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ig Background-error variances estimated from a small size erenble of data

20 assimilations need to be filtered out because of the asso@dtsampling noise.

21 Previous works showed that objective spectral filtering is #icient to reduce this

22 noise, while preserving relevant features to a large extenHowever, since such

23 filters are homogeneous, they tend to smooth small-scale stitures of interest.

24 In many applications, nonlinear thresholding of wavelet cefficients has proved

25 to be an efficient technique for denoising signals. This algithm proceeds by

26 thresholding the wavelet coefficients of the noisy signal iy an estimated

27 threshold. This is equivalent to applying an adaptive localspatial filtering. A

28 guasi optimal value for the threshold can be computed from tke noise variance.

29 _ . . . . .

30 We show that the statistical properties of the sampling nois associated with

31 the estimation of background-error variances can be used toalculate the noise

32 level and the appropriate threshold value.

33 This method is applied to 1D academic examples, for both Gasgan white and

34 correlated noises. This approach is shown to outperform theommonly used

35 homogeneous filters, since it automatically adapts to the ¢al structure of the

36 signal. We also show that this technique compares favourapto a heterogeneous

37 diffusion-based filter, with the advantage of requiring les trial and error tuning.
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48 1. Introduction ensemble size (namel$)(100) members), leading to a
49 significant sampling noise which has to be filtered out.
50 The background-error covariance matBxplays a central The_g.oal of the filtering stgp is to remove thg noise while
51 role in data assimilation schemes by weighting the informi&taining as much as possible the important signal features
52 tion from the observations and the background state in tH@ditionally, this is achieved by linear processing sush a
53 analysis. Wiener filtering.

54 Recenﬂy there has been growing interest in es- Previous works on the fllterlng of ensemble-based
55 timating background-error covariances from ensembiariances Raynaud et al. 2008009 provided useful in-
56 data assimilation systems, either in the Kalman filtéprmation with regard to the associated sampling noise,
57 context Evensen 2008 or in the variational frame- such as its statistical properties. Moreover, Wiener fittgr
58 work (Kucukkaraca and Fisher 200Raynaud et al. 20G9 of ensemble variances has been successfully implemented
59 Bonavita et al. 201)1 However, the high computational cosin large-scale applications at&#o-FranceRRaynaud et al.
60 of such ensembles in operational applications limits t2€09 and ECMWF (European Centre for Medium-range
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Weather ForecastBonavita et aI(201]3/). wavelet coefficientd X; ;};,—0 21 at scalej thus define

The Wiener filter, however, optimizes the trade-ofin approximation oX on a grid whose resolution depends
between an averaging of the signal discontinuities and the; : the finer the scale the higher the resolution.
removal of the noise in the smooth regions in order to mini- Denoising by thresholding wavelet coefficients
mize the mean-square error. As a result, some noise is tafhsists in keeping only the coefficients whose modulus is
in the smooth regions while the discontinuities are avatagabove a given threshold valdeé:
a little. Discontinuities in background-error variancddge R ~
typically correspond to high forecast errors associated wi )= X,; if | X5, >T
severe weather events, e.g., midlatitude storms and #&bpic pr(Xij) = 0 if |)~(Z. j < T
cyclones. The averaging of such error structures, which has ’

for instance been observed Bynavita et al(2011), can The denoised signaX is finally reconstructed using an

then result in a smaller impact of relevant observations;jg, -
) . o inverse wavelet transfor® = >, . pr(X; ;) ;-
these regions during the assimilation step. ig PT (Ko )0y

. NN . Wavelet thresholding is first motivated by the fact that
_In order to preserve such discontinuities in variangge gecorrelating property of the wavelet transform reveal
f'.EIdS’ the_ filter has to a_ldapt to the IOC"’.‘I structure .Of tré“f)arsity of the signal if any, i.e., most wavelet coefficgent
signal. This could be achieved by performing the filtering &l ¢ ¢|ose to zeroMallat 1999. Moreover, since the noise

ther in gridpoint space or wavelet space. A first contributiqs gpreaq out equally over all coefficients, if the noise lleve

to heterogeneous variance filtering in gridpoint space Nas,o; 100 high it is then possible to discriminate between
been proposed biraynaud and Pannekouci011) based signal and noise coefficients.

on the integration of the heterogeneous diffusion equation” The idea behind wavelet thresholding is to test each
In the present paper, the application of nonlinear filteg ayelet coefficient in order to check if it is compatible

wavelet space is examined. . . with a Gaussian white noise with standard deviatign.

