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Background-error variances estimated from a small size ensemble of data
assimilations need to be filtered out because of the associated sampling noise.
Previous works showed that objective spectral filtering is efficient to reduce this
noise, while preserving relevant features to a large extent. However, since such
filters are homogeneous, they tend to smooth small-scale structures of interest.
In many applications, nonlinear thresholding of wavelet coefficients has proved
to be an efficient technique for denoising signals. This algorithm proceeds by
thresholding the wavelet coefficients of the noisy signal using an estimated
threshold. This is equivalent to applying an adaptive localspatial filtering. A
quasi optimal value for the threshold can be computed from the noise variance.
We show that the statistical properties of the sampling noise associated with
the estimation of background-error variances can be used tocalculate the noise
level and the appropriate threshold value.
This method is applied to 1D academic examples, for both Gaussian white and
correlated noises. This approach is shown to outperform thecommonly used
homogeneous filters, since it automatically adapts to the local structure of the
signal. We also show that this technique compares favourably to a heterogeneous
diffusion-based filter, with the advantage of requiring less trial and error tuning.
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1. Introduction

The background-error covariance matrixB plays a central
role in data assimilation schemes by weighting the informa-
tion from the observations and the background state in the
analysis.

Recently there has been growing interest in es-
timating background-error covariances from ensemble
data assimilation systems, either in the Kalman filter
context (Evensen 2003) or in the variational frame-
work (Kucukkaraca and Fisher 2006; Raynaud et al. 2009;
Bonavita et al. 2011). However, the high computational cost
of such ensembles in operational applications limits the

ensemble size (namelyO(100) members), leading to a
significant sampling noise which has to be filtered out.
The goal of the filtering step is to remove the noise while
retaining as much as possible the important signal features.
Traditionally, this is achieved by linear processing such as
Wiener filtering.

Previous works on the filtering of ensemble-based
variances (Raynaud et al. 2008, 2009) provided useful in-
formation with regard to the associated sampling noise,
such as its statistical properties. Moreover, Wiener filtering
of ensemble variances has been successfully implemented
in large-scale applications at Ḿet́eo-France (Raynaud et al.
2009) and ECMWF (European Centre for Medium-range
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Weather Forecasts,Bonavita et al.(2011)).
The Wiener filter, however, optimizes the trade-off

between an averaging of the signal discontinuities and the
removal of the noise in the smooth regions in order to mini-
mize the mean-square error. As a result, some noise is left
in the smooth regions while the discontinuities are averaged
a little. Discontinuities in background-error variance fields
typically correspond to high forecast errors associated with
severe weather events, e.g., midlatitude storms and tropical
cyclones. The averaging of such error structures, which has
for instance been observed byBonavita et al.(2011), can
then result in a smaller impact of relevant observations in
these regions during the assimilation step.

In order to preserve such discontinuities in variance
fields, the filter has to adapt to the local structure of the
signal. This could be achieved by performing the filtering ei-
ther in gridpoint space or wavelet space. A first contribution
to heterogeneous variance filtering in gridpoint space has
been proposed byRaynaud and Pannekoucke(2011) based
on the integration of the heterogeneous diffusion equation.
In the present paper, the application of nonlinear filteringin
wavelet space is examined.

Wavelet transform, thanks to its excellent localiza-
tion property, has rapidly become an essential signal and
image processing tool for a variety of applications, in-
cluding denoising. Denoising by wavelet coefficient thre-
sholding is a commonly used method first proposed by
Donoho and Johnstone(1994). The algorithm compares
each wavelet coefficient of the noisy signal to a given thre-
shold : if the coefficient is smaller than the threshold then
it is set to zero, otherwise it is kept or modified (depending
on the thresholding rule). The idea behind thresholding is
to distinguish between the insignificant coefficients likely
due to noise, and the significant coefficients consisting of
important signal structures. The denoised signal is then
reconstructed from the selected coefficients.

The paper is organized as follows. Section 2 introduces
the technique of wavelet coefficients thresholding. Section 3
then details the application of this method to the filtering of
ensemble background-error variances. Wavelet thresholding
is applied in section 4 to 1D analytical signals corrupted bya
Gaussian white noise. The extension to a correlated noise is
examined in section 5. Finally, conclusions and perspectives
are given in section 6.

2. Denoising by wavelet thresholding

In this section, we introduce the mathematical formalism
associated with the denoising by wavelet thresholding,
as initially proposed byDonoho and Johnstone(1994) to
denoise signals affected by Gaussian white noise.

