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Abstract

We discuss the problems encountered when numerically
integrating Saint-Venant (Shallow Water) eguations in the inviscid
case. Firstly, we shouw that the truncated system does conserve energy
but not potential enstrophy, as it is the case for the continuous
system. These invariants being both non quadratic, desaliasing becomes
discussible because we find that, in this case, we would also loose
the energy conservation. Secondly, we study the numerical stability
and show that the Courant-Friedrichs-Lewy criterium becomes
insufficient when inertio-gravity waves are excited, due to the effect
of numerical dispersion errors. Thirdly, we discuss the questions of
initialisation and resunchronisation of the leapfrog scheme, showing
that the classical techniques do not work here, and ue then define a

procedure better suited to the wave behaviour of Saint-Venant

equations.
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1. Introduction

In order to study the interactions between geostrophic eddies and
inertio-gravity waves in atmospheric and oceanographic flows, we have
developed a numerical model of the Saint-Venant (Shallouw Water)
equations. This type of flou can be termed 'compressible
two-dimensional’, in the sense that the variable free-surface height
acts as a variable two-dimensional density and produces wave motions:
consequently their behaviour is very different from the dynamics of
incompressible tuwo-dimensional flous. We want to test the
conservative properties of this model and ue therefore consider the
case of an inviscid Ffluid. A measure problem is encountered here, due
to the fact that the invariants are no more quadratic and, contrary to
the incompressible case, the truncated system no longer conserves the
invariants of the non-truncated egquations. In this paper, we should
discuss as separate guestions the problem of numerical conservation,
treated in paragraphs 4. and S., and the problem of numerical
stability, treated in paragraph 6. Concerning numerical stability,
the compressible case behaves very differently from the incompressible
case, as soon as gravity waves are not negligible, and, in particular,
we will see that the Courant-Friedrichs-Lewy stability criteria is
then no longer sufficient. We will also present neuw techniques to
initialise and resynchronise the leapfrog time scheme, in order to
guarantee numerical stability and control numerical dispersion when

inertio—gravity waves are present.
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THE NUMERICAL MODELLING OF SAINT-VENANT EQUATIONS 65

2. Equations, invariants and eigemmodes

2.1 Equations

We model the dynamics of a Ffree-surface fluid layer in uniform
rotation, on a doubly periodic domain D®, under the Ffollowing

assumptions:

vertical velocity << horizontal velocity,
Mach number! < 1,
Rossby number < 1,

barotropic Ffluid,

using shallow water (Saint-Venant’s) equations:

av
— + (F + £)n x U + U + E—) =0

at
(1)
30
— + U, (V) = 0O
at
with the notations:
U : horizontal velocity
® : free surface potential or geopotential
f : Coriolis parameter
n : vertical unitary vector
¢ : relative vorticity in the rotating frame
They can be reuritten in terms of vorticity ¢ = © x U, divergence
§=V.U and geopotential o:
13
— + V. (g+Ff)VU = O
at
a6 Ve
— - U x (¢+FOU + B + =) = O (2)
at o
30
— + V. (V) =
at

! This two-dimensional incompressible flow with free surface behaves
as a barotropic three-dimensional compressible flow under the
condition v = C,/C, = 2, the free-surface height acting as a variable

density.
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2.2 Invariants

The equations have three global invariants:

total mass Mi= J [} (3)
1]

total energy (potential plus kinetic) E = J (¢® + ovE) (4)
(1]

. (£+f)2
total potential enstrophy S = _— (5)
0 )]
and one Lagrangian invariant:
potential vorticity

£+f

¢ = — (6)
(1]

All these invariants are nonquadratic, contrary to the incompressible

case.

