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Continuous wavelet analysis of coherent structures

By M. Farge!, Y. Guezennec?, C. M. Ho® AND C. Meneveau*

We perform an analysis of planar cuts through three-dimensional turbulent fields
(planar channel flow and mixing layer) using the 2D continuous wavelet transform.
We propose two new diagnostics: (a) a measure of intermittency I(r,Z), which is
the ratio of local energy and average energy at a given scale r. (b) a local Reynolds
number, defined on the local velocity contribution at a given scale, computed from
the wavelet transform of the three velocity components, the scale of the transform,
and molecular viscosity; this gives a representation of the local non-linearity of the
flow viewed in both space and scale. We find, for all the analyzed flows, strong
small-scale intermittency located in the ejection regions for the channel flow and in
the vortex core for the mixing layer.

1. Introduction

The wavelet transform is a new technique, first introduced by Grossmann and
Morlet (1984), which allows the decomposition of a signal into contributions of
both space (or time) and scales (or frequencies). Therefore, it is particularly well
suited for the study of transients or possible singular behavior of a signal. The
interesting feature of the wavelet transform, as opposed to the traditional Fourier
transform, is to use an analyzing function (called wavelet) which is localized in
space. The scale decomposition is performed by dilating or contracting this wavelet
before convolving it with the signal to be analyzed. This procedure is an optimal
compromise in view of the uncertainty principle: the wavelet transform gives a very
good spatial resolution for the small scales and a very good scale resolution for the
large scales. As for the Fourier transform, the original signal can be reconstructed
from the wavelet transform, and the energy can be computed in the wavelet space
(Parseval).

Several orthonormal wavelet bases exist (Lemarie & Meyer (1986), Daubechies
(1988), Mallat (1989)), which conserve information and which are, therefore, con-
venient from a computational point of view, especially in higher dimensions (for an
application to turbulence, see Meneveau (1990)). In the present work, we explore
the use of the continuous wavelet transform (which is non-orthonormal and, there-
fore, redundant) for the analysis of turbulent flows (Farge & Rabreau 1988). The
idea is to benefit from this redundancy and observe the signal for both scale and
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position in a continuous fashion; this is expected to highlight coherent structures
which should display some coherence not only in physical space but also across a
range of scales (for a review of the continuous wavelet transform and its applica-
tions to turbulence, see Farge (1990)). Since the continuous wavelet transform adds
one more dimension to the representation, at present we will study two-dimensional
cuts through three-dimensional flow fields.

The objective is to compute the wavelet transform of flow-fields resulting from
direct numerical simulations of turbulent flows. First we study the velocity and
temperature fields in a plane channel flow near the wall in order to measure its
intermittency and to try to correlate the active regions (where energy is still high
even at the small scales) with some dynamical features such as the ejections from
the sublayer. We will also study the isotropy of the flow at all scales and locations.

Then we study the simulations of the temporal mixing layer, where the objective
is to also locate the small-scale activity in the flow and to measure its intermittency.
For this we study not only the wavelet transform of vorticity, velocity, and a pas-
sively convected scalar, but we also compute the local Reynolds number. This gives
a good picture of the local instability of the flow, measuring the ratio of non-linearity
and dissipation at every scale and location.

For all turbulent flows studied here, we will try, using the continuous wavelet
transform, to answer the three following questions:

(1) Where are the small scales of the flow, and how intermittent are they?

(2) What is the local scaling of energy or enstrophy, and is it different from one
structure to another?

(3) What is the topology of the iso-Reynolds number manifold and what is its
scale extension at the dissipative level?

2. The Continuous Wavelet Transform

The discussion of the wavelet transform is done in a general setting in n dimen-
sional space. The only constraint imposed on a function

¥(Z) € L*(R™),

(R=real numbers) to be a wavelet is the admissibility condition:
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The function $(&) can be either a real or complex-valued function. If (%) is
integrable, Eq. (1) actually implies that it has zero mean:

(= =] (= =]
/ f H(E)F =0, or $(F=0)=0. @)
—00 —o0
From this basic wavelet, we generate the family of dilated, rotated, and translated
wavelets:
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where » € Rt is a scale dilation parameter, € (R™ x R"™) is the (unitary) rotation
tensor, ' € R™ is the translation vector, and ¢(r) is a normalization constant. Such
normalization is actually the L? norm if ¢(r) = r~%/2, and it is the L' norm if
c(r) =r1.