2.1. Theoretical aspects

We consider a discrete signalS of sizen = 2J , affected by
a Gaussian white noiseW of mean zero and varianceσ2

W ,
resulting in a noisy signalX :

X = S + W.

We decompose the noisy signal into an orthogonal wavelet

seriesX =
∑J−1

j=0

∑2j−1
i=0 X̃i,jψi,j , whereX̃i,j = 〈ψi,j |X〉

is the wavelet coefficient at scalej and position index
i, 〈·|·〉 denoting the inner product (Mallat 1999). The

wavelet coefficients{X̃i,j}i=0,2j−1 at scalej thus define
an approximation ofX on a grid whose resolution depends
on j : the finer the scale the higher the resolution.

Denoising by thresholding wavelet coefficients
consists in keeping only the coefficients whose modulus is
above a given threshold valueT :

ρT (X̃i,j) =

{

X̃i,j if |X̃i,j | > T

0 if |X̃i,j | ≤ T.

The denoised signal̂X is finally reconstructed using an
inverse wavelet transform̂X =

∑

i,j ρT (X̃i,j)ψi,j .
Wavelet thresholding is first motivated by the fact that

the decorrelating property of the wavelet transform reveals
sparsity of the signal if any, i.e., most wavelet coefficients
are close to zero (Mallat 1999). Moreover, since the noise
is spread out equally over all coefficients, if the noise level
is not too high it is then possible to discriminate between
signal and noise coefficients.

The idea behind wavelet thresholding is to test each
wavelet coefficient in order to check if it is compatible
with a Gaussian white noise with standard deviationσW .
This can be achieved by performing a statistical test,
allowing us to verify that particular properties of the noise
are consistent with this Gaussian distribution. A possible
statistical property is the maximum magnitude that can be
encountered when sampling a Gaussian random variable of
standard deviationσW and sizen. As detailed in Appendix
A, this maximum magnitude should be lower than

TD = σW

√
2 lnn. (1)

The sampling sizen can be understood as the return time
of the extreme event consisting in exceeding a magnitude
strictly smaller thanTD (see appendix A for details). Since
a Gaussian white noise in gridpoint space is transformed
into an equivalent Gaussian white noise in an orthogonal
wavelet representation, the test can be performed on the
wavelet coefficients. The noise variance is then calculated
asσ2

W = 1
n

∑n
l=1(W(l))2 = 1

n

∑

i,j |W̃i,j |2, whereW(l)

is the noise at gridpointl andW̃i,j is a wavelet coefficient
of noise. Therefore, a wavelet coefficient whose modulus
is larger thanTD is not compatible with the Gaussian
assumption. In that case, the coefficient carries more signal
information than noise and contributes toX̂.

It is worth noticing that TD is equal to the
universal threshold proposed byDonoho and Johnstone
(1994), which results in an estimate asymptotically optimal
(whenn→ ∞) in the minimax sense (i.e. minimizing the
maximum quadratic error,Mallat (1999)). This threshold is
called universal since it depends on the sampling sizen and
on the variance of the noiseσ2

W , but not on the signal itself.

2.2. Noise variance estimation

When the statistical properties of the noise are known
or can be calculated with an appropriate model, the
determination of the optimal threshold is straightforward
(Donoho and Johnstone 1994). However, the noise variance
is unknown in many situations and has to be estimated.

Different methods have been proposed, such as the
median absolute deviation (MAD), which estimates the
level of noise by taking the median of the modulus of
the smallest scale wavelet coefficients (Mallat 1999). An
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FIG . 1. Conceptual illustration of the recursive algorithm inRn for
estimating the noise variance and the threshold. The estimated thresholds
T0 andT1 are represented by the bold and dashed spheres respectively.
The arrows represent a selection of wavelet coefficientsX̃i,j .

alternative approach was introduced byFarge et al.(1999);
Azzalini et al.(2004), based on a recursive estimation of the
noise variance and the threshold.

The recursive approach ofAzzalini et al. (2004)
proceeds as follows. The wavelet signalX̃ is split into a
coherent (i.e. noise-free) part̃Xc and an incoherent (i.e.
purely noisy) partX̃inc. The signal is first considered as
incoherent (i.e. only due to noise) :̃X

inc = X̃, thusσ2
W,0 =

1
n

∑

i,j |X̃inc
i,j |2 = 1

n

∑

i,j |X̃i,j |2 andT0 = σW,0

√

2 ln(n).
Wavelet coefficients aboveT0 are then added to the coherent
part

X̃c
i,j = ρT0

(X̃inc
i,j ),

while wavelet coefficients belowT0 remain in the
incoherent part

X̃inc
i,j = (1 − ρT0

)(X̃inc
i,j ).