2.3 Elgemmodes

If we linearize equations (2) around a minimal energuy state,

defined by & = &, mean geopotential, and U = 0, we obtain:

ap -

— + 95 = 0

at

ag

— L FE=0 (?)
at

a6

— - ft + Vb =0

at
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THE NUMERICAL MODELLING OF SAINT-VENANT EQUATIONS 67

These equations_ have three eigenvalues A = 0, A = +iw and A = -iw
with w?® = k®¢ + f2, and therefore three eigenmodes per wavenumber
[ k| :

A = 0, corresponds to one stationary non-divergent and geostrophic

mode, whose components in spectral space are:

i = k2 + kg2%
kﬂ.‘,kdé
{R X =0 (8)
orR = O
with Yy = U-2g , stream Ffunction,

X =V*s , potential velocity,

¢ = ¢®/f , geostrophic stream function,

k , modulus of the wavevector k,

k,= 2nf/J/® , Rossby deformation wavenumber,

A= * iw, we obtain tuwo ageostroshic modes, having zero linearized

potential vorticity (v8W — A2¢ = 0), which corresponds to dispersive

inertia-gravity waves, whose components in spectral space are:

2 (B2
e = kd((p ¢)
k® + k,2
R ;X=X (9
. kG
- ki + k‘E

We can then reuwrite the shallow water equations in eigenmodes, such as:

s8R
— = iAR + N(RD (100
at
QR
with ®§ 4 Re+
Re-

and NTX) representing the mnonlinear terms, i.e. the transport

properties of the equations and the energy exchanges betuween modes.
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4. Conservation laws and their discretisation

41. Discretisation

Let us now consider the behaviour of the continuous equations’
invariants under the spatial discretisation.

While by discretising the equations in such a way that aliasing
errors are eliminated, the time derivative of the PDE system is
modified only for scales smaller than k,. We can then deduce that, if
an invariant of the continuous equations has a zero differential in
the subgrid scale directions at every truncated state, its time
derivative will not be modified by the spatial discretisation. It
will still be an invariant of the discretised system. In such a case,
the interaction between the represented and the subgrid scales only
affects the second derivative of the invariant, which is canceled by
filtering the time derivative of the state in phase space.

An important example, for which the previous argument applies, is
incompressible turbulence. In this case the energy or the enstrophy
dependence on subgrid scale is quadratic, which implies that these
quantities have an extrema for the Piltered states.

As we have mentioned 1in a previous section, the shallow water
equations have three invariants. The total mass is of the tupe
described above : since it depends only on resolved scales, it is
therefore an invariant of the discretised pseudo-spectral model also.
For the two other invariants the preceding condition is not satisfied.
We will compute the time derivative of the energy, which is quite easy
to obtain, and briefly mention the problems which arise for potential

enstrophy.

42. Conservation of Energy

Let us first deduce from (1) the equation For the evolution of

the energy (E) in the continuous case:

E=‘|. (@ + ov2)
1]

dE 30 au
— = I (29 + V&) — + 2(pU). —)
dat ” at at
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. P, which denotes the non orthogonal projection that applies a
given Punction to the one which coincides on the grid and uwhich
contains only scales larger than T. From a practical point of
view, P acts as the FFT by applying subgrid scales on large

scales, which are not necessarily zero.

Having defined these operators, the pseudo-spectral equations can be

reuritten as follows:

au Ve
— 4+ FPU(f + ednx U + WFP(d + —)) =0
at 2
(11)
ao
— 4+ U.(FP(®U)) = O
at

where the variables are assumed to be filtered (i.e. FU=U and Fo = ¢).

The only diPference with the spectral model lies in the presence
of the projector P. The condition that must be satisfied, if we want

to avoid aliasing errors, is then:
FP (F(B).F(g)) = F(F(£).F(g)) (12)

for all functions £ and g, wuwhich means that the represented scales,
namely the image of F, must be correctly computed in the product of
twuo truncated functions.

