherent
spectrum falls down more rapidly than the coherent one in the far
inertial range, and therefore the coherent part becomes dominant
in the dissipative range, while in the inertial range coherent
and incoherent enstrophies are of the same order of magnitude.
Recall that for scale-wise CVE all wavelet coefficients at scales
j ≤ 4 are automatically coherent. Therefore the behavior of the
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Fig. 7. Analysis of total, coherent, and incoherent flows, as defined by scale-wise CVE (full lines) and global CVE (dashed lines), for the HNSE reference solution at t = 50.
Left: vorticity PDFs. Right: quantile–quantile plots of the incoherent vorticities versus the standard normal distribution. Linear fits corresponding to normal distributions
with matching means and standard deviations are shown for comparison.
Fig. 8. Left: energy spectra of total, coherent, and incoherent flows, as defined by scale-wise CVE (full lines) and global CVE (dashed lines), for the HNSE reference solution
at t = 50. Right: compression rate as a function of Reynolds number for global CVE and scale-wise CVE.
incoherent spectrum for k ≤ 16 is just a byproduct of the spectrum
of the analyzing wavelet.

Since one of our goals is to compare the potential benefits of
global CVE and scale-wise CVE for the design of adaptive numerical
schemes, it is also important to measure how much the amount
of information contained in the flow is reduced if one keeps track
explicitly only of coherent vorticity instead of total vorticity. The
measurement of information is a difficult problem, which we shall
come back to in Section 7.1. Here, we limit ourselves to a well
known diagnostic, the compression rate R, defined by

R =
#Λ
#ΛC

,

where #· denotes the number of elements in a set. R is plotted
as a function of Reynolds number in Fig. 8 (right). We observe
that R is close to 20 for scale-wise CVE and close to 80 for global
CVE. The higher value, close to 130, reached for global CVE with
hyperdissipation can be explained by the fact that global CVE is
more sensitive to the behavior of the wavelet coefficients in the
dissipation range, which is quite different for the hyperdissipative
solution, as can be deduced from its scale-wise flatness (Fig. 3,
right). Overall, an improvement in the compression rate when Re
increases is observed neither for global CVE nor for scale-wise
CVE. Further study will be necessary to determine if this result
also applies to wall-bounded 2D turbulence or to 3D turbulence
(see [63,60] for recent results along this line).

Based on the above results, we would like to conjecture that,
for scale-wise CVE, in the limit Re → ∞, the incoherent enstro-
phy and energy both converge to a nonzero limit. To test this con-
jecture, consider the energy and enstrophy of the flow at t = 50,
normalized by their initial values, as functions of Reynolds num-
ber (Fig. 9). In agreement with the literature [7,8], the molecular
enstrophy dissipation vanishes as Re → ∞, so the ratio Z(t=50)

Z(t=0)
approaches 1. For global CVE, the amount of incoherent enstrophy
is small and nearly Re independent, while, for scale-wise CVE, it
increases with Re. Unfortunately, a saturation regime for incoher-
ent enstrophy is not reached in the range of Re that we have been
able to consider. However, such a regime is reached for incoher-
ent energy (Fig. 9, right), albeit at a relatively low fraction of about
2×10−3 of the initial energy. Hence the conjecture is valid at least
for energy, and is likely to be valid also for enstrophy. For global
CVE, incoherent energy goes to zero as Re−1. Since the main differ-
ence between the HNSE and the NSE solutions is the behavior in
the dissipation range, the fact that the last points stand out on the
curves corresponding to global CVE suggests that the latter is most
sensitive to this range of scales, a property that we have already
encountered earlier.

Now that we have established the statistical properties of
the coherent and incoherent parts, we would like to assess the
practical relevance of the split as regards the 2D Euler dynamics. As
a first step in that direction, we consider the enstrophy transfers,
both between the coherent and incoherent parts, and between
different scales of motion.