. Wavelet transform, thanks to its excellent localizaryis can be achieved by performing a statistical test,
tion property, has rapidly become an essential signal afjfhying us to verify that particular properties of the reis
image processing tool for a variety of applications, inge consistent with this Gaussian distribution. A possible
cluding denoising. Denoising by wavelet coefficient threyasistical property is the maximum magnitude that can be

sholding is a commonly used method first proposed BYcountered when sampling a Gaussian random variable of
Donoho and Johnston€l994. The algorithm comparesgiandard deviationy, and sizen. As detailed in Appendix

each wavelet coefficient of the noisy signal to a given thrg- s maximum magnitude should be lower than
shold : if the coefficient is smaller than the threshold then

it is set to zero, otherwise it is kept or modified (depending T — oInn 1
on the thresholding rule). The idea behind thresholding is b= oWy 2. @)

to distinguish between the insignificant coefficients §kelpe sampling size, can be understood as the return time
due to noise, and the significant coefficients consisting &fthe extreme event consisting in exceeding a magnitude
important signal structures. The de_nc_nsed signal is thgrr\icﬂy smaller tharf» (see appendix A for details). Since
reconstructed from the selected coefficients. a Gaussian white noise in gridpoint space is transformed
The paper is organized as follows. Section 2 introducggy an equivalent Gaussian white noise in an orthogonal
the technique of wavelet coefficients thresholding. Se@io \5yelet representation, the test can be performed on the
then details the application of this method to the filterifig Quavelet coefficients. The noise variance is then calculated

ensemble background—errorvariances.Waveletthres‘rgaldésa‘zv =15 (W()2=1%. |W,[2 whereW(l)
is applied in section 4 to 1D analytical signals corrupted by n = ok R

Gaussian white noise. The extension to a correlated nois& ig']e noise at gridpointand IV; ; is a wavelet coefficient

examined in section 5. Finally, conclusions and perspe(;ti\?s]c :;Or'sgr‘ ;hae;;forgé ﬁovtvaélc?rlr?t a?t(')ti];nue?ht \{\r/]r:aosc‘;eams(,)sq;:]us
are given in section 6. ! g D | patible wi ussi

assumption. In that case, the coefficient carries more kigna
information than noise and contributesXo
It is worth noticing that Tp is equal to the

In this section, we introduce the mathematical formaliig:'versal threshold proposed byponoho and Johnstone

2. Denoising by wavelet thresholding

associated with the denoising by wavelet thresholdi 994, which results in an estimate asymptotically optimal

P vhenn — oo) in the minimax sense (i.e. minimizing the
as initially proposed bybonoho and Johnston 994 to ; X . ;
denoise signals affected by Gaussian white noise. maximum quadra_tlc eFrOMa”at (1999). This th_resh(_)ld IS

called universal since it depends on the samplingsiaad
. on the variance of the noisg;,, but not on the signal itself.
2.1. Theoretical aspects s g
We consider a discrete sigralof sizen = 27, affected by 22. Noise variance estimation
a Gaussian white nois& of mean zero and varianeg;,,

OO . . When the statistical properties of the noise are known
resulting in a noisy signaX :

or can be calculated with an appropriate model, the
determination of the optimal threshold is straightforward
X=S+W. (Donoho and Johnstone 199#owever, the noise variance
) ) ) is unknown in many situations and has to be estimated.
We decompose the noisy signal into an orthogonal wavelet piferent methods have been proposed, such as the
seriesX = Y77 S22 VX, by ;, whereX, ; = (1;;/X) median absolute deviation (MAD), which estimates the
is the wavelet coefficient at scalg and position index level of noise by taking the median of the modulus of
i, {-|) denoting the inner productMallat 1999. The the smallest scale wavelet coefficientda(lat 1999. An
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2.3. Adaptive local spatial fl){tering