The analysis of the signal f(Z) is then given by

Fr,0,5) = —-—\/=j' f F@EWi0.2 (@), (4

Here 1* denotes the complex conjugate of . In two dimensions, the rotation tensor
can be characterized by a single angle #, and there the reconstruction formula reads:
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More of the basic properties of the wavelet transform are listed below. Here we
denote the wavelet transform of a function f(z) in the operator notation W[f(z)
or with the tilde notation, f(r,Q,Z).

Linearity:
Wlafi(Z) + Bf2(%)] = afi(r, 0, &) + Bfa(r, Q,Z). (6)
Translation property:
WIf(Z - &) = f(r,Q,& — Z). (7)
Dilation property:
WD) = - F( 2,0, 5). ®)
(] 0o To To

Energy conservation:
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Characterization of the local regu.la.rity of a function:
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a is the degree of differentiability of the function at Zp if @ > 1, or the Lipschitz
exponent of the singularity present in Zj if -1 < a < 1.

Besides the necessary admissibility condition, the choice of the analyzing wavelet
is determined largely by the condition of good localization as well as smoothness in
both physical and spectral space. These conditions can be expressed as

1

| %(Z) [< TIar (11.e)

and
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ko being the dominant frequency of the wavelet, and n should be as large as possible.
For instance, the Haar wavelet (similar to a French hat) is irregular in space and does
not decay fast enough in spectral space; the Maar wavelet (mexican hat) is smooth
in physical space, but it is not regular enough is spectral space. For the purpose of
this work, we also prefer to use a complex-valued wavelet. This is because for the
analysis of one-dimensional signals the phase has proven to be rich in information,
e.g. to detect singularities or to compute the instantaneous frequency (Escudier &
Torresani, 1988). The local energy density at every scale can then be obtained from
the modulus of the complex wavelet transform.

A good compromise in terms of both space (11.a) and scale (11.b) localization is
attained with the Morlet wavelet, which is a complex valued function:
- 2

#(3) = efofe'F _ . (12)
Here Ea is related to the number of oscillations of the basic wavelet within the
modulated region, and C; is a correction term that guarantees admissibility (1) by
forcing the mean of ¥ to be equal to zero. In our code, the wavelet is sampled in
physical space, then transformed to spectral space via FFT, and the admissibility
condition is satisfied by setting 3(k = 0) = 0. The convolutions needed to evaluate
the wavelet transform (Eq. (4)) are performed in Fourier space (using FFT).

Figure 1 is a plot of the 2-D Morlet wavelet for | ko |= 6 and 6 = 0.

3. Intermittency function and local Reynolds Number

An unambiguous characterization of the local ‘activity’ of a scalar field f(Z) is
given by the intermittency function I(r,&). It is defined in terms of the wavelet
transform of f(Z) as follows:

I(r,&) = | f(r,2) |? (13)

<| f(r, &) 2>z’
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FIGURE 1. The two-dimensional Morlet wavelet, with # = 0 and ko = 6.

where the averaging extends over all points 2'. I(r, ) then measures local deviations
from the mean spectrum of a field, at every scale.

Another measure of interest is the local Reynolds number, defined in terms of
the scale parameter r, the kinematic viscosity of the fluid v, and some local root-
mean-square value of the velocity field. This rms value should only correspond to
contributions to the velocity field at that particular scale r. We concentrate on
planar cuts through three-dimensional fields, but still consider all three velocity
components on that cut. Let @;(r,z,y,8) be the continuous (2D) wavelet transform
of the ith component of the fluctuating part of the velocity field in the plane of the
cut, defined as follows:

a,-(r,z,y,e)=\/% [ [ue ) o) as' . ()

—00 —Oo0

From here on we concentrate on a single angle, say § = 0, § = 7/2, or the value of
the wavelet coefficients averaged over 16 different angles equally sampled in [0, 27].
The total kinetic energy can be obtained from

o0 o0 (==
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r=0t+z=—0cc Yy=—00

where
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Here @'(r,z,y) is the characteristic rms velocity at scale r and at location (z,y) in
the plane being analyzed. Now we can define the local Reynolds number at every
scale, according to