6. Interscale enstrophy transfers and production of incoherent
enstrophy

6.1. Transfers in Fourier space

In the regime that we are considering, enstrophy is transferred
on average from low wavenumber modes to large wavenumber
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Fig. 9. Euler invariants of total, coherent, and incoherent flows, as defined by scale-wise CVE (full lines) and global CVE (dashed lines), at t = 50, as functions of Reynolds
number. Left: enstrophy, normalized by the initial enstrophy Z(0). Right: energy, normalized by the initial energy E(0), and plotted with a logarithmic vertical scale.
Fig. 10. Contributions to enstrophy transfer between Fourier modes. Left: global CVE. Right: scale-wise CVE.
modes. To quantify this process, it is convenient to introduce
the orthogonal projector Pk on modes with wavenumbers whose
modulus is smaller than k:

Pk(f ) =

−
|k|≤k

f [k] exp(2ιπk · x),

and the vorticity field can then be split as follows:

ω = Pkω + (1 − Pk)ω,

where the two terms are orthogonal to each other. Thanks to the
Pythagoras identity, the enstrophy can in turn be split into two
terms: Z = Z≤ + Z> =

1
2‖Pkω‖

2
+

1
2‖(1 − Pk)ω‖

2, and the goal is
to determine the transfer from Z≤ to Z>, or the interscale enstrophy
transfer.

The procedure is classic (see, e.g., [1]) butwewould like to recall
it in detail here since it will serve as an introduction to the next
paragraph where wavelet transfers are to be considered. One first
writes down the evolution equation for Z≤ by bracketing the NSE
with Pk(ω):

dZ≤

dt
+ ⟨u · ∇ω | Pkω⟩ + ν⟨1ω | Pkω⟩ = 0. (15)

Then one may define a trilinear form a by

a(ω1,u, ω2) = ⟨u · ∇ω1 | ω2⟩, (16)

where u is a divergence-free vector field, and ω1, ω2 are scalar
fields. The essential property of a is that it is antisymmetric
with respect to its first and last variables [64]: a(ω1,u, ω2) =
−a(ω2,u, ω1), and in particular for any u and ω1 we have
a(ω1,u, ω1) = 0. Using that property along with (15), one finally
obtains the system

dZ≤

dt
+ a((1 − Pk)ω,u, Pkω)+ ν‖∇Pkω‖

2
= 0

dZ>
dt

− a((1 − Pk)ω,u, Pkω)+ ν‖∇(1 − Pk)ω‖
2

= 0,
(17)

where Z≤ and Z> are now ostensibly coupled by the transfer term

Πk = a((1 − Pk)ω,u, Pkω). (18)

Following [60], we would like to discriminate between the
coherent and incoherent contributions toΠk. SinceΠk is trilinear,
eight such contributions can be pulled out:

Π
αβγ

k = a((1 − Pk)ωα,uβ , Pkωγ ), (19)

where (α, β, γ ) ∈ {I, C}
3. To make the distinction with the next

section clear, let us insist on the fact that, for any choice of α, β and
γ ,Παβγ is just part of the transfer from Z≤ to Z>, but contains no
information about the production of incoherent enstrophy.
Π
αβγ

k is plotted as a function of k in Fig. 10, for the HNSE
reference simulation at t = 50. For global CVE (Fig. 10, left),
we find that the term ΠCCC dominates the transfers in the
inertial range, while some other terms become non negligible only
in the molecular dissipation range. This is not surprising, given
what we have learned in the previous section, namely that the
fraction of incoherent enstrophy is very low in the inertial range.



196 R. Nguyen van yen et al. / Physica D 241 (2012) 186–201
Fig. 11. Top row: schematic view of the segmentation used in the wavelet transfer analysis (Section 6.2). On the left, only the distinction between coarse and fine scales is
made, while on the right coherent and incoherent coefficients are considered separately. Bottom row: diagram showing the possible enstrophy transfer paths. Left: transfers
in Fourier space. Right: transfers in wavelet space.
The four transfer terms associated to the incoherent velocity field,
namely ΠαIγ (Fig. 10, dashed lines), are two to three orders of
magnitude smaller than those associated to the coherent velocity
field (Fig. 10, full lines). For scale-wise CVE, all terms of typeΠαCγ

are non-negligible throughout the inertial range, which means
that both the coherent and incoherent parts participate in the
nonlinear transfer of enstrophy from low wavenumber modes to
large wavenumber modes. The term ΠCIC also participates to the
transfer with a share of up to 10%.