G
i It is interesting to notice that the wavelet thresholding is
equivalent to estimating the signal with a filtering that
is locally adapted to the signal regularity. This property
follows from the fact that the wavelet transform of a
function f at scalej and positionz; (i) locally measures
the variation off in a neighbourhood of ; (i) whose size is
proportional tgj (Mallat (1999, p165). Rapid transitions in
a signal thus create large wavelet coefficients at fine scales

Given that the wavelet thresholding selectively sets to
zero all coefficients below a threshald it thus performs
an adaptive filtering that depends on the amplitude of the
wavelet coefficients. IfiX; ;| > T then the coefficients
are relatively large and thus are in the neighbourhood of
sharp transitions of at fine scales. Keeping them avoids
_ _ _ _ smoothing sharp signal variations. In the regions where
FiIG. 1.Conceptual illustration of the recursive algorithm R* for |X”| < T, the coefficients are Iikely to be small, which

estimating the noise variance and the threshold. The estintfatesholds th . th. Th . is th filtered tb
To and T are represented by the bold and dashed spheres rc—:‘specti\%@"’mS aff is smooth. € noise Is then fitered out by

The arrows represent a selection of wavelet coefficidhtg. setting the wavelet coefficients to zero.

3. Wavelet thresholding of background-error
alternative approach was introducedfgrge et al(1999; variances
Azzalini et al.(2004), based on a recursive estimation of the
noise variance and the threshold. In this section, we detail how the wavelet thresholding
The recursive approach ofzzalinietal. (20049 method can be applied to filter noisy background-error
proceeds as follows. The wavelet sigiflis split into a variances estimated from a finite-size ensemble of data

coherent (i.e. noise-free) pak® and an incoherent (i.e.2SSimilations.

purely noisy) partX‘*c. The signal is first considered a33 1 E bl . d thei ling statisti
incoherent (i.e. only due to noiseX"¢ = X, thUSO’%MO = ©°+ Ensembievariances and their sampling statistics

L3 1Xine2 = L5, | X, 5|? andTy = ow,0\/2In(n).  Background-error variancesestimated from an ensemble
Wavelet coefficients abovVk are then added to the coherendf background errors are affected by a sampling noise,

part ~ 5 denotedv®, which directly arises from the finite size of the
X{; = pn, (X;'Z,C), ensemble :
. . o ve=v—E[v], (2)
while wavelet coefficients belowl; remain in the
incoherent part whereE stands for the expectation operator arfd= E[v]
is the expectation of the ensemble-based variances that
XZ”;C =(1-pp) Xf’}c). will be referred to as the noise-free estimated variances.

It may be mentioned that this sampling error is non

The coherent and incoherent parts of the signal are thusG&ussian, however the cejz\ptralelimit theorem ensures that th
cursively constructed, at lodp-+ 1, based on the estimateS@MPpling distribution of_,_, v* approaches the Gaussian

2 Y Sinc|2 _ distribution as the ensemble si?é — co.
et = g 2y [X° AN Thopr = 0wy /21In(n). The statistical properties of this sampling noise

This algorithm is repeated until the numb#&i; of non- i}bave been derived bRaynaud et al (2009, under the

zero coefficients in the incoherent part converges, assumption of Gaussian background errors. The spatial
Nw.x+1 = Nw . At the end of this recursive algorithm, np . -Kgroun ' P
' ’ ovariance of the sampling noise is given by

ow = ow,k, I'p = T}, and the denoised signal is given b)9
X = Do j Xf’jwi,j. This algorithm is stable and converges - 2 o

with a finite number of iterations bounded from above by Evv® | = 57— B0 B, ®3)
the number of samples, although in practice very few

iterations are needed{zalini etal. 2003 . whereB is the ensemble-estimatdl matrix, B* = E[B],
This iterative process is illustrated in FiguteSince I{ is the ensemble size and stands for the Hadamard

a white noise is isotropic it is spherical in an orthogong,gyct (j.e. an element-wise product). It follows that the
basis, and the spheres correspond to the maximum nQSRe variance is given by

magnitude (i.e the threshold) at iterations 0 and 1. Because

the initial noise varianceyy is large, most of the wavelet 2
coefficients are smaller than the calculated threshgld E[(Ve)Q] =N _ 1V ov..