ﬁs.F cancels Fourier components outside the wavenumber range
(- %, km], the product of two fPiltered functions has components in
[-2¥m, 2kp]. The only components which can be confounded with the
ones Ffiltered by P correspond to wavenumbers belonging to
[-kn, — 21T]1, 1 being any positive integer. In order to avoid this
alias problem, the two sets must be disjoint, which means that = S
+ 2T, or equivalently that k,<2T/3.
More generalu, if the nonlinearities are of degree d, the condition

is: k, < 2T/C1+d).
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f-plane. But the Fourier components of these derivatives can differ
from zero for wavenumbers greater than T. In order to obtain a closed
system, these components must be cancelled at each time step, the
others being left unchanged. In other words, an orthogonal projection

operator should be applied to the time derivative.

32. Allasing

We have just presented what is done in spectral models. But our
model is in fact pseudo-spectral, which brings aliasing problems as we
shall see nou. In both, spectral and pseudo-spectral models, the
spatial derivatives are computed in Fourier space. But the quadratic
terms, needed for the computation of the time derivatives, are
calculated in the Fourier space for the spectral method, and on the
physical grid before going back to Fourier space for the
pseudo-spectral method.

As we mentioned before, the products of truncated Ffunctions can
give rise to scales smaller than T while calculating the time
derivatives. 1In phusical space, these scales cannot be distinguished
from larger ones by the grid &. Thus, when going back to Fourier
space, the coefficients of the scales we want to solue can be altered
by the subgrid scales.. The projection operator is not orthogonal to

the subgrid scales, therefore they are not cancelled by it.

This 1is the aliasing phenomena. It can be avoided by a further
truncation in Fourier space without changing the grid resolution, so
that the represented scales of the product of two truncated Ffunctions
would still be recognized by the grid in phuysical space, at the
expenses of modifying the grid values.

We will now examine more closely the link between the original
PDE and the discretised ODE, in order to be able to discuss what
happens with the invariants of the original equations. It will be

useful to introduce two operators:

. F, which denotes the orthogonal projection that truncates the

functions above a certain wavenumber Km (kp € T,
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3. Spatial discretisation and allasing
31. Spatial discretisation

The simulation of fluid dynamics problems needs the numerical
resolution of partial differential equation (PDE) systems governing
their evolution. These sustems possess an infinite number of degrees
of Preedom since the instantaneous state of the fluid is defined by
the value of the variables at each point of the physical domain. In
other words, the set of all possible states (phase space) is the
infinite dimensional space of functions which are smooth enough on the
given domain.

Since we «can only simulate on a computer systems with Ffinite
number of degrees of freedom, we have to reduce the dimensionality of
phase space. The spatial discretisation consists to choose a finite
space which we will call the discretised phase space, and an
associated ordinary differential equations (ODE) system describing the
time evolution in this space.

Bu doing this, the original PDE system is approximated by an ODE
system. The underlying assumption is that, due to uviscous effects,
the real evolution of the Ffluid takes place in a small neighborhood of
a finite dimensional subspace of the whole phase space. One of the
important problems in the choice of the spatial discretisation lies in
the fact that, since this space 1is not invariant under the original
PDE system, a somehow arbitrary closure equation must be applied in
order to obtain the ODE system.

An element of the discretised phase space is a continuous
function on the domain. It can equivalently be defined by its
restriction to a finite grid, or in our case, the phase space may be a
set of Ffunctions which Fourier components, Ffor wavenumbers greater
than a certain truncation T, are zero. A regular grid 6 with N = 2T
points being chosen, the isomorphism between our phase space and the
grid functions is given by the Fast Fourier Transform (FFT) algorithm.

The instantaneous state having a finite number of Fourier
components and the nonlinearity of the equations being polynomial, the

time derivatives of the PDE can be computed exactly in the case of the
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E
= - I((E@ + VB)U. (V) + (V). D20 + V2) + (PU).((F + £dn x UD) (13

There are three terms. The first two are cancelled 1in the
integration by parts, while the third one 1is =zero, due to the
orthogonality between U and m x U. In the pseudo spectral model the

equations are modified by the presence of P, such as:

= - J ((20 + VEIU.(FP(PU)) + (dU) . U(FP(2D + VB)) (14)
1]
+ (QU) . (FP((F + &dn x U)) )