=
Re(r,z,y) = L,:,g_)_r (17)

The expectation is that at large scales r ~ L, the Reynolds number should roughly
coincide with the usual large-scale Reynolds number Re = u'L/v, where u’ is the
rms turbulent velocity and L is some integral scale of the flow. At the smallest
scales (say r ~ 7, where 7 is the Kolmogorov scale of the flow), one would expect
this Reynolds number to be close to unity. The question we want to address here is
about the variability of such a Reynolds number defined locally in space and scale.
That is, are there locations where such a Reynolds number at some small scale is
much larger than in others, and how such regions correlate with regions of small-
scale activity in the flow? If so, then this could be a measure of the non-linearity
at small scales (or at any desired scale); it is unambiguous because it is based on
energy considerations. Such regions of high local Reynolds number could then also
be interpreted as regions of strong non-linearity within the flow.

As mentioned in section 2, we utilize the Morlet wavelet to perform the analysis.
In addition to location and scale, the angle of the wavelet can also be prescribed.
For notational convenience we omit explicit reference to this angle when using § =0
(with respect to the x-axis). When using another angle, we indicate this by adding
another variable, e.g. Re(r,z,y,0). Another issue of importance when computing
the local Reynolds number is the precise value of the constant Cy. In the continuous
case it is given by Eq.(1). However, in practice the convolutions needed to obtain
the wavelet transform will be done discretely, which means that some discretization
error is unavoidable. To obtain an effective constant Cy such that energy is the
same in the physical and wavelet spaces, we compute Cy from

i1

Cy=2

[ia(r, 2,9)? + Ba(r, 2,9)* +dis(r, 2,9)?] 2per

(18)

B%Bé'-va

J [11(2.9)* + ua(2,9)* + us(2,y)?] dzdy
This is then used to obtain #'(r,z,y) (16) and Re(r,z,y) (17).

4. Analysis of near-wall dynamics in turbulent channel flow

In this section, we analyze a turbulent channel flow at a Reynolds number Re, =
180. In addition to the velocity field, three passive scalars (heat for Pr = 0.1, 0.7,
2.0) are also computed for the case where one wall is uniformly hot and the other is
uniformly cold. Both the hydrodynamics and the scalar fields are fully developed.
For more details about the flow characteristics and the computation, see Kim and
Moin, 1989. In this report, we will concentrate solely on the analysis of the velocity
component normal to the wall, the temperature for Pr = 0.7 and the pressure.
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FIGURE 2. Iso-temperature lines in a horizontal x-z plane at y* = 10, in the plane
channel flow simulation. Black spots indicate regions of high values of the normal
velocity.

Since the wall region is the most active dynamically, the analysis is focused on one
single plane, parallel to the wall at y* = 10. Figure 2 shows iso-lines of temperature
in that plane. Black regions indicate the maxima of the normal velocity field. While
the normal velocity is the one responsible for the advection of heat from the wall,
the two fields exhibits a very different character. The temperature field is very
streaky, while the regions of active transfer from or to the wall are very localized.

Next we compute the continuous wavelet transform of the temperature field for
6 = 0 and for scales ranging from r = 64 to r = 4 (in units of the elementary
computational grid). In all subsequent figures, the r-axis is logarithmic (the small
scale r=4 on the top and the large scales r=64 on the bottom). We consider 40
steps for the discretization of r, which means a base of 1.074 for the logarithmic
increments. In Fig. 3, we show the intermittency factor I(r,z,z), defined as the
energy (modulus squared) of the wavelet coefficients normalized at every scale on
the average energy at that scale (13). We observe the following features:

(a) In the large scales, the energy is evenly distributed in space.

(b) On the contrary, the temperature field at the small scales is highly intermit-
tent; in four locations at the smallest scale, the local energy is about 15-20 times
the average energy at that scale.

(c) The flow remains anisotropic, with similar elongation factor at all scales.

Let us then compare the wavelet transform of the temperature field with the one
of normal velocity. Figures 4 and 5 show the wavelet transforms in the x-z plane,
where the r-dependence has been compressed; this representation is analogous to
viewing the wavelet coefficients as in Fig. 3 from ‘above’, parallel to the r-axis. In
Fig. 4, we use the transform with § = 0, which selects the streamwise contributions,
while in Fig. 5, we use § = 7 /2, which selects the spanwise contributions to the
fields. In both figures, we plot the transform of the temperature (4(a) and 5(a))
and the transform of the normal velocity (4(b) and 5(b)).