Thus, only a few coefficients are larger than the threshold

(they correspond to the bold arrows) and are added to théwever, this formula cannot be used in practice to

coherent part of the signal. After the first iteration, the egalculate local noise variances since we need to know in
timated noise variancey,; is then smaller thamy o, thus advance the noise-free signiai.

T, < Ty and the wavelet coefficients such tmﬁtfj}c\ >T In the case of a white noise, the noise energy is equally
(dashed arrows) are added to the coherent signal. distributed among all scales and the noise variance is then
Copyright(© 2007 Royal Meteorological Society Q.J.R. Meteorol. Soc00: 1-11 (2007)
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gTr
on the estimation error. The ratlgir(é*oé*), presented

in Figure 2, decreases ir0O(1/v/N). Moreover, it can

be seen that the standard deviation has a minor impact,
compared to the bias, for small ensembles. With a 10
member-ensemble for instance, this ratio is aroWdThis

thus shows that with current operational ensemble sizes
(namely between 10 ar@(100) members)7r(B o B) is a
quite accurate estimation @f(B* o B*). The white noise
standard deviation can then be estimated with

Error percentage

o2~ %TT(B oB)/n. (6)

In the context of the ensemble estimation of
background-error variances, the statistical properti¢heo
associated sampling noise thus allow us to calculate a
P o ————========_ relatively accurate estimation of the average noise level.

2
10 10 10
Ensemble size 4. Denoising of 1D variance fields corrupted by a
Gaussian white noise

FiG. 2. Convergence of estimation error with the ensemble size : tHdie application of wavelet thresholding to ensemble-
bias (solid) and the standard deviation (dashed) are batimalzed by based variances is illustrated in this section by estirgatin
Tr(B* o BY). variances in an idealized experimental one-dimensioral se
up.
) i An ensemble ofN random error realizations of size
equal to the average noise variance : n is generated using a prescribed “true” background-error
- covariance matrix. Variances estimated from this ensemble
oy = Tr(E[vev® |)/n. are then decomposed into an orthogonal wavelet series, and
the wavelet coefficients are thresholded using the thrdshol
It thus comes from equatioiB)that value calculated from equatior)( The filtered variances
are finally obtained from an inverse wavelet transform of the
TT(B* ° B*)/n. (4) jselepted wavelet coeﬁicients. For the experiments predent
in this paper, we use the Coiflet-5 wavelets.
The domain is a circle of radius = 6370km, which
3.2. Estimation of the noise variance corresponds to the Earth’s great circle. This circle iscédi
_ ) _ ) _ inton = 512 = 22 equally spaced gridpoints.
It has been mentioned in secti@r? that the noise variance

0%, may be obtained through a recursive method. On thel. The prescribed covariance matrix

other hand, one can wonder if the noise variance equation , . ) ,
(4) could be used instead. This point is detailed below. Homogeneous and isotropic correlations are obtained from

U‘Z’V:Nfl

SinceB* is unknown in practice, a possible solution t§'€¢ Gaussian function
estimate the white noise variance according to equatipn ( CH (2, 1) = exp(—
is to replacel'r(B* o B*) by T'r(B o B). In order to better ’
understand the influence of the finite ensemble size on the , int the circler i i
estimation of7'r(B o B), it is interesting to examine the'Vlcre ¥ IS a point on the circle,r 15 a Separation
sampling properties of this random variable, in particul
its statistical expectation and its standard deviation.

Itis shown in Appendix B that

r2

— 7
2L5b )7 ( )
lue andL_. is the correlation length-scal®éley 1991
annekoucke et al. 2008
Following Pannekoucke et al2007), heterogeneous
correlations are then computed usingstretching Schmidt

o 9 o transformation Courtier and Geleyn 19§8adapted to the
E[Tr(BoB)] = (1+ m)TT(B* oB*). (5) circle and defined by
1 T T
This equation indicates the existence of a positive bias h(z) = a[r — 24 tan{; tan(§ - j)}]’
whenT'r(B o B) is estimated from a finite-size ensembl&yith ¢ = 2.4. The resulting correlation function is
This bias decreases with the ensemble size at a rate

