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LMD-CNRS-IPSL, École Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 5, France

R. Nguyen van yen
Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany and
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It is well known that solutions to the Fourier-Galerkin truncation of the inviscid Burgers equation (and other
hyperbolic conservation laws) do not converge to the physically relevant entropy solution after the formation of
the first shock. This loss of convergence was recently studied in detail [Ray et al., Phys. Rev. E 84, 016301 (2011)]
and traced back to the appearance of a spatially localized resonance phenomenon perturbing the solution. In this
work we propose a way to remove this resonance by filtering a wavelet representation of the Galerkin-truncated
equations. A method previously developed with a complex-valued wavelet frame is applied and expanded to
embrace the use of real-valued orthogonal wavelet bases, which we show to yield satisfactory results only
under the condition of adding a safety zone in wavelet space. We also apply the complex-valued wavelet based
method to the two-dimensional Euler equation problem, showing that it is able to filter the resonances in this
case as well.
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I. INTRODUCTION

Due to the intrinsic limitations of computers, solving a
nonlinear partial differential equation numerically actually
means solving its truncation to a finite number of modes,
where, in favorable cases, the truncated system closely
approaches its continuous counterpart. Sometimes, however,
the truncation has drastic effects that completely destroy the
desired approximation. The first historical example for which
this happened was probably the symmetric finite-difference
scheme designed by von Neumann in the 1940s for nonlinear
conservation laws. As recalled in [1], it was indeed shown in
the 1980s that, when applying this scheme even to the simplest
case of the one-dimensional (1D) inviscid Burgers equations,
convergence to the correct solution is lost at the appearance
of the first shock. Other schemes, specifically designed to
dissipate kinetic energy at the location of shocks, do not suffer
from this limitation and yield the desired solution.

This matter of convergence was investigated in [2] for
another important scheme, namely, Fourier-Galerkin trunca-
tion, where only the equations for Fourier modes with wave
numbers below a certain cutoff are solved, the other modes
being set to zero. Using the conservative character of the
truncation and the nonlinear structure of the equations, the
author was able to prove that even weak convergence to
the physical solutions was ruled out once the latter started
to be dissipative. This loss of convergence was scrutinized
more closely in a recent work [3], which showed that in

the truncated system shocks become sources of waves that
perturb the numerical solution throughout its spatial domain.
This is possible because Fourier-Galerkin truncation is a
nonlocal operator in physical space, instantaneously removing
all modes above the truncation wave number. Furthermore,
these waves resonantly interact with the flow at locations where
the velocity is the same as their phase velocity, giving rise to
strong perturbations localized around these positions, which
eventually spread and corrupt the numerical solution.

The aim of the present work is to show how the resonances
can be eliminated by filtering the solution in a wavelet
basis, a possibility that was already pointed out in [3]. The
Burgers equation has been chosen as a toy model because
its entropy solutions can be computed analytically, enabling
direct comparison with numerical results. An important point
to keep in mind though is that the analytical solutions are
dissipative even in the inviscid limit, a phenomenon known as
dissipative anomaly, while the Galerkin-truncated ones never
dissipate energy if the viscosity is set to zero. Therefore, a
numerical solution can approach the exact solution only if it
finds a way to dissipate energy, as is achieved by our method
through the filtering process described later in the paper. In
fact, as discussed in [4,5] and references therein, many filtering
mechanisms are known empirically to achieve this task (see
also the recent review in [6]). However, the precise effect of
these filtering methods on the resonances shown by [3] has not
been fully clarified yet.
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FIG. 1. (Color online) Plots of the log10 of moduli of CWT coefficients of the Galerkin-truncated solution at time (a) t = 0, (b) t = 0.027 49,
(c) t = 0.035 05, (d) t = 0.035 38, (e) t = 0.036 48, (f) t = 0.039 98, (g) t = 0.058 97, (h) and t = 0.199 89. Each plot shows the solution
on the top and below the log10 of the modulus of the corresponding CWT coefficients. The corresponding wave-number spectrum is plotted
vertically on the left.

To get insight into the formation of the resonance we start
by performing a continuous wavelet analysis of the Galerkin-
truncated solutions to the inviscid Burgers equation. Such a
representation unfolds the solution in both space and scale in
a continuous fashion. It thus allows us to visualize at which

wave numbers and positions the resonances are generated and
subsequently propagated.