F commutes with the gradient operator and is suymmetric with respect to
L? scalar product. It then does not cause any trouble for the
cancellation of the first two terms if there is no aliasing error (the
operator P having no effect in that case). The third therm in turn
can be non =zero. There is no reason for ®U to be orthogonal to
FP(tnxVU) outside the grid. The problem comes from the degrees of
freedom due to the presence of ¢, because the orthogonality of the non
filtered Ffunctions 1is not conserved for the filtered part (see
appendix 1). In the (incompressible case, oanly the integral of
PU.FP(tnxV) acts in the time derivative of the energy, which means
that only the Fourier component associated with k = 0 must vanish for
the energy to be an invariant. In the compressible case this
expression 1is weighted by the density ¢, which implies that the
conservation holds only when every Fourier components of the same
expression vanishes.

Since conservation of orthogonality relation plays a part in the
time equation for £, as uwell as the integration by part relation, ue
can try to find a discretised energy function B, related to the grid

G. It can be otained as FPollous:

E,:E <¢E+¢v8>=_|.p<¢ﬁ+ o2 ) (15)
o
6
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The advantage of this choice is that the relation betueen discrete sum
and integral ensures the wvalidity of the integration by parts

relation:

E £.U(Pg) = J (PF).V(Pg) = - J (Pg).V(PE) = - E g.9(pPf) (18)
D ]
(c] ]

Computing the time derivative of E,, we will obtain the equivalent of

the previous term:

dE,
— = J P(OU) .FP((£)n x U) am
a  J,

The non-vanishing of the energy time derivative indicates the
presence of an energy exchange with subgrid scales, even when aliasing
errors are avoided. This seems to imply that the non conservation of
energuy is not related to an incorrect space discretisation scheme, but
rather to a physical property of the simulated equations which cannot

maintain energy confined to the large scales.

43. Conservation of potential enstrophy

We briefly mention now what happens to potential enstrophy S.
Its conservation in the continuous case 1is due to the Lagrangian
invariance of the potential wvorticity q = (¢ + £)/d. Due to its
fractional expression q can have an (infinite number of non-zero
Fourier components and the time derivative in the truncated model is

thus more difficult to control. In the continuous system we have:

as
— = eJ ((FP(qO¥) - qFP(VU)) .TU(1)) (18)
dat 5

which becomes in the truncated system:

- I ((2P(P(q)FU(P(q))) - FU(Pg®))).P(dU)) (19)
0
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5. Conserving schemes, advantages and disadvantages

We have seen that, wuwhen suppressing aliasing errors, the ODE
system loses the invariants present in the original PDE system. On
the other hand, wuwe can see from (4) that, if F is omitted, the
discretised energy has a zero derivative. This is due to the
expression of E, in terms of grid values and to the Fact that the
orthogonal relation, needed to ensure the energy conservation, is
respected on the grid G. We have here two possibilities: either the
spatial discretisation is made without aliasing error, and the
equations do not conserve the invariants £ and S, or energy is
conserved at the expense of aliasing errors, when the filter F is not
applied. The question of knowing which of the two solutions is better
is not trivial, as we shall discuss nou.

We can first argue that there 1is no phusical reason for the
conservation of energy and potential enstrophy by the truncated
equations, since in the real system there can be energy and enstrophy
exchanges with subgrid scales. This leads us to prefer a non-aliased
scheme, which correctly represents transfers when the subgrid scales
are zero. This choice is also sustained by the fact that, once the
model wvariables and truncation are chosen, all the discretisation
schemes avoiding aliasing errors are equivalent. Therefore, in our
case, any model of the shallou-water equations, written with the same
set of variables, would not conserve E or S without aliasing errors.