O(1/N). Therefore, the relative error associated with the C(z,7) = CH (@), ) {h~ (@ +r) — h ™ (@)}
[TT(BTOﬁgjOTé E‘)3*°B*) is around 20¢ with a 10- The associated correlation length-scales are sharpeein th
member ensemble and decreases%owith a 50-member €Nt of the domain. . .
ensemble (Figuré) On the other hand, the prescribed varianegsare

i relatively smooth over a large part of the domain with a

On the other h~a*nd,~tr*19 quality afr(B o B) as an 1,0 of 1. and there is a sharp transition in the center of
approximation off'7(B* o B*) also depends on the impacihe qomain with an increase of the variances by a factor 3

bias &

of the standard deviation (Figure 3). This rapid increase of variances may simulate
— — what is observed in the vicinity of low-predictability exsn
ory = \/E[Tr(B oB) — E[Tr(B o B)]]? (e.g., mid-latitude storms, tropical cyclones).
Copyright(© 2007 Royal Meteorological Society Q.J.R. Meteorol. Soc00: 1-11 (2007)
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FIG. 3. (a) Prescribed variances (solid line) and raw ensembleietgd variances (dashed line). (b) Prescribed varianckd I{ge) and their estimation
with a wavelet thresholding (dashed line), in the case of-n&fhber ensemble.
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D
Magnitude of wavelet coefficients

FIG. 4. Histograms of the wavelet coefficients for the raw varianbésck) and for the noise (blue). The associated Gaussi#nibdison for the noise
is represented in green. The threshdld =~ 0.92 is indicated by black squares.

4.2. Filtering results the recursive algorithm and the theoretical formula lead to
identical denoised variances.

In this section, the efficiency of a wavelet thresholding The efficiency of the wavelet thresholding method is
of estimated variances is examined in the context ofrglated to the separation between signal and noise wavelet
white noise. This is achieved by setting a very low valugefficients. Figure presents the histograms of the wavelet
for the background-error length-scale in constructing thgefficients for the raw varianceX; ; and for the noise
true covariance matrix (equatiom)). Moreover, the noise y3, . it yyms out that the noise coefficients are concentrated
yanalnc?a tregum_ed ftc))rttt:utahcalculatlpn O{ thetrt]hreshc()iltd “alyithin the range[—Tp,Tp] with Tp ~ 0.92. Moreover,

IS ca‘cuiated using bo e recursive algorithm (sectid the noise dominates the signal (ifé@j =~ Wi,j) within the

and the theoretical formula (equatid®) ), )
Figure3(a) shows the prescribed variances along wifA"9€l—7p: Tn]. As aresult, the useful signal corresponds

the raw variances estimated from a 50-member ensemfffe the coefficients whose modulus is larger thap,

The denoised variance field after a thresholding of wavefitd thus it can be efficiently retrieved through wavelet
coefficients is shown in Figuré(b). The sampling noise iscoefficient thresholding.

removed to a large extent while the spatial variations of the With smaller ensemble sizes (namet§(50)), the
prescribed variances are preserved. The relative errtieoflarger amplitude of the noise makes the discrimination
estimated variances is reduced fron¥2t 7% in average. between signal and noise more difficult. Therefore, there
It may be mentioned that threshold values calculated usisgsome residual noise after the wavelet thresholding, that

Copyright(© 2007 Royal Meteorological Society
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could be avoided by slightly increasing the threshold vale&pected that the larger scalé the noise, the less effitient t

for instance (not shown). denoising.

Under the assumption of a Gaussian white noise, Finally, the ‘scale-dependent’ generalization of wave-
wavelet thresholding is thus a straightforward and efficielet thresholding is particularly adapted to a homogeneous
method to extract the signal of interest. Moreover, om@ise. In that case, the noise variance is constant within
advantage of the wavelet thresholding is that it does remales so that(j) can be accurately calculated from the

require any trial and error tuning. wavelet coefficients of the noise at scglelf the noise

is heterogeneous then the calculated) corresponds to
5. Denoising of 1D variance fields corrupted by a the average noise level at scgland the ‘scale-dependent’
Gaussian correlated noise thresholding may then be sub-optimal. This problem could

be treated with local adaptive thresholding using locaseoi
In this section, the efficiency of wavelet thresholding igvels estimated from a local window depending on the
examined in the presence of a correlated and heterogenegsial statistics of the nois&posens et al. 2006but this
noise. is beyond the scope of this paper.