Afterward, the wavelet filtering method analogous to
coherent vorticity simulation (CVS), already proposed to solve
the Burgers equation [4,5], is applied here with the same
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FIG. 2. (Color online) Solutions of the truncated inviscid Burgers equation at (a) t = 0.037, (b) t = 0.048, and (c) t = 0.129: green (gray),
Galerkin-truncated solutions; black, CVS filtered with Kingslets.

initial conditions used in [3]. To demonstrate that the method
is well suited for regularizing the solution, the equation is
solved in Fourier space using a pseudospectral approach, but
after each time step the solution is expanded over a frame of
complex-valued wavelets, filtered with an iterative procedure
introduced in [7], and then reprojected onto the Fourier basis
for computing the next time step.

We then go further and propose the use of real-valued
orthogonal wavelets instead of the redundant complex-valued
wavelets. Since the former do not enjoy the translational-
invariance property of the latter, satisfactory solutions can
only be obtained by keeping the neighbors of the retained
coefficients, i.e., adding a safety zone in wavelet coefficient
space to account for the shocks translation and the small-scale
generation, a procedure successfully applied in previous works
for 2D and 3D flows [8–10]. The quality of the approximations
obtained for the different filtering methods is assessed by
computing a global error estimate.

Finally, since [3] also discusses the presence of resonances
in the Galerkin-truncated 2D incompressible Euler equations,
we accordingly study the effect of the complex-valued wavelet
method in this case. Earlier results in that same direction can
be found in [5].

II. ONE-DIMENSIONAL INVISCID BURGERS EQUATION

A. Continuous wavelet analysis

Our starting point is the inviscid Burgers equation, written
in conservative form

∂tu + 1
2∂xu

2 = 0, (1)

u being velocity, t time, and x space, plus periodic boundary
conditions, and taking the same harmonic initial condition as
in [3] (the domain size being normalized to 1):

u0(x) = sin(2πx) + sin(4πx + 0.9) + sin(6πx). (2)

In [3] the authors observed that, when solving the Galerkin-
truncated version of (1) with a pseudospectral code, fine-
scale oscillations appear all over the solution right after the
formation of the first singularity in the exact solution, followed
by the emergence of two bulges around the points having the
shock velocity with positive velocity gradient. These bulges
then grow and start to perturb the solution, initiating the
equipartition process predicted by Lee [11]. As explained
in [3], the bulges are due to a resonant interaction between a
truncation wave, excited by the Gibbs oscillations coming from

the Galerkin truncation, and the locations where the velocities
are close to the phase velocity of the wave.

To follow the formation of resonances and the subsequent
spreading of the fluctuations, let us first consider the con-
tinuous wavelet transform (CWT) of the numerical solution
at different time instants. All computations were performed
using a fourth-order Runge-Kutta time evolution scheme with
δt = 0.25K−1 as the time step, up to a Galerkin truncation
wave number K = 8192. For efficiency, the nonlinear term is
computed pseudospectrally on a collocation grid having 3K

points, which ensures full dealiasing. The CWT coefficients
are calculated as the inner products of the velocity u(x) at a
given instant t with a set of wavelet functions ψl,x ′ (x) of scales
� centered around positions x ′, where for the mother wavelet
we have chosen the complex-valued Morlet wavelet for its
good analysis properties [12]. The results, presented in Fig. 1,
show the logarithm of the modulus of wavelet coefficients at
different positions x ′ and scales � (represented by the equiva-
lent wave numbers k = kψ

�
, kψ being the centroid wave number

of the chosen wavelet [13]). The horizontal black line indicates
the Galerkin-truncation frequency and the velocity fields them-
selves are also shown at the top of each figure for convenience.

Figures 1(a) and 1(b) show, respectively, the harmonic
initial condition and how the precursors of the shocks develop.
Figure 1(c) shows the solution when the first preshock reaches
the cutoff scale and becomes a shock, i.e., when non-negligible
energy reaches the scale indicated by the horizontal black
line. We observe that the first resonances appear immediately
after that [note the small time interval between Figs. 1(c)
and 1(d)] and then spread all over space. Figure 1(e) shows
the formation of the bulges around the resonant locations.
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FIG. 3. (Color online) Zoom of resonance at t = 0.037: green
(gray), Galerkin-truncated solutions; black, CVS filtered with
Kingslets.
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FIG. 4. (Color online) Solutions of the truncated inviscid Burgers equation at (a) t = 0.037, (b) t = 0.048, and (c) t = 0.129: green (gray),
CVS filtered with Kingslets; black, analytical solution.