The previous argument must be tempered because the notion of
aliasing error is not so universal as it can seem at First. It 1is in
Pact related to the choice of the model variables. [f we make a
change of the non-linear variables, then the scale analysis associated
to the Fourier decomposition has a different meaning in the tuo
systems of coordinates. These neuw variables define a new orthogonal
structure and a new projector in the transformation of PDE into ODE.
This can be illustrated by the following choice of variables: ¢, v=0U,
for which the nonlinear terms of the equations are no more polunomial.
Then, as soon as the spatial discretisation scheme avoids aliasing
errors, the energy, which is now quadratic, is therefore conserved by

the model.

SPECIAL ISSUE, 1988



THE NUMERICAL MODELLING OF SAINT-VENANT EQUATIONS 75

So we see that the question of what to do with aliasing errors,
as well as the problem of the conservation of invariants, does not
appear clearly. It is of no use to refer to the physical properties
of the simulated fluid, since the comparison with the model cannot be
disjoined from the choice of the subgrid scale parametrisation. The
meaning of energy exchanges, betuween represented and subgrid scales,
cannot be correctly interpreted if the subgrid scales are maintained
at a non-physical zero level.

In practice, people prefer conserving schemes, real problems
being left to the subgrid scale parameterisation. This attitude can
be explained by seuveral reasons. The principal one is that there is
almost no control on the accuracy of the time discretisation scheme,
and in particular on the influence of the time step chosen. The
conserved quantity, if there is any, plaus then a very important part
as a diagnostic variable in order to validate these choice, even when
the subgrid scales are parameterized by known schemes; Ffor instance,
instability problems mentionned by Phillips, 1959 uwere cancelled by
the use of a conserving scheme proposed by Arakawa, 1966. From an
experimental point of view, when time discretisation schemes are not
adequate, there is a numerical blow up which can be first detected by
an increase of the theoretical invariants. Another reason is that
aliasing errors are not easy to detect and eliminate, in particular
for grid-point models. The correctness of the spatial discretisation
being difficult to assert, a conserving scheme seems at least able to
Limit numerical errors. In the shallou water pseudo-spectral case ue
have just shown that two possibilities exist. The differences betueen
the two models do not seem very important. In the non conserving
scheme, it is found experimentally that the energy tends to decay aon
very long time scales, although a closer examination of equation (4)
shous that the sign of the energy derivative does not need to be

negative (details of the different tests are given in Appendix 2).
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6. Time integration, stability and numerical dispersion

61. Numerical stability/

For the time integration we have chosen the leapfrog scheme, which
is second order and explicit, because it presents the aduantage of
being neutral as soon as it is stable, and therefore well adapted to
follow the wave behaviour of shallow-water equations without numerical
damping. We first consider only the linearized shallow-water

equations written in eigenmodes:

dx
— = iw(k)X, (20)
dt

integrated with a leapfrog time scheme:

daxn
K+l = Xn-1 + PAL ; (21)
dt
Ot being the time step. We then get the amplification relation:
®n+t 2iw(k)at 1 xn
() ()
®n 1 0 ®n-1
and find that the amplification matrix has tuo eigenvalues:
JTw ot arc sinwat
At JT=WPAET + J~TwAt = e with W, = ——— (23)
At

w, ¢ acting for the discrete equations as w for the continuous

equations,
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the Pirsts corresponds to the physical mode

w?
A, = 1+ lw(k)At - — At + 0(Aat3), (24)

e
the second corresponds to the numerical mode

Al = - 1 + iw(k)ot + Ei Ot? + 0(AE3) 2s)
whose modulus 1is one 1% we respect the Courant-Friedrichs-Leuwy
stability criteria:

Ot (wlkgay)) ! (28)

with kp,yx smallest wavenumber represented by the grid.

This may be reuritten as:

Ox (27)
ot { ———
e (Kpax?
T[ - -
with Ox = , grid size,
kI'I'I ax
k&\1/2 . )
Vo (k) = ¢ (1 + ;;) » phase velocity of inertia - gravity waves,
c = (P)rre , phase and group velocity of gravity
waves in absence of rotation, which is
equivalent to the sound velocity
in this system,
or:
Ox
Ot — Vo (kpayx? (28)
nc?
c® L . . .
with Vo(k) = = c(1+—=)'72 | V_ (k) group velocity of inertia -
V. (k) k2 gravity waves.