5.1. ‘'Scale-dependent’ threshold 5.2. ‘Equivalent’ white noise threshold

The theoretical basis of the wavelet thresholding desdritBecause of the limitations raised by the ‘scale-dependent’
in section2 relies on the assumption of a Gaussian whifermulation in the presence of a heterogeneous noise, we
noise. However, in practical applications the samplingopose an alternative solution. The threshold value is
noise associated with the estimation of background-ertziculated using the globalniversalthreshold (equation
variances is often correlated. This can be seen frgm), under the assumption of a white noise with standard
equation B), which implies the following relationship deviationa x oy :

(Raynaud et al. 20Q%etween the spatial correlation length

scales of sampling noise (denotég.) and of background ThH =ax owy/2In(n), a>1, (20)
error (denoted.s) :

where oy, = /Tr(E[veve'])/n is the average standard
Lye = Le”. (8) deviation of the correlated noise. It may be mentioned
V2 that, since the noise is correlated, the recursive algarith

described in sectio2.2 is no more efficient to calculate

The assumption of a white noise is thus verified when | that caseoyy is estimated from the theoretical
background errors are not or slightly correlated, whigl,mulation (equation®)), leading to

may be the case in dynamical regions for instance (e.g.,
in the vicinity of lows and troughs). On the other hand,
Tr ~
-

4

when background errors are correlated, the associated 71)
— n

sampling noise is correlated as well. In addition, accaydin
to several studies Thépautetal. 1996 Ingleby 2001 o ) ) o )
Pannekoucke et al. 20pbackground-error correlations in A graphical interpretation of this choice is given in
realistic NWP (Numerical Weather Prediction) applicatiofdgure 5. White noises are represented by spheres, while
are heterogeneous (i.E.. is not constant in space), which® correlated noise is represented by an ellipsoid (which
imp"es that the associated noise is also heterogeneous_ reflects the variation of the noise level with the direction)
The method of wavelet thresholding has beekhe formulation of the threshold in equatioh0f assumes
generalized to correlated noiséofinstone and Silvermarthat the correlated noise is replaced by an ‘equivalent’

1997. In this case, one can apply a different threshold féite noise with standard deviation x oy Using a
each scalg : multiplicative factora > 1 helps reducing some residual

noise arising from the scales where the noise level is above
the average level (i.ex(j) > ow). A trivial upper bound

for the parametet: is equal tomax; o(j)/ow. Using this

. . . _ upper bound would result in setting too much coefficients
whereo(;) is the noise standard deviation associated Wi zero. The choice of the parameteris thus based on
scalej andn; = 27 is the number of wavelet coefficientshe gptimization of the trade-off between the removal of the
at scalej. o(j) and Tp(j) could be estimated with angise (wheres(j) > oy) and the averaging of the useful
scale-wise extension of the recursive algorithm presengqgnau (Wheres(j) < ow). A possible choice for could

in section2.2 (Nguyen et al. 201)1 e for instancer — median(@ > 1)

The difficulty of this approach lies in the estimation 0? o ow = /"
the variance of the wavelet coefficients of the noise at eac
scale. Two problems can limit the quality of this estimation->-
First there is a statistical limitation, since the variarate . . . . .
scalej is estimated fron2/ realizations. Since the standar h? gxnpoenrlrzneerr;tilofreetll; %(')Sn ?;’n%?ﬁ?srg?g ilg ﬁgﬁﬁgﬁgt

deviation of the relative error in the estimated standagg? to 250km in equatior?), which results in local length

deviationo () is equal to, /5%, a relative error smaller s.5jes that vary between 100km in the center of the domain
than10% can be achieved only for scalgs> 8. Secondly, and 600km at the edges of the domain (Figije The

at each scale the noise variance is estimated, it is negessampling noise associated with the estimated variances is
that only a few coefficients are due to the signal. In genertiden correlated and heterogeneous. In accordance with the
this is only the case at the smallest scales. It may thengdrescribed local background-error length-scales, theenoi

Tr(BoB)lIn(n).