The coherent and incoherent parts of the signal are thus re-
cursively constructed, at loopk + 1, based on the estimates
σ2

W,k+1 = 1
n

∑

i,j |X̃inc
i,j |2 and Tk+1 = σW,k+1

√

2 ln(n).
This algorithm is repeated until the numberNW of non-
zero coefficients in the incoherent part converges, i.e.
NW,k+1 = NW,k. At the end of this recursive algorithm,
σW = σW,k, TD = Tk, and the denoised signal is given by
X̂ =

∑

i,j X̃
c
i,jψi,j . This algorithm is stable and converges

with a finite number of iterations bounded from above by
the number of samplesn, although in practice very few
iterations are needed (Azzalini et al. 2004).

This iterative process is illustrated in Figure1. Since
a white noise is isotropic it is spherical in an orthogonal
basis, and the spheres correspond to the maximum noise
magnitude (i.e the threshold) at iterations 0 and 1. Because
the initial noise varianceσW,0 is large, most of the wavelet
coefficients are smaller than the calculated thresholdT0.
Thus, only a few coefficients are larger than the threshold
(they correspond to the bold arrows) and are added to the
coherent part of the signal. After the first iteration, the es-
timated noise varianceσW,1 is then smaller thanσW,0, thus
T1 < T0 and the wavelet coefficients such that|X̃inc

i,j | > T1

(dashed arrows) are added to the coherent signal.

2.3. Adaptive local spatial filtering

It is interesting to notice that the wavelet thresholding is
equivalent to estimating the signal with a filtering that
is locally adapted to the signal regularity. This property
follows from the fact that the wavelet transform of a
function f at scalej and positionxj(i) locally measures
the variation off in a neighbourhood ofxj(i) whose size is
proportional toj (Mallat (1999), p165). Rapid transitions in
a signal thus create large wavelet coefficients at fine scales.

Given that the wavelet thresholding selectively sets to
zero all coefficients below a thresholdT , it thus performs
an adaptive filtering that depends on the amplitude of the
wavelet coefficients. If|X̃i,j | > T then the coefficients
are relatively large and thus are in the neighbourhood of
sharp transitions off at fine scales. Keeping them avoids
smoothing sharp signal variations. In the regions where
|X̃i,j | ≤ T , the coefficients are likely to be small, which
means thatf is smooth. The noise is then filtered out by
setting the wavelet coefficients to zero.

3. Wavelet thresholding of background-error
variances

In this section, we detail how the wavelet thresholding
method can be applied to filter noisy background-error
variances estimated from a finite-size ensemble of data
assimilations.

3.1. Ensemble variances and their sampling statistics

Background-error variances̃v estimated from an ensemble
of background errors are affected by a sampling noise,
denotedve, which directly arises from the finite size of the
ensemble :

v
e = ṽ − E[ṽ], (2)

whereE stands for the expectation operator andṽ
⋆ = E[ṽ]

is the expectation of the ensemble-based variances that
will be referred to as the noise-free estimated variances.
It may be mentioned that this sampling error is non
Gaussian, however the central limit theorem ensures that the
sampling distribution of

∑N
k=1 v

e approaches the Gaussian
distribution as the ensemble sizeN → ∞.

The statistical properties of this sampling noise
have been derived byRaynaud et al.(2009), under the
assumption of Gaussian background errors. The spatial
covariance of the sampling noise is given by

E[ve
v

eT

] =
2

N − 1
B̃

⋆ ◦ B̃
⋆, (3)

whereB̃ is the ensemble-estimatedB matrix, B̃⋆ = E[B̃],
N is the ensemble size and◦ stands for the Hadamard
product (i.e. an element-wise product). It follows that the
noise variance is given by

E[(ve)2] =
2

N − 1
ṽ

⋆ ◦ ṽ
⋆.

However, this formula cannot be used in practice to
calculate local noise variances since we need to know in
advance the noise-free signalṽ

⋆.
In the case of a white noise, the noise energy is equally

distributed among all scales and the noise variance is then
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FIG . 2. Convergence of estimation error with the ensemble size : the
bias (solid) and the standard deviation (dashed) are both normalized by
Tr(B̃⋆ ◦ B̃

⋆).

equal to the average noise variance :

σ2
W = Tr(E[ve

v
eT

])/n.