6.2. Transfers in wavelet space

The above procedure may be followed again, but this time
starting from an orthogonal wavelet basis instead of the Fourier
basis [32]. The projector Pk is replaced by Pj, the orthogonal
projector on the subspace generated by wavelets whose scale is
coarser than j. One ends up with a wavelet interscale transfer termΠj which is the exact analog of Πk defined by (18). Two main
disadvantages have to be put up with when considering transfers
in wavelet space as opposed to Fourier space.

• In addition to the effect of the nonlinear term, there can be
an enstrophy transfer due to the molecular dissipation term.
Indeed, the nice decoupling observed in (17) was possible
because the projector Pk commutes with the Laplace operator,
whereasPj does not.

• The wavelets are not as localized in Fourier space as the
Fourier modes themselves. This is a price to pay for the space
localization of the wavelets.

The bright side is that wavelets allow us to refine the transfer
analysis by looking separately at the coherent and incoherent
parts, as we now proceed to explain. Let us assume that the setΛC

of coherent wavelet coefficients is chosen by applying one of the
two algorithms of the previous section, either global CVE, or scale-
wise CVE. There are three types of contribution to the enstrophy
transfers between the coherent and the incoherent parts:

• the coupling by the nonlinear term,
• the coupling by the molecular dissipation term,
• the change in time of the setsΛC andΛI .

Here we shall leave out the second contribution, since we
are mostly interested in nonlinear transfers, and also the third
contribution, by assuming thatΛC andΛI are fixed.
Denoting byPC the projector on waveletsψλ such that λ ∈ ΛC ,
andP I

= 1 −PC , we may thus split the enstrophy as follows:

Z =
1
2
‖PCPjω‖

2
+

1
2
‖P IPjω‖

2 (20)

+
1
2
‖PC (1 −Pj)ω‖

2
+

1
2
‖P I(1 −Pj)ω‖

2 (21)

= ZC
≤

+ Z I
≤

+ ZC
> + Z I

>. (22)

Given that PC and Pj commute and are both orthogonal, a
system of four equations similar to (17) can be derived to
describe the time evolution of the four terms. The difference
between the Fourier and wavelet viewpoints is summarized
by the diagram in Fig. 11. A similar kind of diagram was
introduced in [65] to describe the stochastic coherent adaptive
large eddy simulation (SCALES) computational approach.However,
the enstrophy transfers between the various components have not
been measured before.

The wavelet transfers are shown in Fig. 12, for the HNSE
reference solution at t = 50. While reading the following
discussion, keep in mind that we are analyzing a single realization
at a single instant, and that we are not making any stationarity
hypothesis. We are not attempting to extract scaling laws, but
rather we are focusing on understanding CVE in relation to the
time-dependent Navier–Stokes dynamics.

The total enstrophy transfer from coarse to fine scales (≤→>)
is in agreement with the result obtained in the previous section
using Fourier analysis. So is the molecular dissipation effect. Key
differences between global CVE and scale-wise CVE are revealed
by looking at the other curves. For global CVE (Fig. 12, left),
the production of incoherent enstrophy (C≤ → I≤ and C≤ →

I>) occurs only at scales where molecular dissipation cannot
be neglected. At coarser scales, all the enstrophy transfers are
dominated by C≤ → C>, that is, the transfer of coherent enstrophy
from coarse to fine scales, similarly to what was observed for
energy in 3D turbulence [60].