They stretch until they reach the Galerkin scale and then
generate more truncation waves, as shown in Fig. 1(f). After
that, perturbations at all scales start to spread throughout the
solution and even more so when the second shock is formed, as
in Fig. 1(g). For much longer time the solution then becomes
very noisy [Fig. 1(h)], on its way towards equipartition [14].

B. Elimination of resonances using complex-value Kingslets

As explained in [3], and as we have seen from the wavelet
analysis of the previous section, the failure of the Fourier-
Galerkin scheme to reproduce the correct solution can be
traced back to the amplification of truncation waves by a reso-
nance mechanism. To suppress these resonances, a dissipation
mechanism has to be introduced in the numerical scheme
in a way that does not affect the nonlinear dynamics. This
procedure is sometimes called regularization of the solution.
In this section we show by numerical experiments how the
resonances are suppressed by the CVS-filtering method, which
was first applied to the inviscid Burgers equation in [4], and
recall its interpretation in terms of denoising.

The algorithm proposed by [4], starting from the Fourier
coefficients of the velocity field ûk for |k| � K at t = tn, is as
follows.

(1) Time integration. The Fourier coefficients of the velocity
field are advanced in time to t = tn+1 using the fourth-order
Runge-Kutta scheme described in Sec. II A.

(2) Inverse Fourier transform. The velocity field at t = tn+1

is reconstructed from its Fourier coefficients on a grid with
N = 2K points.

(3) Forward wavelet transform. The velocity field is written
in wavelet space as

u(x) = 〈φ|u〉φ(x) +
J−1∑
j=0

2j∑
i=1

〈ψji |u〉ψji(x), (3)

where ψji are the wavelet functions, φ is the associated
scaling function, and the indices j and i denote scale and
position, respectively. Each inner product, defined as 〈f |g〉 ≡∫ 1

0 f (x)∗g(x)dx, corresponds to a wavelet coefficient.
(4) Application of the CVS filter. The coefficients whose

modulus is below a threshold T , so-called incoherent coeffi-
cients, are discarded and T is determined at each time step in an
iterative way following [7]. It is initialized as T0 = q

√
E/N ,

q being a compression parameter and E the total energy; then
successive filterings are made as T is recalculated in substep

n + 1 as

Tn+1 = qσ
[
ũ

(n)
ji

]
, (4)

until Tn+1 = Tn. Here ũ
(n)
ji are the wavelet coefficients below

the threshold Tn and σ [·] represents the standard deviation of
the set of coefficients between brackets.

(5) Inverse wavelet transform. The coefficients above the
final threshold represent the coherent part of the signal and are
used as input to an inverse fast wavelet transform.

(6) Forward Fourier transform. The Fourier coefficients
of the filtered velocity field are computed and the cycle can
proceed onward.

There are two choices left to be made in this algorithm: the
wavelet basis used in steps 3 and 5 and the parameter q in
step 4. As shown in [5], this version of the algorithm performs
badly if real-valued orthogonal wavelets are used, but works
very well when using translationally invariant complex-valued
wavelets called Kingslets, introduced in [15] and first proposed
in [4] for this application. Note that Kingslets were constructed
to have almost vanishing energy in the negative wave-number
range, which (as explained in [15]) implies that filtering in
wavelet space is almost a translationally invariant operator
(i.e., it commutes with spatial translations of the signal). This
is a desired feature for Burgers equation since shocks translate
and cannot be properly tracked with a real-valued wavelet
basis, whose coefficients are not stable enough due to the
loss of translational invariance, giving poor filtering results.
Therefore, we stick to this choice in this section, but we will
discuss below how the algorithm can be modified to authorize
other choices.