Tp(j) = o(j)y/2In(ny), (9)

Filtering results

Copyright(© 2007 Royal Meteorological Society Q.J.R. Meteorol. Soc00: 1-11 (2007)
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presents relatively short variations in the center of themaia while it is larger scale elsewhere (Figé(a)). This
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FIG. 10. (a) Estimated variances with an optimized homogeneous fitteEgtimated variances with an optimized heterogeneoussibficbased filter.
The prescribed variances are represented in each panet byplitl line.
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FiG. 11. Histograms of the wavelet coefficients for the raw varianbéack) and for the noise (blue). The Gaussian distribut@rife equivalent white
noise of standard deviatiany is represented in green. The threshdlgs ~ 0.92 andT7, ~ 2.12 are indicated by black squares.

is also supported by the scalogram of the noise (Figure The impact of the choice of is illustrated in Fi-

6(b)). As expected, the amplitude of small-scale coefficiergures 9(b) and (d). Witha = 1 (Figure 9(b)), although

tends to be larger in the center of the domain. the variances are mugh I_e_ss noisy than the raw e_:stlmat_es,

The root mean square error of estimated Vthere remains some significant small-scale sampling noise

. ) . % the vicinity of the variance peak. Withh = 2 X ap¢

riances as a function of the parameter defined by (rigureg(d)), the filtering is too strong and does not provide
137" (¥(a) — v*)2, is shown in Figure8 for a 50- an accurate representation of the variance peak. With an
n i=1 g

member ensemble. The curve indicates that there is 3Propriate choice of, it thus turns out that the accuracy

optimal value that minimizes the error. In the present ca%feth.e est.|mated variances 1s '”?pro"e‘?' and. is close to that
btained in the case of a Gaussian white noise.

Qopt - 2.3 and the assoc_iated wavelet thresholding Iga%s The histograms of wavelet coefficients for signal and
to estimated variances (Figudc)) whose relative error is nojse (Figurel1) indicate the presence of noise coefficients

around10% in average (compared to 20for raw estimated larger than the thresholflp = oy \/21n(n) ~ 0.92. This
variances, Figuré(a)). is consistent with the discussion of sectibr?2 and this
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] ] Itmay also be mentioned that the noise is less Gaussian than
White noise o, in the white noise case (compare blue and green curves).
For comparison purpose, FigurgXa) presents the
Correlated noise 0Ujas'[imated va_riances afte_r applying_ an optimized ho-
mogeneous filter. The signal is quite well-represented
with this homogeneous filter, however, as detailed in
Raynaud and PannekoucKg011), the amplitude of the
variance peak is underestimated by aroun# bh average.
. . Raynaud and Pannekouck2011) also proposed a hetero-
White noise a0, geneous filter in gridpoint space, based on the integrafion o
the diffusion equation. The comparison of Figuéés) and
10(b) indicates that the performance of the wavelet threshol-
) ding is comparable to that of an optimized heterogeneous
diffusion-based filter.

White noise
- L 0W=maxj(0(j)

_ _ _ 6. Conclusions and perspectives
FiG. 5. Graphical representation of white and correlated noisés'in

This paper introduces and tests a wavelet-based filter
of ensemble background-error variances. The filtering is
realized using a thresholding of the wavelet coefficients of
the estimated variances. It is shown that this approach is
equivalent to applying an adaptive local spatial filtering.

600

5507

s00] The most efficient application of wavelet thresholding
is under the assumption of a Gaussian white noise. In that
case, the threshold value is simply a function of the signal
150 size and the noise standard deviatiéiarge et al. (1999

proposed a recursive algorithm to estimate the noise level.
On the other hand, an alternative solution to calculate the
noise variance is based on the knowledge of the statistical
properties of the associated sampling noReynhaud et al.

300

Length-scale (km)

2507

200

2009. We showed that the average noise variance can be
100 - o - - accurately derived from the raw estimate of background-
Gridpoint error variances, even with a small ensemble.