It thus comes from equation (3) that

σ2
W =

2

N − 1
Tr(B̃⋆ ◦ B̃

⋆)/n. (4)

3.2. Estimation of the noise variance

It has been mentioned in section2.2 that the noise variance
σ2

W may be obtained through a recursive method. On the
other hand, one can wonder if the noise variance equation
(4) could be used instead. This point is detailed below.

SinceB̃⋆ is unknown in practice, a possible solution to
estimate the white noise variance according to equation (4)
is to replaceTr(B̃⋆ ◦ B̃

⋆) by Tr(B̃ ◦ B̃). In order to better
understand the influence of the finite ensemble size on the
estimation ofTr(B̃ ◦ B̃), it is interesting to examine the
sampling properties of this random variable, in particular
its statistical expectation and its standard deviation.

It is shown in Appendix B that

E[Tr(B̃ ◦ B̃)] = (1 +
2

N − 1
)Tr(B̃⋆ ◦ B̃

⋆). (5)

This equation indicates the existence of a positive bias
whenTr(B̃ ◦ B̃) is estimated from a finite-size ensemble.
This bias decreases with the ensemble size at a rate
O(1/N). Therefore, the relative error associated with the

bias E[Tr(B̃◦B̃)]−Tr(B̃⋆◦B̃⋆)

Tr(B̃⋆◦B̃⋆)
is around 20% with a 10-

member ensemble and decreases to 4% with a 50-member
ensemble (Figure2).

On the other hand, the quality ofTr(B̃ ◦ B̃) as an
approximation ofTr(B̃⋆ ◦ B̃

⋆) also depends on the impact
of the standard deviation

σTr =

√

E[Tr(B̃ ◦ B̃) − E[Tr(B̃ ◦ B̃)]]2

on the estimation error. The ratio σT r

Tr(B̃⋆◦B̃⋆)
, presented

in Figure 2, decreases inO(1/
√
N). Moreover, it can

be seen that the standard deviation has a minor impact,
compared to the bias, for small ensembles. With a 10
member-ensemble for instance, this ratio is around 7%. This
thus shows that with current operational ensemble sizes
(namely between 10 andO(100) members),Tr(B̃ ◦ B̃) is a
quite accurate estimation ofTr(B̃⋆ ◦ B̃

⋆). The white noise
standard deviation can then be estimated with

σ2
W ≈ 2

N − 1
Tr(B̃ ◦ B̃)/n. (6)

In the context of the ensemble estimation of
background-error variances, the statistical properties of the
associated sampling noise thus allow us to calculate a
relatively accurate estimation of the average noise level.

4. Denoising of 1D variance fields corrupted by a
Gaussian white noise

The application of wavelet thresholding to ensemble-
based variances is illustrated in this section by estimating
variances in an idealized experimental one-dimensional set-
up.

An ensemble ofN random error realizations of size
n is generated using a prescribed “true” background-error
covariance matrix. Variances estimated from this ensemble
are then decomposed into an orthogonal wavelet series, and
the wavelet coefficients are thresholded using the threshold
value calculated from equation (1). The filtered variances
are finally obtained from an inverse wavelet transform of the
selected wavelet coefficients. For the experiments presented
in this paper, we use the Coiflet-5 wavelets.

The domain is a circle of radiusa = 6370km, which
corresponds to the Earth’s great circle. This circle is divided
into n = 512 = 29 equally spaced gridpoints.

4.1. The prescribed covariance matrix

Homogeneous and isotropic correlations are obtained from
the Gaussian function

CH(x, r) = exp(− r2

2L2
ǫ

b

), (7)

where x is a point on the circle,r is a separation
value andL

ǫ
b is the correlation length-scale (Daley 1991;

Pannekoucke et al. 2008).
Following Pannekoucke et al.(2007), heterogeneous

correlations are then computed using ac-stretching Schmidt
transformation (Courtier and Geleyn 1988), adapted to the
circle and defined by

h(x) = a[π − 2A tan{1

c
tan(

π

2
− x

2a
)}],

with c = 2.4. The resulting correlation function is

C(x, r) = CH(h−1(x), r){h−1(x+ r) − h−1(x)}.
The associated correlation length-scales are sharper in the
center of the domain.