We observe that regions of activity in the temperature field are correlated with
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FIGURE 3. Wavelet transform of temperature field for # = 0 in plane channel flow
at y* = 10.

the spots where vertical velocity is high. These regions correspond to ejections from
the viscous sublayer. In the case 8 = 0, it is interesting to notice that even though
the streaks are elongated in the streamwise direction, the wavelet transform shows
some very localized active regions. This, therefore, indicates strong local changes in
the x-direction inside or at the end of the streaks. These events are also correlated
with the peaks of vertical velocity (Fig. 2). This is probably due to the fact
that the temperature, as the streamwise velocity streaks, are very passive almost
everywhere, except in very localized regions associated to the ejection mechanism.
In other words, this intermittency function allows to locate very precisely the regions
characterized by strong dynamics.

In the spanwise direction (considering § = 7/2) we observe similar correlation
between temperature and normal velocity; however, the activity is less intermittent.
The maximum value of I(r,z, z) for this case is 13 for the temperature, and 18 for
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FIGURE 4(A). Intermittency function I(r,z,z) of temperature field in plane
channel flow at y* = 10, in the direction # = 0. Shown are iso-lines of I(r,z, z)
ranging from I = 2 to I = 20.

=

FIGURE 4(B). Intermittency function I(r,z,2) of normal velocity field in plane
channel flow at y* = 10, in the direction § = 0. Shown are iso-lines of I(r,z,z)
ranging from I = 2 to I = 46.

the vertical velocity, while for the streamwise direction it is respectively 20 and 46.

We now turn our attention to the pressure field in the same plane. Fig. 6 depicts
the pressure fluctuations at y* = 10, highlighted with the regions of strong normal
velocity. Despite the integral character of the pressure, the pressure fluctuations
tend to be very spotty and concentrated primarily in the regions with strong normal
velocity perturbations.

‘The transform of the pressure field is shown in Figure 7a and 7b for the streamwise
(8 = 0) and spanwise ( = 7/2) directions, respectively.

The intermittency values in the spanwise and streamwise directions are similar
in distribution and magnitude. As noted before, the pressure fluctuations are rela-
tively homogeneous at the large scales and highly intermittent at the small scales.
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FIGURE 5(A). Intermittency function I(r,z,z) of temperature field in plane
channel flow at y* = 10, in the direction § = 7/2. Shown are iso-lines of I(r,z, z)
ranging from I =1 to I = 13.

FIGURE 5(B). Intermittency function I(r,z,z) of normal velocity field in plane
channel flow at y* = 10, in the direction § = m/2. Shown are iso-lines of I(r,z, z)
ranging from I = 2 to I = 18.

Furthermore, the anisotropy of the small scales observed for the temperature and
normal velocity is also present for the pressure fluctuations, and it appears that
the elongation in the streamwise direction remains similar over a significant range
of scales. Again, regions of high intermittency for the pressure can be correlated
with regions of strong ejections (normal velocity away from the wall) which set up
strong streamwise and spanwise local pressure gradients. This confirms the impor-
tance of these localized pressure gradients for “momentum mixing” as discussed by
Guezennec et al. (1990). As pointed out earlier, this intermittency is very useful in
pinpointing the regions dominated by strong dynamics.
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FIGURE 6. Iso-lines of pressure in the x-z plane at y* = 10 in the plane channel
simulation. Black spots indicate regions of high values of the normal velocity.
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FIGURE 7(A). Intermittency function I(r,z,z) of pressure field in plane channel
flow, in the direction # = 0. Shown are iso-lines of I(r,z, z) ranging from I = 2 to

I =22,
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FIGURE 7(B). Intermittency function I(r,z,z) of pressure field in plane channel
flow, in the direction § = w/2. Shown are iso-lines of I(r,z, z) ranging from I = 2

to I = 26.
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5. Analysis of mixing layer

In this section, we perform the continuous wavelet analysis of numerical simula-
tions of the temporally evolving mixing layer by Rogers & Moser (1990). The fields
analyzed correspond to the vortex produced after the first merging (namely after
the mixing transition). We consider a cut in the horizontal direction going through
the center of the core region. Iso-lines of vertical (w,) vorticity are shown in Fig.
8. The center of the plot corresponds to the spanwise vortex core. The alternating
sign vortical structures seen on either side of the plot represent cuts through the
“ribs” (the streamwise vortices formed between the vortex cores).