The method has been illustrated for a simple 1D
framework. Under the assumption of a white noise, the
FiG. 7. Geographical variations of the background-error lengtdesin ~ Wavelet thresholding is shown to work well without any
the analytical framework. trial and error tuning. Moreover, the filtering performance
is similar whether the noise variance is calculated with the
recursive algorithm or the theoretical formula.

In practical applications, however, the noise is
correlated and heterogeneous. This makes the use of
the universal global threshold and its ‘scale-dependent’
generalization sub-optimal. An alternative method hasibee
proposed, based on the assumption that the correlated noise
is replaced by a white noise with an appropriate variance
to calculate a global threshold. The appropriate variance
is larger than the average variance of the correlated noise,

5007

450

400

350

Rms Error

200 in order to remove some residual noise arising from the
scales where the noise level is above the average level. The

250 results indicate that this method provides variances whose
accuracy is close to the white noise case. Moreover, this

o " - - - - » wavelet thresholding is shown to outperform the commonly
Alpha used homogeneous filtering and it compares favourably to

heterogeneous filtering in gridpoint space.

The encouraging results of this study thus suggest that
Fic. 8.Total root mean square error of the estimated variances ayvavelet thresholding is a feasible and efficient approach fo
function of the o value (equation X0)) in the case of a 50-memberheterogeneous filtering of ensemble variances. Future work
ensemble. will consider the application of the nonlinear threshotglin

in a more complex 2D framework.

The formalism presented in this paper is well adapted
justifies the use of a factar > 1. With the optimala = to the variance filtering in limited area models. Extension
2.3, Tp, ~ 2.12 and one can see that the noise coefficierts global models on the sphere could be considered using
are concentrated within the ran§eT},, 7). The use of biorthogonal wavelets and frames (especially tight frgmes
this threshold thus enables all the noise coefficients to &®suggested Byannekouck¢2009.
removed, while the useful signal coefficients are preserved
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Acknowledgments corresponds to the optimahiversalthreshold proposed by

Donoho and Johnstor{@994.

The authors would like to thanks the French Agence Note that for a single sample of a normal law, it
Nationale de la Recherche (ANR), under grant Geg-common to assume th&(|X| < 30) ~ 1. Hence, that
FLUIDS (ANR- 09-SYSC-005- 01) "Analyse et simulationthe thresholdl” increases with: seems counter-intuitive.
d’écoulements fluidest partir de gquences d'images :However, the Gaussian function does not have a compact
applicationa I'étude découlements&pphysiques”. support, thus one should find larger values Bfas n

increases, otherwise the resulting distribution wouldbet
A. Statistical interpretation of the universal threshold  Gaussian.

While the mathematical proof of the optimality of th - 5
threshold can be found in e.fylallat (1999 for instance, . Derivation of E[Tr(BoB)]

we propose here a statistical interpretation of it. Using the decomposition of in equation ?)
The wavelet shrinkage employed in the paper can be '

considered as a statistical test on the magnitude of wav - - - -
coefficients. It discriminates coefficients vghose magrﬁtuglgt(B °oB) = sz = Z<V* +ve)?
is compatible with a sampling ofi Gaussian random ! !
variables of standard deviation = 2:(\7*)2 + z:(ve)2 +2 Z VAVe.
For a given magnitudel’, the probability that the l ! !
magnitude of a centered Gaussian random variablgith ~ - e ko e
star?dard deviatior exceedd’ is given byP(|X| > T') = = Tr(B"oBY) + Z(V )2 ZV*V '
2 [ \/21—71_06_I2/202dl‘. The change of variable = T + : :
u allows us to upper bound this probability as follows :  Using the linearity of the expectation operator, it then esm

+oo N N D * N * e ~ e
o 0 V2o 1 l
e . : :
= 2@42/2"2/ Te*(QT““z)/Q"zdﬁmce signal and noise are not correlatBgv*ve] = 0.
0 i Moreover, 3>, E[(v*)?] = Tr(E[veve']) = x25Tr(B* o
Sincee—2T* < 1 for all T, it comes B*) using equation3). Thus,
P(X|=1) < 27 [ ey E[Tr(B o B)] = (1 + ——)Tr(B" 0 BY)
e —e€ U. = PR .
B 0 2ro N -1
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