On the other hand, the prescribed variancesv
⋆ are

relatively smooth over a large part of the domain with a
value of 1, and there is a sharp transition in the center of
the domain with an increase of the variances by a factor 3
(Figure 3). This rapid increase of variances may simulate
what is observed in the vicinity of low-predictability events
(e.g., mid-latitude storms, tropical cyclones).
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FIG . 3. (a) Prescribed variances (solid line) and raw ensemble-estimated variances (dashed line). (b) Prescribed variances (solid line) and their estimation
with a wavelet thresholding (dashed line), in the case of a 50-member ensemble.
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FIG . 4. Histograms of the wavelet coefficients for the raw variances (black) and for the noise (blue). The associated Gaussian distribution for the noise
is represented in green. The thresholdTD ≈ 0.92 is indicated by black squares.

4.2. Filtering results

In this section, the efficiency of a wavelet thresholding
of estimated variances is examined in the context of a
white noise. This is achieved by setting a very low value
for the background-error length-scale in constructing the
true covariance matrix (equation (7)). Moreover, the noise
variance required for the calculation of the threshold value
is calculated using both the recursive algorithm (section2.2)
and the theoretical formula (equation (6)).

Figure3(a) shows the prescribed variances along with
the raw variances estimated from a 50-member ensemble.
The denoised variance field after a thresholding of wavelet
coefficients is shown in Figure3(b). The sampling noise is
removed to a large extent while the spatial variations of the
prescribed variances are preserved. The relative error of the
estimated variances is reduced from 20% to 7% in average.
It may be mentioned that threshold values calculated using

the recursive algorithm and the theoretical formula lead to
identical denoised variances.

The efficiency of the wavelet thresholding method is
related to the separation between signal and noise wavelet
coefficients. Figure4 presents the histograms of the wavelet
coefficients for the raw variances̃Xi,j and for the noise
W̃i,j . It turns out that the noise coefficients are concentrated
within the range[−TD, TD] with TD ≈ 0.92. Moreover,
the noise dominates the signal (i.e.X̃i,j ≈ W̃i,j) within the
range[−TD, TD]. As a result, the useful signal corresponds
to the coefficients whose modulus is larger thanTD,
and thus it can be efficiently retrieved through wavelet
coefficient thresholding.

With smaller ensemble sizes (namelyO(50)), the
larger amplitude of the noise makes the discrimination
between signal and noise more difficult. Therefore, there
is some residual noise after the wavelet thresholding, that

Copyright c© 2007 Royal Meteorological Society Q. J.R. Meteorol. Soc.00: 1–11 (2007)
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could be avoided by slightly increasing the threshold value
for instance (not shown).

Under the assumption of a Gaussian white noise,
wavelet thresholding is thus a straightforward and efficient
method to extract the signal of interest. Moreover, one
advantage of the wavelet thresholding is that it does not
require any trial and error tuning.

5. Denoising of 1D variance fields corrupted by a
Gaussian correlated noise

In this section, the efficiency of wavelet thresholding is
examined in the presence of a correlated and heterogeneous
noise.

5.1. ‘Scale-dependent’ threshold

The theoretical basis of the wavelet thresholding described
in section2 relies on the assumption of a Gaussian white
noise. However, in practical applications the sampling
noise associated with the estimation of background-error
variances is often correlated. This can be seen from
equation (3), which implies the following relationship
(Raynaud et al. 2009) between the spatial correlation length
scales of sampling noise (denotedLve) and of background
error (denotedL

ǫ
b ) :

Lve =
L

ǫ
b√
2
. (8)

The assumption of a white noise is thus verified when
background errors are not or slightly correlated, which
may be the case in dynamical regions for instance (e.g.,
in the vicinity of lows and troughs). On the other hand,
when background errors are correlated, the associated
sampling noise is correlated as well. In addition, according
to several studies (Thépaut et al. 1996; Ingleby 2001;
Pannekoucke et al. 2007) background-error correlations in
realistic NWP (Numerical Weather Prediction) applications
are heterogeneous (i.e.L

ǫ
b is not constant in space), which

implies that the associated noise is also heterogeneous.
The method of wavelet thresholding has been

generalized to correlated noise (Johnstone and Silverman
1997). In this case, one can apply a different threshold for
each scalej :

TD(j) = σ(j)
√

2 ln(nj), (9)

whereσ(j) is the noise standard deviation associated with
scalej andnj = 2j is the number of wavelet coefficients
at scalej. σ(j) and TD(j) could be estimated with a
scale-wise extension of the recursive algorithm presented
in section2.2(Nguyen et al. 2011).