FIGURE 8. Vorticity contours in a x-z plane in the mixing layer (Rogers & Moser,
1990).

We compute i;(r,z,z), 42(r,z,2z) and i3(r,z,2), the two-dimensional wavelet
transform of this field for each velocity component u; (streamwise), uz (vertical)
and u3 (spanwise).

We also compute the wavelet transform of the vertical vorticity component, for
which we plot the intermittency function I(r,z,y) defined in section 2 (13) giving
for each scale the local deviations of the modulus around the spectral mean value.
Such representations of the transform are shown in Fig. 9.

The following conclusions regarding vorticity can be reached:

(a) The large-scales are evenly distributed in space.

(b) There is a very strong intermittency (reaching a factor I = 120) of the small
scales and these are localized in the vortex core.

(c) We observe return to isotropy at the small scales (such a conclusion is drawn
from combining both figures 9(a) and 9(b))

We now analyze the velocity fields. Figures 10(a), (b) and (c) show I(r,z, z) for
each velocity component, again viewed by ‘collapsing’ the r-axis. It is clear that
the active zones of the streamwise velocity (Fig. 10(a)) are localized in a narrow
region along the centerline of the vortex core and they are highly intermittent (the
maximum value of I(r, z, z) reaches 145). The spanwise component (Fig. 10(b)) has
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FIGURE 9(A). Intermittency function I(r,z,2) of the vertical vorticity component
in the mixing layer.
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FIGURE 9(B). Intermittency function I(r,z,z) of the vertical vorticity component
in the mixing layer, viewed from ‘above’. Shown are iso-lines of I(r,z,z) ranging
from I =0 to I = 125.
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FIGURE 10(A). Intermittency function for the streamwise (u;) velocity component
in the mixing layer (top view, parallel to r-axis). Shown are iso-lines of I(r,z,z)
ranging from I = 0 to I = 145.

FIGURE 10(B). Intermittency function for the spanwise (u3) velocity component
in the mixing layer (top view, parallel to r-axis). Shown are iso-lines of I(r,z, z)
ranging from I = 0 to I = 90.

activity also localized in the vortex core, but in a wider zone, and it is less intermit-
tent (I(r,z, z) reaches at most 90). On the contrary, the vertical velocity component
(Fig. 10 (c)) is much more space-filling and considerably less intermittent (I(r,z, z)
maximum is 40).

Now we consider two spanwise cuts (constant x) of the intermittency function.
The first cut is located in the braid region, while the second corresponds to the
vortex core. These cuts (not shown here) were obtained for each velocity component.
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FIGURE 10(c). Intermittency function for the vertical (u3) velocity component
in the mixing layer (top view, parallel to r-axis). Shown are iso-lines of I(r,z,z)
ranging from I = 0 to I = 40.

As a first conclusion, we state that the intermittency in the braid regions is very
low (between 0 and 5), this at every scale. Second, in the vortex core we observe
different features comparing the three velocity components:

(a) For the streamwise component, only one relevant small-scale structure is visi-
ble, for which I(r,z,2) = 85. Its fluctuations exist on a band of scales corresponding
to r ~ 16 to the smallest resolved scales (r = 4).

(b) For the spanwise component, the small-scale activity is more distributed,
occurring only at the smallest scales (around r ~ 4. The maximum intermittency
there is 40, and is encountered at three different locations, possibly corresponding
to some ribs (Moser & Rogers 1990) engulfed into the vortex core.

(c) For the vertical velocity component, we observe a very different behavior:
The intermittency is weak (maximum value of I is 9), and is encountered in two
distinct bands of scales (around r ~ 16 and r ~ 4), separated by a clear gap with no
activity there. Within the active bands, we can distinguish several features which
we interpret tentatively as the cups region (Moser & Rogers 1990), or again ribs
engulfed into the vortex core.

Similar conclusions concerning the small scale activity concentrated in the core
region and the difference between different velocity components were reached with
a technique called ‘peak-valley counting’ utilized by Zohar et al. (1990). This
technique provides information about the geometry of scales but not about their
energy content.