Since in the case of scale-wise CVE the dependency with j is
quite complex, let us first consider a single abscissa, j = 9. The
transfers, expressed as percentages of the total nonlinear transfer,
are shown in Table 2. The situation as a result of global CVE is also
shown for comparison purposes. The first important thing that we
notice is that for scale-wise CVE, and contrary to global CVE, the
production of incoherent enstrophy (C≤ → I≤) is of the same
order of magnitude as the interscale transfer C≤ → C>. Recall the
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Fig. 12. Wavelet transfers. Top: global CVE. Bottom: scale-wise CVE.
Table 2
Wavelet enstrophy transfers across j = 9 for global CVE and scale-wise CVE applied
to the referenceHNSE solution at t = 50. The numbers are expressed as percentages
relative to the total interscale transfer (≤→>).

Global (%) Scale-wise (%)

C≤ → C> 92.3 48.4
C≤ → I> 17.1 15.9
C> → I≤ −1.58 −20.2
I≤ → I> 1.39 24.8

≤→> 100 100
C≤ → I≤ −4.4 51.3

comment of Kraichnan [20]: the processes which mix enstrophy
at scales j ≤ 9 act on the same time scale as the processes
which send enstrophy from C≤ to C>. Next, we should mention
the transfer C> → I≤, which measures how much of the fine
scale coherent enstrophy is transferred to coarse scale incoherent
enstrophy. From the point of view that we have adopted, any
transfer C → I is seen as a dissipation of enstrophy. Hence the
fact that the transfer C> → I≤ is negative and non-negligible
(−23%) raises the issue of negative dissipation. Notice that the same
property holds for global CVE, albeit with a smaller amplitude. But
we should not be scandalized by observing negative dissipation in
turbulent flows. Indeed, it is well known that organized structures
do spontaneously emerge out of initially random flows. The CVE
approach has the merit of quantifying this phenomenon.

Now let us turn to Fig. 12 (right), which shows the j-dependency
of the transfers in the case of scale-wise CVE. We consider only
scales j ≥ 5, since below j = 4 everything was assumed to be
coherent in the definition of the algorithm. The first thing to note is
that for 6 ≤ j ≤ 9 the dependency of the transfers on j is relatively
benign, and the various terms keep the same orders of magnitude.
We thus recover the almost self-similar behavior that could be
deduced from the scale-wise statistics. But looking more closely, it
appears that the transfer due to the coherent part tends to increase
when going to finer scales. We interpret this as a time-dependent
effect: the initial condition consists only of coarse scalemotion, and
it takes some time for incoherent enstrophy to build up and to start
transferring energy to fine scales. The behavior for j ≥ 10 is also
worthy of somenotice, especially since it is highly counterintuitive.
Indeed, when molecular dissipation dominates, one may expect
the transfers to be mostly incoherent, as was the case for global
CVE. But the situation is quite the opposite: for j = 10 and j = 11,
the transfer is actually dominated by the C≤ → C> term.

We now come back to the overall picture, as it may be
understood from the wavelet transfer analysis. It appears that
global CVE behaves in a manner which is similar to molecular
dissipation: indeed, the production of incoherent part occurs
mostly in the dissipative range of scales, while the nonlinear
transfer in the inertial range is associated almost exclusively to
the coherent part. Scale-wise CVE offers a more radical view point
on the inertial range in 2D turbulence, by splitting the interscale
transfer of enstrophy into two parallel channels, one associated
to the coherent part, and one associated to the incoherent part.
The enstrophy transfers through both channels are of the same
order of magnitude, although only a few percent of the wavelet
coefficients of the coherent vorticity field are nonzero. Since the
scale-wise PDFs do not depend much on j in the inertial range,
there is a small fraction of coherent coefficients within each scale.
From the two previous sentences we may infer that the transfer of
enstrophy through the coherent channel is due to localized events,
involving few wavelet coefficients, while the transfer through the
incoherent channel is much more homogeneous in space. The
dominant exchange between the two channels is the conversion
of coherent into incoherent enstrophy, C≤ → I≤, but there is also a
non-negligible backwards conversion I≤ → C>, which is maximal
in the far inertial range, i.e., just before the dissipation range. This
negative dissipation feeds the fine scale coherent part, andmay act
as a source of flow intermittency in the dissipation range [66]. As
a result, in the dissipation range, the flow is intermittent, and the
dominant channel is the coherent one.