The previous analysis, developed in order to choose the maximum time
step allowed for stability, was purely linear. Therefore, if we want
to take 1into account the nonlinear properties of shallou-water

equations, resulting from the transport term, we should consider a
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modified CFL stability criteria:

Hx
ot < (29)
MV, (kpay) + Vmax)

With Vp,., maximum of the velocity modulus,

which can be rewritten as an equality:

Ox
ot = C (30)
MUV, K s Vg )

with C { 1 , CFL number.

62. HNumerical dispersion

When C < 1, although the leapfrog time scheme is stable and
neutral, it presents the disadvantage of being numerically dispersive.
If we reuwrite the eigenvalues of the amplification matrix in the

following way:

Al = alcosB  + isinB ;) (31D
With a=1

cosB, , = éXl - weAt?

sinB , = t

we find that, after one time step of the leapfrog scheme, the phase

angle is:

8 = arcsin(wdt) = w _.At, (32)

wAt  for a wave in the phuysical sustem.

]

while it should only be 8
Therefore, the leapfrog time scheme tends to accelerate the phase
velocity of inertia-gravity waves and this proportionally to their
frequency. So, if we consider the euolution of a wave packet, the
leapfrog time scheme will tend to spread it out, in accelerating the
high frequency waves . For instance, if C = 0.75, B,,-8=0.09 rd, i.e.

the information concerning the phase of high frequency waves will be
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lost after 33 time steps, while, if C = 0.075, 8,_.-8=7.10"'%rd, in
which case it will be lost only after 45000 time steps.

63. Tests

In order to test the stability of the leapfrog time scheme, we
have performed several integrations, considering different CFL
numbers, and studied the evolution of both total energy E and
potential enstrophy S. We found that the conservation of these
invariants presents a typical nonlinear behaviour with fast
augmentations followed by long stable phases during which they are
conserved (cf. Figure 1). We therefore have conducted those
integrations on long time scales, i.e. during S5000 time steps for
C = 0.75 and 110000 time steps for C=0.075S. Our first conclusion is
that the CFL criteria (corresponding to C=1) is not sufficient to
control those nonlinear instabilities when inertia-gravity wave are
not negligible (cf. Figure 1). For instance, if we consider a case
where the inertia-gravity modes are 100 times more energetic than the
geostrophic modes, we found For C=0.75 that, after 200 eddy turn-over
times, 1i.e. respectively after 11000 and 110000 time steps, total
energy is increased by 5% and potential enstrophy by 0.1%, while for
C=0.07S their augmentation is respectively 0.008% and 0.02%, only.
This complex nonlinear behaviour 1is probably partially caused by the
modification of the dispersive properties of shallow water equations
due to numerical dispersion errors brought by the leapfrog time
scheme. Those dispersive properties play indeed an important role to
control the apparition of singularities because they disperse away
any strong perturbation as soon as it develops in the flow. In
practice, for the inviscid case, when inertio-gravity waves are
dominant, we propose to use a wvery small CFL number, for instance
Cc=0.1.

Our second series of tests concerns the initialization and
resunchronization of the leapfrog scheme. Being second order in time,
it is necessary to know the solution at two distinct instants, in
order to start the computation. But, as we have seen in section 61.,

the leapfrog scheme presents a numerical mode, which tends to separate
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the even and odd solutions. After having tested different
initialization schemes, among them Euler, forward-backward and Heun’s
schemes (see Farge, 1985), wuwe found that the best initialization
procedure consists to exactly integrate the linearized equations
written in eigenmodes (21), neglecting the nonlinear effects, which
evolve on a much longer time scale. We then recalculate the solution
obtained for the first time step 1in such a way that we cancel the

numerical leapfrog mode, and we obtain:

V-Tw At
e

XKt = X° (34)

with ¥° soplution at t=0-
¥!' spolution at t=aAt.