Concerning the dimensionless number q in step 4 of the
algorithm, it controls the severity of the filter since increasing
q enlarges the set of discarded coefficients. Its value defines
a certain balance between regularization and approximation
quality and also influences the compression rate. Here we
follow [4] and use q = 5 with Kingslets. A discussion of the

(j-1,[i/2])

(j,i-1) (j,i) (j,i+1)

(j+1,2i)
(j+1,
2i+1)

FIG. 5. Definition of the safety zone around the point (j,i).
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FIG. 6. (Color online) Solutions of the truncated inviscid Burgers equation, CVS filtered with a periodic Daubechies 12 basis, at
(a) t = 0.067, (b) t = 0.143, and (c) t = 0.200: green (light gray), no safety zone; red (dark gray), with safety zone; black, analytical
solution.

effect of varying q would be of interest, but is beyond the
scope of the present work.

The added complexity of running this algorithm, as com-
pared to the standard Fourier-Galerkin method, comes from
the forward and inverse Fourier and wavelet transforms, and
the iterations required to determine the threshold. Since the
standard fourth-order Runge-Kutta scheme already requires
12 Fourier transforms per time step, the additional Fourier
transforms represent an increase of computational cost of about
17% in total. The cost of each wavelet transform is proportional
to S log2(N ), where S is the length of the wavelet filters, and for
efficient implementations it is lower than the cost of a Fourier
transform. Finally, the cost of the iterations is more difficult
to evaluate since their number is not known a priori, but we
observe in practice that it is low compared to the other costs.

In Fig. 2(a) we show the solutions a few time steps after
the appearance of the resonances, which do not occur for the
CVS-filtered solution (shown in black). Figures 2(b) and 2(c)
show that the evolution is stable and we still have no trace
of resonances, even for longer integration times when the
Galerkin-truncated solution becomes perturbed, although after
the formation of shocks the Gibbs phenomenon is intense
(as discussed in [4,5]). In Fig. 3 we show in detail how the
resonances are completely filtered out by the CVS method.

To demonstrate that the whole dynamics of the Burgers
equation is preserved by CVS filtering, we plot in Fig. 4 the
filtered profile along with the analytical solution as a reference,
calculated using a Lagrangian map method [16]. One sees very
good agreement with only small discrepancies at the shocks
due to the Gibbs phenomenon.

Overall it appears that this implementation of the CVS-
filtering method achieves sufficient energy dissipation at

shock locations to keep the numerical solution close to the
desired entropy solution. It would be interesting to understand
which element in the algorithm is essential for this beneficial
dissipative effect, but unfortunately there are several compet-
ing influences that are difficult to disentangle. The filtering
operation in itself (discarding the incoherent coefficients) is
certainly an important source of dissipation, but it is difficult to
quantify a priori since the Kingslets complex-valued wavelets
are not an orthogonal basis, but merely a tight frame (see [15]).
Moreover, the alternating projections between the Fourier basis
and a wavelet basis, which do not commute with each other,
also introduce some dissipation. A first step in order to better
understand the process by which this filter achieves dissipation
is to move from a wavelet frame to an orthogonal wavelet basis,
as we discuss in the next section.

C. Elimination of resonances using real-value
orthogonal wavelets

Although the Kingslet frame is well suited to suppress
resonances as we have recalled in the previous section, it
is appealing to be able to use a nonredundant real-valued
orthogonal wavelet basis. Due to its lack of translational
invariance, this kind of basis does not perform well in the
context of the algorithm described in the previous section [5].
Following previous work on CVS filtering of the 2D and 3D
Navier-Stokes equations [8–10], we introduce the concept of
a safety zone in wavelet space, that is, after computing the
coherent coefficients as in the fourth step of the CVS algorithm,
we also keep the neighboring wavelet coefficients in space and
in scale. The aim is to account for the translation of shocks to
neighboring positions and generation of finer-scale structures
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FIG. 7. (Color online) Solutions of the truncated inviscid Burgers equation, CVS filtered with a periodic spline 6 basis, at (a) t = 0.067,
(b) t = 0.143, and (c) t = 0.200: green (light gray), no safety zone; red (dark gray), with safety zone; black, analytical solution.
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FIG. 8. (Color online) Time evolution of energy. Energies of the
CVS-filtered solutions with a safety zone collapse to the analytical
energy evolution.

from coarser ones. Hence we have to add a step 4′ to the
algorithm described in Sec. II B as follows.

(4′) Definition of the safety zone in wavelet space. We
create an index set 	 containing pairs λ = (j,i) indexing each
coherent wavelet coefficient in scale j and position i, kept in
step 4. We then define an expanded index set 	∗ including
the neighboring coefficients in position and scale, namely, for
each pair (j,i), the pairs depicted in Fig. 5 [17]. Finally, all the
coefficients not present in 	∗ are set to zero.