From the above discussion, we conjecture that simulation using
global CVE does not need a turbulence model, and can thus be
considered as DNS (see also [41]). In contrast, a turbulence model
would be necessary for simulation based on scale-wise CVE in
order to take into account the retroaction of the incoherent part
onto the coherent part. This will be the topic of the next section.

7. Dynamical influence of the incoherent part

7.1. Randomization as dissipation

As pointed out in the introduction, it is said that a quantity
is dissipated when the corresponding degrees of freedom are
replaced by random variables. The remaining explicitly computed
degrees of freedom are then perturbed stochastically by the
dissipated (e.g., incoherent) ones. We would like to find out more
about this perturbation in the two specific cases of global CVE and
scale-wise CVE.

When a wavelet coefficient indexed by λ is replaced by a
random variable, we say that it has been randomized, and we
denote it Wλ. We have already defined in Section 5.1 the index set
of incoherent wavelet coefficients according to global CVE and to
scale-wise CVE. There remains to choose a probability distribution
for the random vector (Wλ)λ∈ΛI . A natural constraint that we
would like to impose is that applying the randomization operator
twice in a row is equivalent to applying it only once, that is, that
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the operator is idempotent. For this condition to hold exactly, the
incoherent coefficients must stay below the thresholdWλ ∈ [−Θλ,Θλ], (23)
and the value of the threshold itself should stay invariant under
randomization, implying that

E(Wλ) = 0, (24)
and also, because of Eq. (10),

1
Nλ(Θλ)

−
λ′∈ΛI∩Iλ

W 2
λ′ =


Θλ

q

2

. (25a)

Under these three constraints, the most unbiased choice that
we may make is the distribution which maximizes the Shannon
entropy, that is, the uniform distribution on the manifold defined
by Eqs. (23) and (25a) in R#ΛI

, that is, the intersection of a
hypersphere and of a hypercube. Unfortunately, we have not
found an efficient way of generating pseudo-random numbers
distributed accordingly. Hence, for practical reasons, we propose
to replace (25a) with the more tractable constraint that

E(W 2
λ ) =


Θλ

q

2

, (25b)

which ensures that enstrophy is conserved by the randomization
operator in the ensemble average sense. Note the analogy of
(25a) with the conservation of internal energy characterizing
the microcanonical ensemble, and of (25b) with the temperature
constraint of the canonical ensemble.

We admit that the solution of the entropy maximization
problem under the three constraints ((23)–(24)–(25b)) can be
factorized into a product of univariate distributions fλ. To
maximize the entropy of fλ it is convenient to first rescale it by its
standard deviation:

fλ(w) =
1
σλ

f0


w

σλ


,

and then solve the equivalent problem of maximizing the entropy
of the rescaled distribution

S(f0) =

∫
R
f0 ln(f0)

under the constraints that f0 has variance 1 and is supported
on [−q, q]. The solution turns out to be a truncated Gaussian
distribution, given by

f0(w) =

Z exp


−
w2

2s20


if |w| ≤ q

0 otherwise,

where Z is a normalization factor and the value of s0 has to be
chosen so that

∫ q

−q
dww2f0(w) =

 q
−qw

2 exp


−
w2

2s20


dw

 q
−q exp


−
w2

2s20


dw

= 1, (26)

which is imposed by Eq. (10). s0 can be understood as a dilation
factor which compensates for the truncation of the wings of the
Gaussian distribution by slightly dilating it in order to preserve its
variance. Provided that q >