The difficulty of this approach lies in the estimation of
the variance of the wavelet coefficients of the noise at each
scale. Two problems can limit the quality of this estimation.
First there is a statistical limitation, since the varianceat
scalej is estimated from2j realizations. Since the standard
deviation of the relative error in the estimated standard
deviationσ(j) is equal to

√

2
2j−1 , a relative error smaller

than10% can be achieved only for scalesj ≥ 8. Secondly,
at each scale the noise variance is estimated, it is necessary
that only a few coefficients are due to the signal. In general,
this is only the case at the smallest scales. It may then be

expected that the larger scale the noise, the less efficient the
denoising.

Finally, the ‘scale-dependent’ generalization of wave-
let thresholding is particularly adapted to a homogeneous
noise. In that case, the noise variance is constant within
scales so thatσ(j) can be accurately calculated from the
wavelet coefficients of the noise at scalej. If the noise
is heterogeneous then the calculatedσ(j) corresponds to
the average noise level at scalej and the ‘scale-dependent’
thresholding may then be sub-optimal. This problem could
be treated with local adaptive thresholding using local noise
levels estimated from a local window depending on the
spatial statistics of the noise (Goosens et al. 2006), but this
is beyond the scope of this paper.

5.2. ‘Equivalent’ white noise threshold

Because of the limitations raised by the ‘scale-dependent’
formulation in the presence of a heterogeneous noise, we
propose an alternative solution. The threshold value is
calculated using the globaluniversal threshold (equation
(1)), under the assumption of a white noise with standard
deviationα× σW :

T ′
D = α× σW

√

2 ln(n), α ≥ 1, (10)

whereσW =
√

Tr(E[veveT ])/n is the average standard
deviation of the correlated noise. It may be mentioned
that, since the noise is correlated, the recursive algorithm
described in section2.2 is no more efficient to calculate
σW . In that case,σW is estimated from the theoretical
formulation (equation (6)), leading to

T ′
D ≈ α×

√

4

(N − 1)n
Tr(B̃ ◦ B̃) ln(n).

A graphical interpretation of this choice is given in
Figure 5. White noises are represented by spheres, while
a correlated noise is represented by an ellipsoid (which
reflects the variation of the noise level with the direction).
The formulation of the threshold in equation (10) assumes
that the correlated noise is replaced by an ‘equivalent’
white noise with standard deviationα× σW . Using a
multiplicative factorα ≥ 1 helps reducing some residual
noise arising from the scales where the noise level is above
the average level (i.e.σ(j) ≥ σW ). A trivial upper bound
for the parameterα is equal tomaxj σ(j)/σW . Using this
upper bound would result in setting too much coefficients
to zero. The choice of the parameterα is thus based on
the optimization of the trade-off between the removal of the
noise (whereσ(j) > σW ) and the averaging of the useful
signal (whereσ(j) < σW ). A possible choice forα could
be for instanceα = median(σ(j)

σW
≥ 1).

5.3. Filtering results

The experimental setup is as described in section4, except
that a non-zero correlation length-scale is now used.L

ǫ
b is

set to 250km in equation (7), which results in local length
scales that vary between 100km in the center of the domain
and 600km at the edges of the domain (Figure7). The
sampling noise associated with the estimated variances is
then correlated and heterogeneous. In accordance with the
prescribed local background-error length-scales, the noise
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FIG . 6. (a) Geographical variations of the noise. (b) Absolute value of the noise wavelet coefficients̃Wi,j . Each coefficient is plotted as a filled rectangle
whose color corresponds to the magnitude of the coefficient. The location and size of the rectangle are related to the spaceinterval and the frequency
range for this coefficient.
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FIG . 9. (a) Raw estimated variances. (b)-(d) Estimated variances with wavelet thresholding using (b)α = 1, (c) α = αopt and (d)α = 2 × αopt. The
prescribed variances are represented in each panel by the solid line.

presents relatively short variations in the center of the domain while it is larger scale elsewhere (Figure6(a)). This
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FIG . 10. (a) Estimated variances with an optimized homogeneous filter. (b) Estimated variances with an optimized heterogeneous diffusion-based filter.
The prescribed variances are represented in each panel by the solid line.
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is also supported by the scalogram of the noise (Figure
6(b)). As expected, the amplitude of small-scale coefficients
tends to be larger in the center of the domain.