This additional step is able to generate a more stable
solution, but the fluctuation level is still high when compared
to Kingslets. In order to smooth out these fluctuations we need
a higher threshold in the CVS-filter step of the algorithm, so
we choose q = 8 in Eq. (4), changing accordingly the startup
value T0.

As examples we employ two different wavelet bases that
are widely available in numerical analysis packages, the
Daubechies 12 wavelet, which has compact support, and the
spline 6 wavelet, which has an exponential decay [18]. If
we simply apply the CVS-filtering procedure from Sec. II B
with these bases, the solution becomes oscillating as soon
as the resonances appear and we end up with poor results.
However, once the safety zone in wavelet space is implemented
as described above, the dynamics is properly preserved. In
Figs. 6 (Daubechies 12) and 7 (Spline 6) we see the significant
improvement in the filtering capability of the code, comparing
the cases with and without a safety zone along with the
analytical solution.

The naturally oscillating character of real-valued wavelets
and their lack of translational invariance still plays a role
generating small perturbations (that get worse next to regions
affected by the Gibbs phenomenon). However, while the

dynamics is lost when there is no safety zone, with huge
oscillations corrupting the phase coherence of the shocks, after
the introduction of the safety zone it is very well preserved.
Considering the time evolution of energy (Fig. 8), it appears
that in the absence of a safety zone, not all the necessary
energy is dissipated. This could be an explanation for the poor
performance of the filtering scheme in that case.

To give a quantitative aspect to the idea of good filtering
we consider the global energy error estimate

ε =
∫ 1

0 [v(x) − vref(x)]2dx∫ 1
0 vref(x)2dx

, (5)

where vref is the reference analytical solution. This allows us
not only to evaluate how close to the reference the CVS-filtered
solutions are, but also to compare the efficiencies of different
wavelet bases. In Fig. 9(a) we plot the time evolution of ε for all
runs. For the unfiltered Galerkin-truncated solution, the error
grows very fast as soon as resonances appear. The growth
is slower for the CVS solutions without a safety zone, but
the solutions are still eventually destroyed. Due to their much
smaller values, the error estimates for the Kingslets and for the
real-valued wavelets with a safety zone are barely seen in this
plot. So in Fig. 9(b) we change scales to find that they are of the
order 10−3 and stabilize once the influence of the resonances
has been damped. We see that the errors of the real-valued
orthogonal wavelets stabilize very close to the Kingslets
value. This makes their use attractive, a fact reinforced even
more when we compare the level of compression along the
time evolution (Fig. 10), i.e., the percentage of discarded
coefficients each time step.

Indeed, during a large fraction of the evolution, Kingslet-
based CVS filtering keeps many more coefficients than its
counterparts based on orthogonal wavelets. The level of
compression tends to stabilize at a slightly smaller value than
the average of the other cases, but since the Kingslets frame has
twice as many coefficients as real-valued orthogonal wavelet
bases, this result shows the strong potential of the latter for
the development of fully adaptive methods, provided a safety
zone is implemented.

III. TWO-DIMENSIONAL EULER EQUATION

The emergence of resonances in Galerkin-truncated solu-
tions of the 2D Euler equation was also shown in [3]. The
fact that the CVS solutions, filtered with a 2D version of
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the Kingslets, are similar to the ones obtained from the 2D
Navier-Stokes equations with small viscosity [5] suggests that
CVS might be suitable to filter the resonances in this case as
well. Therefore, in the same spirit as in Sec. II B, we apply
the CVS method using Kingslets to the same initial condition
used in the 2D example of [3]:

ω̂k = 2|k|7/2

Nk

e−k2/4+iθk , (6)

where θk is a realization of a random variable uniformly
distributed in [0,2π ], k is the integer part of |k|, and Nk is the
number of distinct vectors k such that k � |k| < k + 1. The
particular realization used in [3] as well as here can be retrieved
from [19]. The 2D Galerkin-truncated Euler equations are
solved using a fully dealiased pseudospectral method at
resolution N2 = 10242 with a low-storage third-order Runge-
Kutta scheme for time discretization. The time step is adjusted
dynamically to satisfy the Courant-Friedrichs-Lewy stability
criterion. For more details on the numerical method, we refer
the reader to [5].