On Figure 2, we compare three different initializations and we see
that the integration in eigenmodes is the only one which does not

present a leapfrog separation.

Concerning the risk of separation between the o0dd and even
solutions, i.e. the development of the leapfrog instability after a
certain. time due to nonlinear effects, we have tested different
resynchronisation methods, among them the 1/4 - 1/2 1/4 averaging,
Asselin’s filter and Heun’s scheme (see Farge, 1985). We Ffound that,
in presence of inertio-gravity waves, they all were, or too
dissipative or too exciting (see Figure 3). We therefore decide, as
soon as the separation between the even and odd solutions will become
larger than 1% for anyone of the invariants, to restart the
integration from one of the two solutions, using the same eigenmode

integration as we have already applied for the initialization.
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Appendix 1

As example, we will exhibit a truncated state for which the
energy time derivative is non zero, euven when aliasing errors are
avoided.

Let k be a wave vector parallel to the % axis, such that 2k is
filtered by F£. We define then the state of the model as follow:

U = cos(kx).U; + sin(kx).U; and & = cos(kx)

U, and VU, being two fixed wectors. Let us compute explicitly the
energy time derivative from equation (11):

£ = k(-v;sin(kx) + v,cos(kx))

k

EmdU = — ((-u; sin(@kx) + v, (1+cos(2kx))Inxy, +

e
(v, (1-cos(2kx)+u,sin(2kx) Inxy, )
k
FCemadl)= — nx(u U, -u, U,)

2
k

Q). Flamd)= — (v (1 + cos(2kx)) - v,sin(@kx))n x U,
4
dE, k

= -y ny x U,

dt 4

v, and v, being the second coordinates of U, and V., respectively. By
a careful choice of U, and U,, the E, derivative does not vanish.
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Appendix 2

List of the different cases we have tested
The results are shoun on the table belou.

1. truncated compressible model, knp,x = 16, Ot = 20s, C=0.1

2. desaliased compressible model, kg,. = 10, Ot = 20s, C=0.1

3. desaliased compressible model, kKy,x = 10 with suppression of the
term ¢nxV in the equations, At = 20s, C = 0.1

4, non truncated incompressible model, k,,, = 16, Ot=60s, C=0.3

S. truncated incompressible model, kgha.. = 15, Ot = 80s, C=0.3

6. desaliased incompressible model, kg, = 10, Ot = 120s,C=0.86

7. desaliased incompressible model, k,,x = 10, Ot = 680s, C=0.3

8. desaliased incompressible model, kg,, = 10, Ot = 20s, C=0.1

9. desaliased incompressible model, ¥,,, = 10, At = 10s, C=0.05

10. desaliased incompressible model, kg,, = 10, At = Ss, £=0.025

11. desaliased incompressible model, k,,. = 10, ot = 2s, C=0.01

The mean wvalue of E and S§ had been subtracted to study their
fluctuations, even wvery small. For each invariant, 2 important

quantities must be observed:
the time derivative due to the spatial discretisation: {EE)d,
o dt
the time derivative due to the whole model: (—), based on the
variations of E in the integration, at

the characteristic time after which the errors on E are nf the same
order of magnitude than E: T, = E/[(dE/dt),] .

Test N° | Type | ¢ | (%), | Teins | (95), | Tzins
1 ] 0.1 0 5. 100 #£0 1.5 10°
2 C 0.1 #0 10° #0 2.107
3 (o) 0.1 0 3. 10° £0 510°
4 I 0.3 0 107 #0 210°
5 1 0.3 0 10° #0 1.2 10°
6 I 0.6 0 1019 0 1.5 10°
7 1 0.3 0 3. 1019 0 1010
8 1 0.1 0 101! 0 2. 101
9 1 0.05 0 5. 101 0 1.5 1012
10 I [0.025 0 2.10* 0 6a40 102
j§1 1 0.01 0 1.210% 0 4a10 10%°

where C means compressible
I means incompressible

Tableau 1
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Figure 1

Courant-Friedrichs-Lewy number tests
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