The root mean square error of estimated va-
riances as a function of the parameterα, defined by
√

1
n

∑n
i=1(ṽ(α) − v⋆)2, is shown in Figure8 for a 50-

member ensemble. The curve indicates that there is an
optimal value that minimizes the error. In the present case
αopt = 2.3 and the associated wavelet thresholding leads
to estimated variances (Figure9(c)) whose relative error is
around10% in average (compared to 20% for raw estimated
variances, Figure9(a)).

The impact of the choice ofα is illustrated in Fi-
gures 9(b) and (d). Withα = 1 (Figure 9(b)), although
the variances are much less noisy than the raw estimates,
there remains some significant small-scale sampling noise
in the vicinity of the variance peak. Withα = 2 × αopt

(Figure9(d)), the filtering is too strong and does not provide
an accurate representation of the variance peak. With an
appropriate choice ofα, it thus turns out that the accuracy
of the estimated variances is improved and is close to that
obtained in the case of a Gaussian white noise.

The histograms of wavelet coefficients for signal and
noise (Figure11) indicate the presence of noise coefficients
larger than the thresholdTD = σW

√

2 ln(n) ≈ 0.92. This
is consistent with the discussion of section5.2 and this
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FIG . 8. Total root mean square error of the estimated variances as a
function of the α value (equation (10)) in the case of a 50-member
ensemble.

justifies the use of a factorα > 1. With the optimalα =
2.3, T ′

D ≈ 2.12 and one can see that the noise coefficients
are concentrated within the range[−T ′

D, T
′
D]. The use of

this threshold thus enables all the noise coefficients to be
removed, while the useful signal coefficients are preserved.

It may also be mentioned that the noise is less Gaussian than
in the white noise case (compare blue and green curves).

For comparison purpose, Figure10(a) presents the
estimated variances after applying an optimized ho-
mogeneous filter. The signal is quite well-represented
with this homogeneous filter, however, as detailed in
Raynaud and Pannekoucke(2011), the amplitude of the
variance peak is underestimated by around 10% on average.
Raynaud and Pannekoucke(2011) also proposed a hetero-
geneous filter in gridpoint space, based on the integration of
the diffusion equation. The comparison of Figures9(c) and
10(b) indicates that the performance of the wavelet threshol-
ding is comparable to that of an optimized heterogeneous
diffusion-based filter.

6. Conclusions and perspectives

This paper introduces and tests a wavelet-based filter
of ensemble background-error variances. The filtering is
realized using a thresholding of the wavelet coefficients of
the estimated variances. It is shown that this approach is
equivalent to applying an adaptive local spatial filtering.

The most efficient application of wavelet thresholding
is under the assumption of a Gaussian white noise. In that
case, the threshold value is simply a function of the signal
size and the noise standard deviation.Farge et al.(1999)
proposed a recursive algorithm to estimate the noise level.
On the other hand, an alternative solution to calculate the
noise variance is based on the knowledge of the statistical
properties of the associated sampling noise (Raynaud et al.
2009). We showed that the average noise variance can be
accurately derived from the raw estimate of background-
error variances, even with a small ensemble.

The method has been illustrated for a simple 1D
framework. Under the assumption of a white noise, the
wavelet thresholding is shown to work well without any
trial and error tuning. Moreover, the filtering performance
is similar whether the noise variance is calculated with the
recursive algorithm or the theoretical formula.

In practical applications, however, the noise is
correlated and heterogeneous. This makes the use of
the universal global threshold and its ‘scale-dependent’
generalization sub-optimal. An alternative method has been
proposed, based on the assumption that the correlated noise
is replaced by a white noise with an appropriate variance
to calculate a global threshold. The appropriate variance
is larger than the average variance of the correlated noise,
in order to remove some residual noise arising from the
scales where the noise level is above the average level. The
results indicate that this method provides variances whose
accuracy is close to the white noise case. Moreover, this
wavelet thresholding is shown to outperform the commonly
used homogeneous filtering and it compares favourably to
heterogeneous filtering in gridpoint space.

The encouraging results of this study thus suggest that
wavelet thresholding is a feasible and efficient approach for
heterogeneous filtering of ensemble variances. Future work
will consider the application of the nonlinear thresholding
in a more complex 2D framework.

The formalism presented in this paper is well adapted
to the variance filtering in limited area models. Extension
to global models on the sphere could be considered using
biorthogonal wavelets and frames (especially tight frames)
as suggested byPannekoucke(2009).
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A. Statistical interpretation of the universal threshold

While the mathematical proof of the optimality of the
threshold can be found in e.g.Mallat (1999) for instance,
we propose here a statistical interpretation of it.