In contrast to the Burgers case previously presented, we
do not have here an analytical solution to compare with, and
make an error estimate, but a visual qualitative comparison
will be sufficient to check if CVS filters out the resonances
while preserving the dynamics. Resonances are well exhibited
in plots of the Laplacian of vorticity, so, following [3], we
show contours of this quantity at t = 0.71. Figure 11 shows
the contours for the whole domain and we can easily see that
CVS solutions do not show the resonances but keep the same
general aspect.

A more precise comparison can be made from Fig. 12,
where the contours of both cases at t = 0.71, zoomed-in
around a region of intense resonance, are plotted together

FIG. 11. Contours of the Laplacian of vorticity at t = 0.71 (from
−200 to 200, increments of 25): (a) Galerkin-truncated solution and
(b) CVS.

FIG. 12. (a) Zoomed contours of the Laplacian of vorticity at t =
0.71: gray, Galerkin-truncated solution; black, CVS. (b) Laplacian
of vorticity at t = 0.71 along a segment near x2 = 3: gray, Galerkin-
truncated solution; black, CVS.

[Fig. 12(a)], as well as a cut as a function of x1 along a
segment near x2 = 3 [Fig. 12(b)]. One can see very clearly
how the resonances are suppressed and how the profiles are
strikingly similar, indicating that the filter is able to maintain
the physical aspects of the solutions. Finally, the dissipative
character of the CVS filter is confirmed when considering
the time evolution of the enstrophy Z = 1

2

∫
ω2, as shown in

Fig. 13.

IV. CONCLUSION

The continuous wavelet transform has allowed us to get
further insight into the scale-space dynamics of resonance
phenomena in Galerkin-truncated inviscid equations. We
showed that oscillations appear in a nonlocal fashion as soon
as a shock affects the cutoff scale and that the resonant points
and the shock act as sources of perturbations at the cutoff scale.
We could also see that despite the fact that the resonances first
appear at small scales, large-scale structures develop at the
resonant points and are stretched into smaller scales until they
reach the cutoff and start acting as new sources of truncation
waves. These new perturbations spread and reach the shocks,
leading to energy equipartition.

For the 1D inviscid Burgers equation, the results presented
here confirm that the CVS-filtering method we had previously
proposed in [5], using a dual-tree complex wavelet frame
(Kingslets), is well suited for eliminating all spurious oscil-
lations present in the Galerkin-truncated solution as reported
in [3]. The resonances, which are not due to the dynamics
of the original equation but rather to its discretization by a
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FIG. 13. Time evolution of enstrophy for the Galerkin-truncated
and CVS-filtered Euler equations.
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Galerkin method, are completely suppressed in this approach.
Their incoherent character in relation to the system evolution
is established. In order to better understand the dissipative
process characteristic of CVS filtering, we have sought to
replace Kingslets by standard real-valued orthogonal wavelets.
We have obtained satisfactory results under the condition that
the coefficients that are adjacent to those whose moduli are
above the threshold value are preserved. Such a safety zone
is only necessary with orthogonal wavelets, to compensate for
their lack of translational invariance, as originally introduced
for CVS filtering of the 2D and 3D Navier-Stokes equations
[8–10].

For the 2D Euler equation we have shown that CVS filtering
with Kingslets is also capable of filtering the resonances
without perturbing the dynamics. The filtered solutions match
the unfiltered ones but for the nonphysical oscillations that
are eliminated. The authors of [3] asserted that many features
of the resonance phenomena were also observed in the 3D
Galerkin-truncated Euler equations, though these results have
not been reported yet. It is an interesting perspective to test if in
this case CVS filtering is still able to eliminate the resonances.

A limitation of the approach presented here is that the
solution is transformed back and forth at each time step

between the wavelet and the Fourier truncations, which do
not commute with each other. These alternating projections
are likely to introduce a weak dissipation in addition to the
filtering operation per se. Therefore, from the present results
it cannot yet be determined whether the observed elimination
of resonances could be achieved solely with wavelet filtering
or whether the interleaved truncations in Fourier space play
a crucial role. This question could be answered by applying
the filtering method to the wavelet-Galerkin truncation of the
equations, instead of the Fourier-Galerkin truncation that was
considered here, offering an appealing perspective for future
work.
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