√
3, (26) admits a unique real solution

which we approximate using a numerical solver. The entropy of fλ
is then
S(fλ) = S(f0)+ ln(σλ), (27)
and the total entropy S of the flow is then by definition the entropy
of the tensor product of the fλ for λ ∈ ΛI , which is simply
obtained from (27) by summation. In this framework, the increase
Fig. 13. For the HNSE reference solution at t = 50, comparison between the
empirical PDFs of the coherent and incoherent vorticitywavelet coefficients at scale
j = 8 (full red (curve with a cross) and blue (curve with a full circle) lines) and the
analytical PDF (Eq. (26)) obtained after maximizing the entropy (black dashed line).
The vertical dotted lines indicate the interval [−Θ,Θ], whereΘ is the threshold.

Table 3
The four dissipation mechanisms considered in Section 7.

Type of CVE Fate of incoherent part Shorthand

Global Discarded GD
Global Randomized GR
Scale-wise Discarded SD
Scale-wise Randomized SR

of incoherent enstrophy at a given scale implies an increase of
entropy, which is consistent with our interpretation in terms of
dissipation.

In Fig. 13, the truncated Gaussian PDF resulting from entropy
maximization is shown alongside the empirical PDF of vorticity
wavelet coefficients at scale j = 8 and for t = 50, as obtained from
the HNSE reference solution. Notice that the truncated Gaussian
PDF does not approach the empirical PDF well, since it is much less
peaked around zero.

7.2. Method

We would like to find out what the consequences of the loss of
information implied by the statisticalmodel thatwe have just built
are regarding our ability to predict the explicit flow. To do this we
adopt a Monte Carlo approach. We start from the NSE reference
solution at t = 50 for N = 2048 and Re ≃ 2.66 · 105. Ten
different realizations of the randomization operators are applied
to the vorticity field, and the NSE are then integrated separately up
to t = 100 for each one of them. In practice, normally distributed
random numbers with standard deviation sλ are generated using
the Mersenne twister algorithm, and the W̃λ are obtained by
retaining only those that fall within the interval [−Θλ,Θλ]. For
comparison, we also consider the case where the incoherent part
is completely discarded instead of being randomized. The four
cases that we are going to compare are summarized in Table 3.
There remains to decide under what terms the comparison is to
be performed.

Defining a meaningful way of comparing several turbulent
flows is a research topic in itself, closely connected to the chosen
statistical framework. In the setting of complete statistical model-
ing, only quantities characterizing the attractor of the dynamical
system corresponding to the turbulent flow may be meaningfully
compared, since all other properties are considered to be random.
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Fig. 14. Relative error on integral quantities as a function of time between the filtered and randomized flows and the reference flow at N = 2048. The error is averaged
over ten realizations of the randomization operator. The dashed lines are one standard deviation away from the average. Left: enstrophy. Right: palinstrophy.
Fig. 15. Left: time evolution of the average error between the reference and perturbed solutions, as defined by Eq. (28), on log–log scales. The dashed lines delimit an interval
of one standard deviation above and below the average error, as can be estimated from ten realizations. The dashed–dotted lines indicate the scaling δ(t) ∝ (t − t0)

1
2 . Right:

same data, but represented using a linear scale for the horizontal axis.
In contrast, in a completely deterministic framework, one wishes
to compare two solutions of the Navier–Stokes equations point-
wise in space and in time, but that may yield little relevant infor-
mation since the dynamics are known to be chaotic, i.e., unstable to
perturbations. Two solutions initially very close to each other will
always end up far away, even though it is not yet completely clear
what influences the rate of separation. As an intermediate between
these two extreme approaches, we propose to compare only the
explicit flows, as defined within the framework of the conditional
statistical model we are working with.