The wavelet shrinkage employed in the paper can be
considered as a statistical test on the magnitude of wavelet
coefficients. It discriminates coefficients whose magnitude
is compatible with a sampling ofn Gaussian random
variables of standard deviationσ.

For a given magnitudeT , the probability that the
magnitude of a centered Gaussian random variableX with
standard deviationσ exceedsT is given byP (|X| ≥ T ) =

2
∫ +∞

T
1√
2πσ

e−x2/2σ2

dx. The change of variablex = T +

u allows us to upper bound this probability as follows :

P (|X| ≥ T ) = 2

∫ +∞

0

1√
2πσ

e−(T+u)2/2σ2

du

= 2e−T 2/2σ2

∫ +∞

0

1√
2πσ

e−(2Tu+u2)/2σ2

du.

Sincee−2Tu ≤ 1 for all T , it comes

P (|X| ≥ T ) < 2e−T 2/2σ2

∫ +∞

0

1√
2πσ

e−u2/2σ2

du.

Moreover, 2
∫ +∞
0

1√
2πσ

e−u2/2σ2

du = 1 then leading to

P (|X| ≥ T ) < pT where pT = e−T 2/2σ2

. As an upper
bound,pT is the probability of an event that is more likely
to happen than the event “|X| ≥ T ”. In particular,pT can
be considered as the probability associated with the event
“ |X| ≥ T ′” for a certainT ′ such that0 < T ′ < T .

Let’s (Bk)k∈N be a sequence of identically inde-
pendent Bernoulli variables associated with the event of
probabilitypT , so thatP (Bk = 0) = 1 − pT andP (Bk =
1) = pT . Then, the sumBn =

∑

k Bk represents the num-
ber of occurrences of the event over a sampling of sizen.
The expected number of extreme events for a sizen is thus
E(Bn) = npT . It is equal to one for a size

nT ∼ 1/pT = eT 2/2σ2

, (11)

which corresponds to the return period associated with
the extreme event “|X| ≥ T ′” of probability pT (Wilks
2006). This implies that, on average, the event “|X| ≥
T ” should not happen for a sampling sizenT since
its expectation of occurencenTP (|X| ≥ T ) = P (|X| ≥
T )/pT is lower than 1. Conversely, it follows that the
extrem event “|X| ≥ T ” with T = σ

√
2 lnn (resulting from

equation (11)) should not occur on average for a sampling
size n. Therefore, considering as components of noise
wavelet coefficients of magnitude lower thanT , while
the maximum magnitude of the sampling ofn Gaussian
noises isT ′, ensures that the noise is effectively removed
with the risk of losing part of the signal.T = σ

√
2 lnn

corresponds to the optimaluniversalthreshold proposed by
Donoho and Johnstone(1994).

Note that for a single sample of a normal law, it
is common to assume thatP (|X| < 3σ) ≈ 1. Hence, that
the thresholdT increases withn seems counter-intuitive.
However, the Gaussian function does not have a compact
support, thus one should find larger values ofT as n
increases, otherwise the resulting distribution would notbe
Gaussian.

B. Derivation of E[Tr(B̃ ◦ B̃)]

Using the decomposition of̃v in equation (2),

Tr(B̃ ◦ B̃) =
∑

l

ṽ
2 =

∑

l

(ṽ⋆ + v
e)2

=
∑

l

(ṽ⋆)2 +
∑

l

(ve)2 + 2
∑

l

ṽ
⋆
v

e.

= Tr(B̃⋆ ◦ B̃
⋆) +

∑

l

(ve)2 + 2
∑

l

ṽ
⋆
v

e.

Using the linearity of the expectation operator, it then comes

E[Tr(B̃ ◦ B̃)] = Tr(B̃⋆ ◦ B̃
⋆) +

∑

l

E[(ve)2] + 2
∑

l

E[ṽ⋆
v

e].

Since signal and noise are not correlatedE[ṽ⋆
v

e] = 0.
Moreover,

∑

lE[(ve)2] = Tr(E[ve
v

eT

]) = 2
N−1Tr(B̃

⋆ ◦
B̃

⋆) using equation (3). Thus,

E[Tr(B̃ ◦ B̃)] = (1 +
2

N − 1
)Tr(B̃⋆ ◦ B̃

⋆).
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