From the computation of the wavelet coefficients, we can also plot local spectra,
defined as | f(r,z0,20) | the energy or enstrophy at some location (z¢,2) as a
function of scale, plotted in terms of inverse scale r~?. As an example, we study
the local spectra of the vertical vorticity at three different points: The two points
where vorticity is largest (these are actually located in the vortex core), and a point
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FIGURE 11. Comparison of global and local spectra of vertical vorticity in the
mixing layer. The squares correspond to the spectral mean over all locations. The
crosses correspond to the local spectrum at the location of very small vorticity in
the braid region. The circles correspond to the local spectrum at the location of
maximum vorticity (in the core region), and the triangles correspond to the second
maximum of vorticity, also located in the core region.

(located in the braid region) where vorticity is very low. We also compute the
average enstrophy (average over all points (z,z) for each scale). The results are
plotted in Fig. 11.

For scales smaller than r=20, we observe a rapid departure from average, a sign
of the strong intermittency. At the scale r = 4, the difference is 1.4 decades in
enstrophy. Extrapolating the spectra using the observed slopes, we conjecture that
the larger the Reynolds number, the larger the degree of intermittency.

As a next step, we analyze the distribution of local Reynolds number, which is
defined combining all three velocity components. In Fig. 12 we show a iso-Reynolds
number surface corresponding to Re = 25. This can be interpreted as a surface of
iso-level of nonlinearity in the flow. It is not flat and it presents a scale extension over
4 octaves (r = 64 to 4). Its peaks, corresponding to the most unstable regions, are
located in the vortex core, clearly confirming our previous conclusions concerning
the small-scale activity there.

In the vortex core, relatively high local Reynolds numbers are attained at much
smaller scales in the braid region (we notice that Re = 25 even reaches the smallest
computed scale » = 4). Due to the limited resolution of the data, we have not
obtained the manifolds for Reynolds numbers smaller than 5. Therefore, we have
not attained the dissipative manifold Re = 1, but it is safe to argue that the
dissipative manifold would also fluctuate, meaning that the Kolmogorov scale varies
with location, being much smaller in the vortex core than in the braid regions.
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FIGURE 12. Local Reynolds number behavior in the mixing layer. Shown is a
surface corresponding to Re(r,z,z) = 25. The peaks are located in the vortex core.

6. Conclusions

In conclusion, the wavelet transform allows us to:

(1) Localize the dynamically active regions of a turbulent flow.

(2) In varying the wavelet angle 8, we are able to separate the streamwise contri-
butions (for # = 0) from the spanwise contributions (for § = 7/2) of the flow field
we analyze.

(3) In comparing the isotropy of the flow at different scales, we can test the return
to isotropy in the small scales.

In order to answer the three questions we have asked in the introduction, we have
defined three new diagnostic tools:

(1) A measure of intermittency, defined as the ratio of local energy to average
energy at a given scale,

(2) A local spectrum giving the energy or enstrophy distribution versus scale in
the vicinity of a given point, which can then be compared to the total spectrum,

(3) A local Reynolds number, defined in terms of the local velocity contribution,
the scale of the transform, and molecular viscosity. This gives a representation of the
local non-linearity of the flow viewed in both space and scale. The surface Re =1
corresponds to the ‘dissipative manifold’ and its topology (flat or not) indicates how
much the Kolmogorov scale varies in space.

For all flows considered we have found that:

(1) In the large scales, the energy density is homogeneous,

(2) In the small scales, the energy density is very inhomogeneous, and there is a
strong intermittency associated to some coherent structures, namely the “bursts”



348 M. Farge et al.

for the channel flow and the vortex core for the mixing layer,

(3) The topology of iso-Reynolds number surfaces is not flat and their peaks,
corresponding to the most unstable regions, are encountered in the vortex core of
the mixing layer, where the Kolmogorov scale is, therefore, much smaller than in
the rest of the flow.

Finally, as future development, the continuous wavelet transform in two dimen-
sions (as opposed to the one-dimensional case which has received much attention)
needs to be tested more in detail in some simple test cases. One needs to better
understand the information given by the phase, define better techniques to average
over angles, and compare results using different wavelets (orthogonal or not).
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