Even within a given statistical framework, there remains the
question of what features of the flow are to be compared. On the
one hand, we shall consider integral quantities, namely enstrophy
and palinstrophy, which we know to be predictable because they
have been stabilized by spatial averaging. But it is also important to
assess to what extent local properties of the flow can be predicted
as well. Therefore, we shall consider the measure

δX (t) =
‖uC

X (t)− uC (t)‖
‖uC (t)‖

, (28)

where X stands for either one of the four dissipation mechanisms
recalled in Table 3, uC

X (t) is the coherent velocity field of the
perturbed solution at time t , anduC (t) is the coherent velocity field
of the reference solution at time t .
Table 4
Initial value of δX for the four dissipation mechanisms, averaged over ten
realizations.

X GD GR SD SR

⟨δX (0)⟩ 1.5 × 10−21 2.5 × 10−13 1.1 × 10−19 2.5×10−7

7.3. Results

We observe that the enstrophy of the randomized flow (Fig. 14,
left) decays on average faster than the one of the reference flow,
while remaining close to it. The palinstrophy (Fig. 14, right) gets
on average larger for the randomized vorticity field at t = 50, but
comes back to the reference value after t = 75. For enstrophy, at
t = 50, the fluctuation level among the ensemble of randomized
solutions is a few percent, and for palinstrophy it is goes up
to 25%.

Let us now turn to the evolution in time of the difference
between the perturbed and reference solutions, as defined by Eq.
(28). As expected, the initial values of δ are close to the round-off
precision for SD and GD (Table 4). They are also quite small for SR
and GR, thanks to the constraints imposed on the randomization
algorithm as described in the previous section. To lower δ(0)
for SR and GR even more, we would need a microcanonical
randomization operator, which we have not achieved in the
present work. The evolution in time of δ (Fig. 15) goes through two
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distinct phases, which are the same for the four operators:
1. a power-law behavior for short times, which can be roughly

described by the scaling δ(t) ∝ (t − 50)
1
2 , and

2. an exponential growth for large times.

The ratio between the errors for global CVE and for scale-wise CVE
keeps the same order of magnitude 10−2, independent of time.
Although scale-wise CVE initially attributes a larger proportion of
the energy and enstrophy to the dissipated flow than global CVE,
and thereby entails a bigger loss of information, the dissipated
flows associated to global and to scale-wise CVE retroact on the
explicit flow in proportion to their initial amplitude, and can be
seen as equivalent in this respect. The singularity of δ(t) in t = 0 is
also a property common to both approaches, and is probably linked
to the lack of regularity of their respective thresholding operators.

8. Conclusion

In this paper, we have undertaken an extensive statistical
analysis of 2D turbulence in the enstrophy cascade regime, by
numerical study of solutions of the Navier–Stokes equations in
the vanishing viscosity limit, and using the wavelet representation
of the vorticity field as the essential mathematical tool. We
have shown that the classical enstrophy cascade phenomenology
could be recovered in the wavelet representation, by considering
the scale-wise statistics, and interscale enstrophy transfers. By
computing the scale-wise PDFs of the wavelet coefficients, we
have been able to extract more information than is contained
in the more classical energy spectrum and structure functions.
From a practical point of view, wavelet statistics are appealing
because they can be obtained efficiently without computing the
Fourier transform of the vorticity field, and can be generalized
to non-periodic boundary conditions and adaptive grids. Another
advantage which may become more and more important is the
scaling efficiency of the parallel wavelet transform, which is in
theory better than the one of the parallel Fourier transform.

We have introduced scale-wise coherent vorticity extraction
(CVE) as a way to separate extreme events and very probable
events within each scale of the flow. Formally a simple extension
of the existing global CVE approach, scale-wise CVE has the
advantages of being much more robust in the limit Re → ∞,
and of being independent of numerical discretization effects.
Scale-wise CVE yields an incoherent part which contains a non
negligible fraction of the total enstrophy of the flow, and also a
small fraction of the energy. There are good indications that both
fractions may converge to a nonzero limit when Re → ∞. We
propose that the productions of incoherent vorticity and energy
are Re-independent measures of dissipation for 2D turbulence.
This dissipation should be understood in a ‘‘subjective’’ sense [24],
as a transfer of enstrophy between degrees of freedom that we
choose to compute explicitly and degrees of freedom that we
choose to model statistically. Yet once it has been defined, this
dissipation can be quantified in a fully rigorousway by considering
the transfers between various regions of wavelet space, as we have
done in Section 6.2. We have shown that, contrary to global CVE,
for which the intrascale transfer of enstrophy in the inertial range
is dominated by its coherent component, scale-wise CVE entails a
non-negligible intrascale transfer of incoherent enstrophy in the
inertial range.

These findings shed a new light on earlier results that have
shown how the 2D and 3DNavier–Stokes [59,60] and 2D Euler [41]
dynamics were well preserved by discarding after each timestep
the incoherent part determined from global CVE. Our explanation
is that global CVE acts mostly in the dissipation range, and does
not influence the inertial range. Thanks to its nonlinear character,
global CVE may stand as a more judicious choice than a classical,
linear dissipation operator, since it allows for a more economical
representation of the flow in the dissipation range by greatly
reducing the number of necessary degrees of freedom. As a
counterpart, we expect the compression rate that can be attained
by global CVE to be limited by the size of the dissipation range.
For example, taking the three finest scales as a rough estimate of
the dissipation range in a standard, well resolved turbulent flow,
the compression rate for global CVE can not increase much above
64 in 2D and 512 in 3D. Anyway, for 2D homogeneous turbulence,
we have shown here that neither global CVE nor scale-wise CVE
induces the pronounced increase of the compression rate with Re
that would be necessary to make the approach computationally
competitive. We expect that the situation will be different for 3D
flows, or even for 2D flows with boundaries, which we propose to
study in detail in future work.

Turbulent dissipation entails a loss of informationwhich affects
our ability to predict the explicit flow exactly. To estimate the error
on the explicit flow, we have introduced a statistical model for
the dissipated flow. We have first defined an ensemble of flows
endowed with a probability measure obtained by maximizing
the entropy under minimal realistic constraints. The elements of
this ensemble are all the realizations of the total flow that are
compatible with the observed explicit flow, or in other words
they are conditioned by the explicit flow. Adopting a Monte
Carlo approach, we have picked from this ensemble ten different
perturbations of the reference flow, and we have integrated them
in time. By monitoring the time evolution of enstrophy and
palinstrophy, we have checked that the global properties of the
ten flow realizations are close to those of the reference solution.
This finding is not very surprising, since integral quantities such
as enstrophy and palinstrophy are generally thought to be quite
stable to perturbations. To benefit from amore discriminating test,
we have then considered the time evolution of the error between
the perturbed and reference solutions. To measure the error, we
have projected both the perturbed and reference solutions using
the same filter as the one used to generate the perturbation. We
have shown that the L2 error on the coherent flow velocity first
undergoes a power-law growth, with an exponent close to 0.5, and
then a relatively slow exponential growth. The explicit flow is thus
sufficient to partially predict the time evolution of the total flow for
more than ten eddy turnover times, both for global CVE and scale-
wise CVE. The performance is especially good for global CVE, for
which the relative L2 error remains below 1% on that same period.

An important limitation of the present work is that our splitting
algorithms, both global CVE and scale-wise CVE, depend on the
choice of a constant q (see Eq. (9)). We have not studied the
dependency of our results on this constant, and we have not been
able to provide a rigorous justification for the choice of q. We
conjecture that q can be used as a control parameter to enhance
or degrade the faithfulness of the representation of the flow by
its coherent part. This remains an important subject for future
research. More generally, one should define an objective way of
deciding when a split is better than another split, although the
choice of how accurate one wants the final results to be is likely
to remain subjective.

An interesting perspective is to implement the split that
we have proposed as a turbulence model in a numerical code.
Much work has already been done on adaptive codes in wavelet
bases [59,67,56], and the noveltywould be to include the stochastic
termsmodeling the incoherent part. Our randomization technique
could also benefit ensemble forecasting, whose performance
depends heavily on the way the ensemble of initial conditions is
constructed.
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